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ABSTRACT: 
 
The last few years have seen satellite platforms with a large number of sensors (e.g. Terra and ENVISAT) coming on-line and the 
launching of a huge number of satellites with more than one sensor (e.g. IKONOS and QuickBird).  Various satellite images with 
spatial resolutions ranging from 0.5 to 25,000 m are available for different applications. This development offers new and significant 
changes and challenges in the approach to analysis, integration, and the efficient spatial modelling of these observation data. This 
paper presents a multi-resolution analysis and classification framework for selecting and integrating suitable information from 
different spatial resolutions and analytical techniques into classification routines. The proposed framework focuses on the 
examination of image structural using different spatial analytical techniques in order to select appropriate methods in different stages 
of classification such as training strategy, feature extraction, scene models, and classification accuracy assessment. The multi-
resolution approaches are tested using simulated multi-resolution images from IKNOS data for a portion of western part of the 
Kingston Metropolitan area. It was demonstrated that the multi-resolution classification approaches can significantly improve land 
use/cover classification accuracy when compared with those from single-resolution approaches. 
 
 

1. INTRODUCTION 

Earth observation data at multiple resolutions have been widely 
used in studies of environmental changes, natural resource man-
agement, and ecosystem and landscape analysis in general. 
With the development of new remote sensing system, very-high 
spatial resolution images provide a set of continuous samples of 
the earth surface from local, to regional scales. The spatial reso-
lution of various satellite sensors ranges from 0.5 to 25,000 m 
now. Furthermore, high resolution airborne data acquisition 
technology has developed rapidly in recent years. As an in-
creasing number of high resolution data sets become available 
such as Digital Globe (Quickbird), Space Imaging (IKONOS), 
Orbimage, Indian Remote Sensing (IRS), Digital Orthophoto 
Quarter Quads (DOQQ), etc., there is an increasing need for 
more efficient approaches to store, process, and analyze these 
data sets. The development of efficient analysis methods of us-
ing these multiscale data to improve land use/cover mapping 
and linking thematic maps generated from high resolution to 
coarse resolution has become a challenge (Foody, 2002). 
 
The effects of spatial resolution on the accuracy of mapping 
land use/cover types have received increasing attention as a 
large number of multi-scale earth observation data become 
available (Dungan, 2001). Scale variation and sensitivity have 
played an increasingly important role in the employment of 
earth observation data in different application areas (Marceau et 
al, 1994; Atkinson and Curran, 1999; Chen et al., 2003). For 
example, the resolution range to identify an individual tree is 
much smaller than that to identify a large commercial building 
block. Spatial autocorrelation existing in each class is an impor-
tant factor influencing classification results at each resolution 
level (Chen and Stow, 2003). Although many methods of semi-
automated image classification of remotely sensed data have 
been established for improving the accuracy of land use/cover 
classification during the past forty years, most of them were 
employed in single-resolution image classification. Due to the 
more heterogeneous spectral-radiometric characteristics within 

land use/cover units portrayed in high resolution images, many 
applications of traditional single resolution classification ap-
proaches have not led to satisfactory results (Barnsley and Bar, 
1996; Chen et al., 2003). 
 
Several techniques have been employed to assess appropriate 
(or optimal) spatial resolutions. Although a particular classifica-
tion can achieve the best result from a single resolution appro-
priate to the class, there is no single resolution which would 
give the best results from all classes (Marcean et al., 1994).  
Clearly landscapes are characterized by multiple scales of spa-
tial heterogeneity. Landscape objects (e.g. land cover/use poly-
gons) are not the same size and vary in different structures. 
Some objects are better classified at finer resolutions while oth-
ers require coarser resolutions. Therefore, as suggested by 
Woodcock and Strahler (1987), various objects require different 
analysis scales according to the image scene model. Scene 
models may be either high (H) resolution with pixels smaller 
than objects, or low (L) resolution with pixels larger than ob-
jects to be mapped. From a practical standpoint, building a 
framework to represent, analyze and classify images repre-
sented by multiple resolutions is necessary in order to capture 
unique information about mapped classes that vary as a func-
tion of scale. 
 
