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ABSTRACT: 
 
Competitive learning neural networks have been successfully used as unsupervised training methods.  It provides a way to discover the 
salient general features that can be used to classify a set of patterns in neural networks.  Competitive learning models have shown 
superior training results compared with the K-means or ISODATA algorithms.  In this study, the model is extended for image 
classification.  A new layer is added to this one-layer competitive learning to form a two-layer complete classification system.  In 
addition, a modified competitive learning (CL) using simulated annealing is proposed.  The preliminary results show that this model for 
image classification is encouraging.  As the backpropogation multilayer perceptron (MLP) neural networks have been used for image 
analysis, a comparative study is provided for images on these two different models.  The models were tested on Landsat TM data.   
 
 

1. INTRODUCTION 

Multispectral image classification is one of the important 
techniques in the quantitative interpretation of remotely sensed 
images.  Remotely-sensed images usually involve a pixel 
(picture element) having its characteristics recorded over a 
number of spectral channels [1].  A pixel can be defined as a 
point in n-dimensional feature (spectral) space.  The thematic 
information can then be extracted in multispectral image 
classification.  Hence, the output from a multispectral 
classification system is a thematic map in which each pixel in 
the original imagery has been classified into one of several 
spectral classes.  Multispectral image classification may be 
subjected to either supervised or unsupervised analysis, or to a 
hybrid of the two approaches [2,3].  
  
A hybrid multispectral image classification system for 
quantitative analysis consists of unsupervised training for 
defining feature classes and supervised classification for 
assigning an unknown pixel to one of several feature classes.  In 
the training stage, the objective is to define the optimal number 
of feature classes and the representative prototype of each 
feature class.  Feature classes are groups of pixels that are 
uniform with respect to brightness in several spectral, textural, 
and temporal bands.  Unsupervised training is a critical step in 
the hybrid image classification system.  Once feature classes are 
defined, each pixel in the image is then evaluated and assigned 
to the class in which it has the highest likelihood of being a 
member using a classification decision rule in the classification 
stage. 
 
Artificial neural networks have been employed for many years 
in many different application areas such as speech recognition 
and pattern recognition [4,5].  In general, these models are 
composed of many nonlinear computational elements (neural-
nodes) operating in parallel and arranged in patterns 
reminiscent of biological neural nets.  Similar to pattern 

recognition, there exist two types of modes for neural networks 
– unsupervised and supervised.  The unsupervised type of these 
networks, which possesses the self-organizing property, is 
called competitive learning networks [5].  A competitive 
learning provides a way to discover the salient, general features 
which can be used to classify a set of patterns [5]. 
 
Because of the variations of object characteristics, atmosphere 
condition, and noise, remotely sensed images may be regarded 
as samples of random processes.  Thus, each pixel in the image 
can be regarded as a random variable.  It is extremely difficult 
to achieve a high classification accuracy for most per-pixel 
classification algorithms (classifiers).  Photo interpreters have 
had pre-eminence in the use of context-dependent information 
for remote sensing mapping. 
 
Neural networks have been recognized as an important tool for 
constructing membership functions, operations on membership 
functions, fuzzy inference rules, and other context-dependent 
entities in fuzzy set theory.  On the other hand, attempts have 
been made to develop alternative neural networks, more attuned 
to the various procedures of approximate reasoning.  These 
alternative neural networks are usually referred to as fuzzy 
neural networks.  In this study, the competitive learning neural 
networks and Backpropagation neural networks will be 
explored for the multispectral classification.   
 
