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ABSTRACT: 

 

This paper describes a method of integrating remotely sensed data (the MODIS LAI product) with an ecosystem model (the spatial 

EPIC model) to estimate crop yield in North China. The traditional productivity simulations based on crop models are normally site-

specific. To simulate regional crop productivity, the spatial crop model is developed firstly in this study by integrating Geographical 

Information System (GIS) with Environmental Policy Integrated Climate (EPIC) model. The integration applies a loose coupling 

approach. Data are exchanged using the ASCII or binary data format between GIS and EPIC model without a common user interface. 

It is crucial for the simulation accuracy of the spatial EPIC model to get the detailed initial conditions (sowing date, initial soil water 

content, etc) and management information (irrigation schedule, fertilizer schedule, tillage schedule, etc). But when applied at a large 

scale, the initial conditions and management information are most unlikely obtained through direct measurement. Therefore, the 

spatial EPIC model is integrated secondly with the MODIS LAI product from the Earth Resources Observation System (EROS) Data 

Center Distributed Active Archive Center. The integration of the MODIS LAI product makes the real time information taken into 

account in the simulation of spatial EPIC model, such as the amount of solar radiation captured by plant canopies, soil-water or 

nutrient effects on crop growth, and the effects of natural or man-made disturbances caused to crop yield. Finally, the method is 

conducted to estimate the Winter Wheat yield in North China in the year of 2003.  
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1. INTRODUCTION 

Monitoring agricultural crop conditions during the growing 

season and estimating the potential crop yields are both 

important for the assessment of seasonal production (Paul et al. 

2003). The accurate and real-time estimation of crop yield in 

provincial and national level are of great interest to the 

Department of Agriculture in many countries. Integrating of 

satellite data and crop productivity models is one of the most 

important quantitative analysis methodologies for yields 

estimation in regional level. 

 

The traditional crop yield estimation based on satellite data is 

using the empirical relationships between dry biomass of 

various crops and Vegetation Indices, which are combinations 

of visible and near infrared bands. Hamar et al. (1996) 

established a linear regression model to estimate corn and wheat 

yield at a regional scale based on vegetation spectral indices 

computed with Landsat MSS data. Similar relationships are 

obtained on various crops (for example: Rasmussen [1992] for 

millet yield, Manjunath et al. [2002] for wheat yield). Although 

the VI approach is simple, the relationships only have a local 

value and are sensitive to soil and atmospheric conditions as 

well as measurement geometries. To estimate crop yield in any 

conditions, it is necessary to describe the physiological and 

biological mechanisms, which control crop growth and 

development (Moulin et al. 1998). Therefore various 

mechanistic models are inevitable to be integrated with remote 

sensing data for yield assessment of major crops in regional 

scale.  

 

Mechanistic models can simulate the time profiles of the crop 

state variables (leaf area index, crop stress factor, potential 

biomass increase etc.) and of energy, carbon, water and nutrient 

fluxes at the crop-soil-atmosphere interfaces. For more than 

three decade, mechanistic models have been developed for the 

major crops in the world. Compared with many other crop 

models around agro-ecosystems, the EPIC Model seems to be 

more suitable to simulate crop yields for relative comparisons of 

soils, crops, and management scenarios and has a good accuracy 

to estimate field yields (Tan et al. 2003). It was originally 

developed by United States Department of Agriculture to 

examine the relationship between soil erosion and agricultural 

productivity. The model integrates the major processes that 

occur in the soil–crop–atmosphere–management system, 

including: hydrology, weather, erosion, nutrients, plant growth, 

soil temperature, tillage, plant environmental control, and 

economics (Sharpley et al. 1995). Extensive tests of EPIC 

simulations were conducted at over 150 sites and on more than 

10 crop species and generally those tests concluded that EPIC 

adequately simulated crop yields (Easterling et al. [1998], 

Izaurralde et al. [2003]). 