Many previous studies show the importance of developing and 
evaluating spatial analytic methods and models to support mul-
tiscale databases (Emerson et al. 1999, Li et al. 2000). The ap-
plication of multiscale or multi-level approaches to earth obser-
vation data research, however, is very recent and remains 
limited and undeveloped. Several researchers (such as Solberg 
et al., 1996; Li et al., 2000) have devoted considerable effort to 
the development of methods to integrate and analyze multi-
sensor, multi-scale and multi-temporal satellite imagery. How-
ever, compared with rapidly expanding data sets, there is an 
obvious lag in the development of spatial analytic methods and 
models for handling the increased multi-resolution images 
(Quattrochi and Goodchild, 1997; Tate and Atkinson, 2001). 
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The objective of this paper is to develop and test a multi-
resolution classification framework for selecting and integrating 
information from different spatial resolutions to improve land 
use/cover classification. The multi-resolution framework is 
based on the development of analytical techniques and strate-
gies of selecting and integrating suitable information from dif-
ferent resolutions into classification routines. The following il-
lustrates the multi-resolution classification framework. 
 
 

2. MULTI-RESOLUTION IMAGE ANALYSIS AND 
CLASSIFICATION FRAMEWORK 

A typical computer-assisted classification involves six major 
steps: classification scheme design, feature transformation, 
training, application of classification decision rules, post-
processing, and accuracy assessment. Spatial autocorrelation in-
fluences many aspects of image classification, depending on 
sensor resolution and landscape fragmentation. The entire clas-
sification process, especially the selection of training data, ap-
propriate resolutions, classification algorithm, and sampling 
data for accuracy assessment, may be affected by the autocorre-
lation of neighboring pixels. A proposed multi-resolution image 
analysis and classification framework is based on the frame-
work developed in Chen and Stow. (2003) and presented in 
Figure 1. 
 

 
 
Figure 1. A proposed multi-resolution analysis framework. Rn 

stands for variable image spatial resolution. 
 
The framework proposed here, focuses on the examination of 
image pattern, structural, and autocorrelation using different 
multi-scale spatial analytical techniques in order to select ap-
propriate methods in different stages of classification such as 
training strategy, feature extraction, scene models, and classifi-
cation accuracy. Spatial analysis techniques for measuring the 
pattern size and degree of autocorrelation are computed for 
each training class in order to determine whether they can guide 
selection of training data, high-resolution or low-resolution 
classification models, the range of spatial resolutions used for 
classification, and error patterns. The following sections de-
scribe the major parts of Figure 1. 
 
2.1 Image resolution pyramids 

Multi-resolution images can be created in two ways: (1) by in-
tegrating different resolution images acquired by different sen-
sors; and (2) aggregating fine resolution images into different 
coarse resolution levels (i.e., image pyramids). Obtaining im-

ages of different resolutions from different sensors could have 
advantage of including more spectral information that can be 
used to identify different objects, but is expensive. The misreg-
istration between different images also would increase the 
processing cost and reduce classification accuracy. 
 
It is more efficient to extract spatial information over a range of 
resolutions from a single high resolution image or degradation. 
There are several types of methods used in the operation of ag-
gregation including simple aggregation methods (e.g. averag-
ing, central-pixel, median, sub-sampling, nearest neighbor, cu-
bic convolution, etc.), scale-space transform (Lindeberg 1994), 
and Wavelet decomposition (Mallat 1989). 
 
2.2 Multi-scale analysis 

The purpose of multi-scale analysis is to establish a statistical 
model describing relationships between variables measured at 
different resolutions. The proper application of image classifi-
cation procedures requires knowledge of the variables of the 
data to determine the appropriate classification methodology 
and parameters to use. The concept of spatial autocorrelation 
has been introduced as a basis for understanding the effect of 
scale. Spatial autocorrelation is an important factor in selecting 
1) appropriate training methods for different homoge-
nous/heterogeneous classes (Chen and Stow, 2002), 2) appro-
priate spatial resolutions and image scene models (L- or H-
resolution), 3) suitable classification methods and parameters; 
and 4) understanding classification errors at the different spatial 
resolutions (Foody 2002).  
 
Prior to performing image classification, exploratory spectral-
radiometric data analysis and visual assessment of the spatial 
characteristics of each image band is recommended. Explora-
tory spatial data analysis should be employed to determine re-
quired information on image spatial characteristics and to en-
sure that appropriate scene methods and classification 
parameters are used.  
 