 

2. ARTIFICIAL NEURAL NETWORKS FOR 
MULTISPECTRAL IMAGE CLASSIFIERS 

Artificial neural networks (ANNs), a brain-style computation 
model, have been used for many years in different application 
areas such as vector quantization, speech recognition and 
pattern recognition [4,5].  In general, ANN is capable of 
tolerating the noise, distortion and incompleteness of data taken 
from the practical applications.  Researchers have developed 

���������*

���������Orrin Long b and 

���������*

���������* 

���������b 

���������ps



 

several different paradigms of ANNs [4,5].  These paradigms 
are capable of detecting various features represented in input 
signals.  An ANN is usually composed of many nonlinear 
computational elements.  These computational elements operate 
in parallel to simulate the function of human brain.  Hence, an 
ANN is characterized by the topology, activation function, and 
learning rules.  The topology is the architecture of how neurons 
are connected, the activation function is the characteristics of 
each neuron, and the learning rule is the strategy for learning 
[4,5].  ANN is also well suited for parallel implementations 
because of the simplicity and repetition of the processing 
elements. 
 

2.1 Unsupervised Models 

One type of these networks, which posses the self-organizing 
property, is called competitive learning networks.  Three 
different competitive learning networks, the simple competitive 
learning network (SCL), Kohonen's self-organizing feature map 
(KSFM) and the frequency-sensitive competitive learning 
(FSCL) network were used as unsupervised training methods in 
some recognition systems [7].  Similar to statistical clustering 
algorithms, these competitive learning networks are able to find 
the natural groupings from the training data set.  The topology 
of the Kohonen self-organizing feature map is represented as a 
2-Dimensional, one-layered output neural net.  Each input node 
is connected to each output node.  The dimension of the training 
patterns determines the number of input nodes.  Unlike the 
output nodes in the Kohonen’s feature map, there is no 
particular geometrical relationship between the output nodes in 
both the simple competitive learning network and the 
frequency-sensitive competitive learning network.  During the 
process of training, the input patterns are fed into the network 
sequentially.  Output nodes represent the ‘trained’ classes and 
the center of each class is stored in the connection weights 
between input and output nodes. 
 
The following algorithm outlines the operation of the simple 
competitive learning network as applied to unsupervised 
training [8]; let L denote the dimension of the input vectors, 
which for us is the number of spectral bands.  We assume that a 
2-D (N x N) output layer is defined for the algorithm, where N 
is chosen so that the expected number of the classes is less than 
or equal to N2. 
 
 
Step 1:  Initialize weights wij(t) (i= 1, ..., L and j= 1, ..., N x N) 

to small random values. 
 
 Steps 2 - 5 are repeated for each pixel in the 
training data set for each iteration. 
 
Step 2:  Present an input pixel X(t) = (x1, ..., xL) at time t. 
 
Step 3:  Compute the distance dj between the xi and each output 
node using  
 dj = �i=1, L (xi - wij(t))

2 where i, j, L, wij and 
xi are similarly defined as in steps 1 and 2. 
 
Step 4:  Select an output node j* which has minimum distance 
(i.e. the winning node). 
 
Step 5:  Update weights of the winning node j* using  

 
 wij(t+1) = wij(t) + η(t)(xi - wij(t)),  i=1, ..., L 

and 1≤j≤N x N, where η(t) is a monotonically slowly decreasing 
function of t and its value is between 0 and 1. 
 
Step 6:  Select a subset of these N2 output nodes as spectral 
classes. 
 
Competitive learning provides a way to discover the salient 
general features which can be used to classify a set of patterns.  
However, there are many problems associated with competitive 
learning neural networks in the application of remotely sensed 
data.  Among them are: 1) underutilization of some neurons [5], 
2) the learning algorithm is very sensitive to the learning rate, η
(t) in remotely sensed data analysis, and 3) the number of output 
nodes in the network must be greater than the number of 
spectral classes embedded in the training set.  Ideally, the 
number of output nodes should be dynamically determined in 
the training (learning) environment instead of being specified a 
priori.   
 
For multispectral classification, the simple competitive learning 
networks are extended to include one more layer which will 
determine the category to which the input pixel belongs.  The 
new architecture is shown in Figure 1.  Each neuron in the 
category decision layer is calculating the difference between the 
input pixel value and each category protype, respectively, and a 
simple logic box which will determine the minimum value 
among those computed differences and hence the corresponding 
category. 

 
Figure 1.  A modified competitive learning neural networks 
with the extension of a category decision layer. 
 