 

The different ways to integrate a crop model with the 

radiometric observations were described initially by Maas 

(1988). Delecolle et al. (1992) and Moulin et al. (1998) 



 

identified them into four integration methods: the direct use of a 

driving variable estimated from remote sensing information; the 

updating of a state variable of the model; the re-initialization of 

the model; and the re-calibration of the model. The temporal 

resolution of remote sensing data is so difficult to reach the time 

step requirement of crop models (from daily to weekly) that the 

direct use of a driving variable method is rarely the case. But 

the other three methods have been tested. Reynolds et al. (2000) 

developed an operational crop yield model in Kenya by 

introducing real-time satellite imagery into a GIS and the Crop 

Specific Water Balance (CSWB) model of FAO. Clevers et al. 

(1996) used ground and airborne radiometric measurements 

over sugar beet fields to calibrate the SUCROS model. The 

adjusted parameters and initial conditions were sowing date, a 

growth rate, light use efficiency and maximum leaf area. More 

current researches were focused on estimating LAI from optical 

remote sensing data, because LAI is the key variable during the 

whole yield simulation in most of the mechanistic models. 

Guerif et al. (2000) coupled the radiative transfer model SAIL 

with the crop model SUCROS to re-estimate crop stand 

establishment parameters and initial conditions for sugar beet 

crops.  Paul et al. (2003) used the SAIL model to link the EPIC 

model with satellite data in the spring wheat yield estimation of 

North Dakota. It was evident that how to measure or estimate 

the input parameters describing crop canopy characteristics in 

regional level for radiative transfer model is the key factor for 

coupling radiative transfer model to crop models. If the standard 

LAI product acquired by the Moderate Resolution Imaging 

Spectroradiometer (MODIS) can be validated and be proved to 

be suit for integration of crop productivity models, the 

operational yield assessment in regional level will be available. 

 

The objective of this study is to develop one operational crop 

yield model in regional level (North China) that integrates the 

USDA (United States Department of Agriculture) EPIC 

(Erosion Productivity Impact Calculator) model with NASA 

MODIS LAI product, ground-based ancillary data, and a 

Geographical Information System (GIS).  

 

 

2. STUDY AREA 

The study area is North China, which includes Beijing and 

Tianjin, the two municipalities, Hebei, Shanxi, Shandong and 

Henan Provinces (Figure 1). The area studied is 110ºE-123ºE 

longitude by 30ºN- 43ºN latitude and about 0.69 Million km2.  

 
Figure 1.  The study region of North China covers a 6.9×105 

km2 area (110ºE-123ºE longitude and 30ºN-43ºN latitude) 

 

The North China lies in semi-arid and semi-humid zone with an 

annual temperature sum of some 4800ºC (>0ºC), a spatially 
and  temporally strongly variable annual precipitation sum of 

some 600 mm and cumulative annual radiation around 

5200MJ/m2. The area is one of the most important grain 

production bases of China and plays an important role in the 

national food security. The population, cultivated land and crop 

production in 2000 have been reached to 24%, 22% and 25% of 

the national total respectively. The most widely distributed 

crops in North China are wheat in winter and corn in summer.  

 

 

3. METHODOLOGY 

In this section, the crop productivity model (EPIC model) used 

in the analysis, the method for integrating GIS with EPIC model, 

and the processing method of combining MODIS LAI product 

to spatial EPIC model are described. 

 

3.1 EPIC Model 

EPIC operates on a daily time step to simulate 

evapotranspiration, soil temperature, crop potential growth, 

growth constraints (water stress, stress due to high or low 

temperature, nitrogen and phosphorus stress) and yield. EPIC 

uses a single model for simulating all crops, each crop has 

unique values for model parameters, which can be adjusted or 

created by the user as needed. The crop growth model uses 

radiation-use efficiency in calculating photosynthetic 

production of biomass. The potential biomass is adjusted daily 

for stress from the following factors: water, temperature, 

nutrients (nitrogen and phosphorus), aeration and radiation. 

Crop yields are estimated using the harvest index concept. 