Many spatial statistical measures have been used to establish 
the spatial characteristics and scene model characteristics of 
images and to assess the scale of spatial variation in remotely 
sensed data (such as local variance (Woodcock and Strahler, 
1987), multi-scale spatial variability (Myers, 1997), and Fractal 
analysis (Emerson et al., 1999). Several studies have explored 
spatial autocorrelation measures to examine the autocorrelation 
of pixel DNs and to determine the optimal spatial resolution of 
a remotely sensed application (Atkinson 1997).  
 
2.3 Multi-scale classification decision rules and algorithms  

Three strategies were developed for maximum likelihood 
classifier by Chen and Stow (2003) to exploit information 
obtained from different resolutions and thus, to improve the 
classification results. 

The first strategy is a simple means of using information from 
multiple resolutions by incorporating them simultaneously in a 
classification routine.  In this way feature measures obtained at 
various resolutions are merged. This approach is simple and no 
other algorithms are needed to organize the data. The major 
drawback is that computation cost may be high 
 
The second strategy is to compare the posteriori probabilities 
obtained from different resolutions. For this approach, the clas-
sifier is applied at each resolution to obtain the probability for 
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each pixel as a member of class. The probabilities are then con-
verted to a posteriori probabilities of class membership, which 
are assessed as the probability density of a case for a class rela-
tive to the sum of the densities. For each pixel, the a posteriori 
probabilities sum to 1.0. At each resolution, the highest a poste-
riori probability and its related class are output for each pixel.  
With this approach, the feature layers obtained from coarse 
resolutions do not have to map back to the finest resolution 
specified and the computation cost is lower than that in the first 
strategy. 
 
The third approach is a top-town filtering approach. This multi-
resolution procedure starts with the coarsest resolution image. 
The finer resolution images are used only when necessary.  The 
posterior probabilities of the training data are used to determine 
the threshold at each resolution level. For pixels with maximum 
posterior probabilities greater than the threshold are assigned to 
their related classes and are excluded (masked) for subsequent 
processing. All pixels with maximum posterior probabilities 
less than the threshold are regarded as mixed pixels, or pixels 
that do not have identical signatures and cannot be identified at 
this resolution level. Their posterior probabilities are used as 
prior probabilities at next resolution level. 
 
More efficient classification algorithms can be used. This in-
cludes the Fuzzy-set and neural net classifiers (Foody, 1999; 
2000), approximating the model by Markov, conditional inde-
pendence or fractal structure obtained from multi-scale analysis 
(Solberg et al. 1996; Li et al. 2000). 
 
2.4 Error analysis 

At the same spatial resolutions, classification errors can be 
influenced by many factors, such as scheme selection, spatial 
autocorrelation among and within classes and classification 
techniques, to name a few. Traditionally classification error 
analysis is based on the use of an error matrix or contingency 
table to derive descriptive statistics such as overall accuracy, 
kappa coefficients, etc. The error models for area classification 
maps across scales are largely unsolved and little work has been 
done, although it is becoming more important with the 
increasing availability of multi-scale data (Tate and Atkinson 
2001). The emphasis in this framework is to explore how 
spatial autocorrelation of classification errors among and within 
classes changes with spatial resolutions. The variance loss from 
fine resolution to coarse resolution will be calculated. The 
relationship between these errors and spatial autocorrelation 
parameters obtained from the multi-scale analysis will be 
analyzed for each class. 
 

3. CASE STUDY 

The multi-resolution framework was tested using simulated 
multi-resolution images derived from IKONOS data for a por-
tion of the western part of Kingston City, Ontario, Canada. The 
IKONOS image has a spatial resolution of 4 m with four spec-
tral bands.  Ten land cover classes were used, including resi-
dential roof, industrial/commercial roof, Road, lawn, conifer 
tree, deciduous tree, bare/cleared land, water, new crop, and 
wetland. 
 
4 m IKONOS image was aggregated progressively into four 
nominal resolution levels (8 m, 12 m, 16 m, and 20 m) by an 
averaging method. Both single-resolution and multi-resolution 
classification were conducted. The single-resolution classifica-

tion was used as a benchmark for evaluating various multi-
resolution approaches.  
 