 

2.2 Supervised Models 

Many adaptive, non-parametric neural-net classifiers have been 
proposed for real-world problems.  These classifiers show that 
they are capable of achieving higher classification accuracy than 
conventional pixel-based classifiers [9]; however, few neural-
net classifiers which apply spatial information have been 
proposed.  The feed-forward multilayer neural network has been 
widely used in supervised image classification of remotely 
sensed data [10, 11].  Arora and Foody [12] concluded that the 
feed-forward multilayer neural networks would produce the 
most accurate classification results.  A backpropagation Feed-
forward multilayer network as shown in Figure 2 is an 
interconnected network in which neurons are arranged in 
multilayer and fully connected.  There is a value called weight 
associated with each connection.  These weights are adjusted 
using the back-propagation algorithm or its variations, which is 
called training the neural networks.  Once the network is well 
trained, it can be used to perform the image classification.   

��������� 

�	

�����	����I don’t see 
this figure - ? 

���������as shown in Figure

���������4

���������?.  E



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  A backpropagation feed-forward multilayer neural 
networks. 

 
 

3. SIMULATED ANNEALING 

Simulated Annealing (SA) [13, 14] will be used to enhance the 
simple competitive learning neural networks.  SA is an 
optimization algorithm that is based on the process of annealing 
metals.  When a metal is heated up and slowly cooled down, it 
is hardened into an optimal state. The analogy behind this is 
that the algorithm begins the search for the optimal solution by 
exploring many possible solutions [13, 14].  Slowly, it restricts 
the search paths to only the most promising solutions as the 
algorithm is said to be cooling down.  The laws of 
thermodynamics state that at temperature, t, the probability of 
an increase in energy of magnitude, �E, is given by 

           P(�E) = exp(-�E /kt)   

where k is a constant known as the Boltzmann’s constant. 

This equation is directly used in simulated annealing, although 
it is usual to drop the Bolzmann’s constant as this was only 
introduced into the equation to cope with different materials. 
Therefore, the probability of accepting a worse state is given by 
the equation 

           P = exp(-c/t) > r 

where 

          c = the change in the cost function 

          t = the current temperature 

         r = a random number between 0 and 1 

 

The probability of accepting a worse move is a function of both 
the temperature of the system and of the change in the cost 
function.  This approach allows SA to explore solutions that the 
simple competitive learning networks might reject on its own.  
Simulated annealing allows for some randomness in its search 
for the optimal or near optimal solution.   
 
Simulated annealing introduces some randomness into the 
selection of clusters (categories).  This releases the algorithm 
from being trapped in a local optimum and allows it to venture 
into a search for the global optimum.   
 
 

4. EXPERIMENTS 

The image shown in Figure 3 is one of  tested images using both 
competitive learning networks and backpropagation feed-
forward multilayer networks.  The results from applying the 
simple competitive learning networks, modified competitive 
learning networks and backpropagation feed-forward multilayer 
networks to the image, respectively and the results are shown in 
Figures 4 – 6. 
 

 
 

Figure 3.  An original TM satellite image. 
 

 

 
Figure 4.  A classified image using the simple competitive 
learning neural networks. 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.  A classified image using the modified competitive 
learning neural networks. 
 
 
 

 
Figure 6.  A classified image using feed-forward multilayer 
neural networks. 
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5. CONCLUSIONS 

The advantages, stable training results and no requirement of a 
priori knowledge provided by the simple competitive learning, and 
optimization for preventing fixation to the local minima provided 
by simulated annealing, are integrated in this modified model.  
Like most competitive learning models, this modified model can 
be applied in different areas such as computer vision, pattern 
classification, industrial product inspection, etc.  In this study, the 
results of the proposed combined technique are compared with the 
results of the backpropagation feed-forward neural networks used 
to classify the same image.  The one-hidden layer feed-forward 
network trained with backpropagation algorithm was developed.  
The preliminary results showed that the modified competitive 
learning networks are promising.  The time complexity and the 
overall classification accuracy assessment will be performed in our 
experiments.   
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