Harvest index are calculated from accumulated Leaf Area Index 

(LAI), which increases as a non-linear function of heat units 

from zero at the planting stage to the maximum value and then 

declines from the maximum value to the low value or zero at 

maturity. The harvest index may be reduced by high 

temperature, low solar radiation, or water stress during critical 

crop stages. Therefore, LAI is one of the most important 

variables in EPIC model, which influences the simulation for 

Photosynthetic Active Radiation (PAR); Potential Biomass 

Increase; Harvest Index and Crop Yield. 

 

3.2 Integrating GIS with EPIC Model 

In order to facilitate the storage, manipulation, and handling of 

complex EPIC spatial information, it is necessary to input all 

raw spatial data into a geographical information system. The 

data handling and analysis, which involves data editing, 

conversion, interpolation, and overlay, can lead to the 

application of GIS. With the aid of GIS, it is possible for the 

EPIC to simulate crop yields efficiently at regional scale, and to 

allow a flexible presentation of results according to the user's 

needs.  

 

There are several different approaches to integrate GIS with 

simulation models, such as the embedding method, loose 

coupling, and the tight coupling method. In this study, the loose 

coupling approach was used to integrate GIS with the EPIC. 

This approach uses two different packages directly. One is a 

standard GIS package (Arcview GIS3.2) and another is EPIC 

program (EPIC version 8120). They are integrated by 

combining various data layers on the physical aspects of 

agricultural environments such as soil, landform, and climate, 

via data exchange using either ASCII or binary data format 



 

between these two packages, which do not have a common user 

interface. The advantage of this approach is that redundant 

programming can be avoided. Map input, data handling, spatial 

analysis, and map output capabilities of GIS are used for the 

preparation of the land resource database required by the EPIC. 

The EPIC processing is outside of the GIS. 

 

3.3 Combining Spatial EPIC Model and MODIS LAI 

Product 

The integration of MODIS LAI product with the spatial EPIC 

model is achieved by using two distinct methods. The first 

method is the updating of LAI value in EPIC model. The LAI 

value simulated by EPIC model in some key stage of crop 

growth is updated by using the MODIS LAI product directly. In 

the second method, the time series of MODIS LAI product is 

used to calibrate the spatial EPIC model. Calibration was 

performed to adjust some model parameters: the maximum 

potential LAI of the crop; the leaf area decline rate (RLAD); 

and the time when green LAI begins to decline (DLAI).  

 

 

4. MATERIALS AND DATA REQUIREMENTS 

The MODIS LAI product and some important input data for 

EPIC model, such as weather, soil, and management data, are 

introduced here. 

 

4.1 Weather Data 

EPIC uses a stochastic weather generator to generate daily 

weather from monthly climatic parameters. The basic data set 

needed for each site is a record of monthly maximum and 

minimum temperatures, precipitation, Standard Deviation (S.D.) 

of maximum daily air temperature, S.D. of minimum daily air 

temperature, S.D. of daily precipitation, skew coefficient for 

daily precipitation, probability of wet day after dry day, and 

probability of wet day after wet day. The weather data from year 

1981 to 1990 in this study is from Global Daily Summary 

produced by National Climatic Data Center from 256 available 

terrestrial stations in China. This history weather data were used 

to validate the spatial EPIC model. When the MODIS LAI 

product is integrated with the spatial EPIC model in order to 

estimate winter wheat yield of North China in 2003, data from 

more than 200 weather stations of North China will be applied. 

Kriging method aided by climatologically and topographically 

interpolation with quality control model is applied (Tan et al. 

2002). 

 

4.2 Soil Data 

EPIC can accept up to 20 parameters for 10 soil layers. 

However, only a minimum of seven parameters is required: 

depth, percent sand, percent silt, bulk density, PH, percent 

organic carbon, and percent calcium carbonate. Other soil 

parameters can be estimated by EPIC itself. Therefore only 

these seven parameters in four layers are applied in this study. 

The soil-depth intervals are 0–0.1, 0.1–10, 10–30, 30–50, and 

50–80 cm. All soil databases are provided by the Global Soil 

Task cooperated by the Data and Information System (DIS) 

framework activity of the International Geosphere–Biosphere 

Programme (IGBP) (Scholes et al. 1995). The highest spatial 

resolution of this database is 5 min × 5 min (about 6km × 6km). 