Initial exploratory data analysis was carried out as three trials. 
The first trial used histograms to determine the types of distri-
bution exhibited by each band. The second trial included the 
mean and standard deviation to assess distribution properties. 
The final trial established if each band offers or similar or dif-
ferent information, i.e. are they correlated?  
 
A set of sampling data was selected for each class. The semi-
variogram was used in the case study to decide the spatial auto-
correlation level in each class. Each value of a pixel was com-
pared to its neighbors at varying distances (lags) and the differ-
ences were calculated. The semivariance was then calculated by 
averaging the summation of squared differences for pixels. In 
most cases the semivariance tends to increase with spatial inter-
vals. After reaching a maximum value, the semi-variogram flat-
tens (called the sill). The lag at which the sill is reached is 
called the range.  The range indicates the extent to which val-
ues sampled from a spatial process are similar (spatially re-
lated). Detailed theoretical and mathematical exploration of 
variograms can be found in Cressie (1991), and Woodcock et 
al. (1988a; 1988b). 
 
The non-directional or isotropic semi-variogram was calculated 
and plotted for to assess the degree of spatial autocorrelation in 
respective bands in the case study. The ranges were determined 
by visual examination and through a comparison of piecewise 
slopes. Table 1 lists the ranges for each class. 
 

Classes Range (m) 
Residential roof 16 
Commercial/industrial roof 28 
Road 8 
Lawn 14 
Conifer trees 6 
Deciduous trees 12 
Cleared/bare land 30 
Water 12 
New crop 24 
Wetland 8 

 
Table1. The ranges obtained from semi-variogram 

 
The shape and range of each semi-variogram were useful for 
determining suitable sizes for training data, sampling interval, 
resolution or window sizes used for spatial feature extraction. 
Based on the discussion in previous section, when image reso-
lution is close to or coarser than the range of a class, an L-
resolution scene model is generally most appropriate for that 
class. Otherwise, spatial features that incorporate tex-
ture/contexture information should be generated at H-
resolution. 
 
Training data were selected by visually identifying and manu-
ally digitizing blocks of pixels. As a general rule, the length and 
width of small blocks for each class were close to the range ob-
tained from the semi-variogram, so that each block was big 
enough to represent the spectral and spatial properties of each 
class. Thus, the heterogeneity or autocorrelation within each 
class was included in the training data. The distance between 
any two blocks was greater than or equal to the range of the 
semi-variogram, so the pixels in one block were correlated, but 
not spatially autocorrelated with those in another block. 
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The strategy of comparing posterior probabilities from multiple 
resolutions was tested in the case study. For this approach, the 
classifier is applied at each resolution to obtain the probability 
P(k|i) for each pixel k as a member of class i (i=1, 2, …, m pos-
sible classes). The probabilities are then converted to a posteri-
ori probabilities of class membership, which are assessed as the 
probability density of a case for a class relative to the sum of 
the densities (Jensen 1996). The a posteriori probability of a 
pixel k  belonging to a class i, L(i |k), is determined by the fol-
lowing equation (1): 
 

 
 
 
where   P(k|i) = the probability for a pixel k  as a member of 

class i, 
   ai = a priori probablity of membership of class i, 
   m = total number of classes. 
 
For each pixel, the a posteriori probabilities sum to 1.0. At each 
resolution, the highest a posteriori probability and its related 
class are output for each pixel.  Ll(i|k ) represents the maximum 
posteriori probablity of a pixel k  belonging to class i at resolu-
tion level l, Ll(i|k ) derived from all resolutions and k  is as-
signed  to the class with the highest maximum a posteriori 
probability. Thus, k in class c, if and only if, 
 
 
L(c|k ) > Ll(i|k ),                    (2) 
 
 
Where i = 1, 2, 3, …m possible classes, 
  l = 4m, 8m, … possible resolutions. 
 
The results were evaluated and analyzed based on classification 
accuracy for eight land use/cover classes. A total of 600 ran-
domly selected samples were identified for the study area. The 
overall and individual Kappa coefficients (Jensen 1996) were 
reported for the study area for a series of classification maps to 
evaluate the agreement between the classification results and 
the reference data.  
 
To determine the difference between two kappa coefficients, 
the significance test proposed by Cohen (1960) for comparing 
two classification results was adopted. With this method, the 
difference between two Kappa coefficients resulting from two 
classifications was first obtained. The square root of the sum of 
the variances VK between the two classifications was then cal-
culated. A z-value is determined by dividing the difference by 
the square root. A z-value above 1.96 indicates that two classi-
fication results are significantly different at the 0.95 confidence 
level. 
 
Table 2 presents the summarized results obtained from single-
resolution and multi-resolution approaches based on their clas-
sification accuracies in discriminating between eight land 

use/cover classes. The Kappa coefficients obtained from classi-
fication using three multiple strategies are greater when com-
pared to those from single resolution image input. Classification 
accuracy improvements are significant at the 0.95 confidence 
levels for the multi-resolution approach relative to comparable 
results from all single resolution classifications.  
 
 

Resolution Kappa 
4 m 0.614 
8 m 0.648 
12 m 0.667 
16 m 0.694 
20 m 0.681 
Multi-resolution 0.755 

 
Table 2. Summary of classification accuracies derived from 
single-resolution and multi-resolution strategies. Accuracy is 
expressed as Kappa values.  
 

4. SUMMARY AND CONCLUSION 

One of the fundamental considerations when using remotely 
sensed data for land use/cover mapping is that of selecting ap-
propriate spatial resolution(s). With the increased availability of 
very high resolution multi-spectral images spatial resolution 
variation will play an increasingly important role in the em-
ployment of remotely sensed imagery. The correct application 
of image classification procedures for mapping land use/cover 
requires knowledge of certain spatial attributes of the data to 
determine the appropriate classification methodology and pa-
rameters to use. In general, traditional single-resolution classifi-
cation procedures are inadequate for understanding the effects 
of the chosen spatial resolution. They have difficulty discrimi-
nating between land use/cover classes that have complex spec-
tral/spatial features and patterns. Although a number of differ-
ent approaches have been developed for classifying highly 
heterogeneous landscapes, current research focuses on contex-
tual, knowledge-based, and segmentation routines using spatial 
and spectral information. Most of approaches developed mainly 
for Landsat TM and SPOT HRV images are often scene spe-
cific and untested on high resolution images (1 m to 10 m).       
 
The multi-resolution framework proposed in this paper recog-
nizes that image classification procedure should account for 
image spatial structure to minimize errors, and increase effi-
ciency and information extraction from the classification proc-
ess. Selection of the training scheme and classification decision 
rules should be guided by specification of the type of scene 
model (H- and L- resolution) and level of spatial variance rep-
resented by the image to be classified. 
 
The technical basis of the multi-resolution framework and its 
potential advantages over commonly used single-resolution 
classification procedures were introduced and discussed. A va-
riety of approaches may be used to generate multi-resolution 
image data sets. Different spatial analysis methods can provides 
the above information to allow resolution effects on individual 
classes examined. Different strategies can be used to incorpo-
rate information from multiple resolutions. 
 
The case study illustrated the potential of multi-resolution clas-
sification framework. Using a simulated multi-resolution data 
set and one multi-resolution strategy, it was demonstrated that 
multi-resolution classification approaches developed could sig-
nificantly improve land use/cover classification accuracy when 
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compared with those from single-resolution approaches. Multi-
scale data analysis can provide useful information to ensure that 
subsequent classification methods and parameters are suited to 
the spatial characteristics of the features (or classes). The re-
sults confirm the validity and efficiency of the proposed 
framework. 
 
This research is an initial step towards building an integrated 
multi-resolution image analysis and classification framework 
for land use/cover mapping using multiple spatial resolution 
and multispectral earth observation data. Further test in using 
real satellite data with different spatial resolutions will be con-
ducted in different landscapes. The refinement, particularly of 
class structures and descriptors from spatial techniques, and ex-
ploration of how different spatial techniques can quantify reso-
lution-dependent spatial characteristics of the image and can be 
used in the classification routine are required.  More advanced 
classification approaches such as neural nets, fuzzy set classifi-
ers, and expert classifier models will also be tested in the multi-
resolution context in the future. Further research in multi-
resolution error modeling to linking classification results across 
different spatial resolutions is also required. 
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