 

4.3 Management Data 

EPIC requires detailed descriptions of management practices. 

These descriptions must specify the timing of individual 

operations either by date or by fraction of the growth period (i.e. 

by heat units). EPIC allows the user to simulate complex crop 

rotations with a variety of irrigation, fertilizer, pesticide, and 

tillage control options. There are two options for irrigation and 

fertilizer scheduled application in the EPIC program: manually 

and automatically. Only the manual option is applied in the 

spatial EPIC model. Some parameters of manual mode are 

described in details in Table 1 (Huang et al. 2001). The land use 

map at the scale of 1:1,000,000 is made by the Australian 

Center of the Asian Spatial Information and Analysis Network, 

Griffith University.  
 

Table 1.  The Operation Parameters of Winter Wheat – Summer 

Corn Rotation for EPIC Model in North China  

SUMMER CORN WINTER WHEAT 

Date Operation Volume Date Operation Volume 

Jun. 20 Irrigation 40mm Oct. 8 Irrigation 40mm 

Jun. 20 Fertilizer 72kg/ha* Oct. 8 Fertilizer 72kg/ha* 

Jun. 23 Planting  Oct. 8 Fertilizer 55kg/ha** 

Aug.10 Fertilizer 48kg/ha* Oct.10 Planting  

Sep.28 Harvest  Apr.10 Irrigation 100mm 

   Apr.20 Fertilizer 48kg/ha* 

   May10 Irrigation 100mm 

   Jun.18 Harvest  

Note: “*” means the application amount of 100% nitrogen in chemical fertilizer.  

“**” means the application amount of 100% phosphorus in chemical fertilizer. 

 

4.4 MODIS LAI Product 

The MODIS LAI-FPAR algorithm is based on three-

dimensional radiative transfer theory and developed for 

inversion using a look-up table (LUT) approach (Myneni et al. 

2002). According to the algorithm, global vegetation is 

classified into six canopy architectural types: grasses and cereal 

crops, shrubs, broadleaf crops, savannas, broadleaf forests and 

needle leaf forests. The structural characters among these 

biomes, such as the horizontal (homogeneous vs. 

heterogeneous) and vertical (single- vs. multi- story) 

dimensions, canopy height, leaf type, soil brightness and 

climate (precipitation and temperature), are used to define 

unique model configurations, including some fixed parameter 

values appropriate for the biome characteristics. LUTs are then 

generated for each biome by running the model for various 

combinations of LAI and soil type. The algorithm ingests 

atmospherically corrected bi-directional reflectance factors, 

their uncertainties and corresponding sun-view geometries. It 

compares the observed reflectances to comparable values 

evaluated from model-based entries stored in LUTs and derives 

the distribution of all possible solutions. When this method fails 

to identify a solution, a back-up method based on relations 

between the normalized difference vegetation index (NDVI) 

and LAI and FPAR is used. 

 

The current MODIS 1-km LAI-FPAR product is retrieved from 

the reflectances of two bands (648 and 858 nm) and on an 8-day 

compositing period. The product also includes extensive quality 

control (QC) information regarding cloud and data processing 

conditions. During each 8-day period, the highest-quality LAI 

and FPAR are selected. These data are further composited over 

4 (or 3) consecutive 8-day periods to produce monthly data 

(Tian et al. 2004). This study uses the MODIS LAI product 

from Sep. 2002 to Jul. 2003, which was downloaded from the 

home page of Myneni`s Climate and Vegetation research group 



 

in the Department of Geography at Boston University (available  
ftp://crsa.bu.edu/pub/rmyneni/myneniproducts/datasets/MODIS

/MOD15_BU/C4/). 

 

 

5. RESULTS AND DISCUSSION 

5.1 Validation of the Spatial EPIC Model 

The average yield of winter wheat and summer corn in North 

China for 1980s, simulated by the spatial EPIC model, can be 

seen from the Figure 2 and 3. The simulated yields are just 

compared with the statistical yields from the China Statistical 

Yearbook from 1982-1991, due to the lack of the actual yield 

data. The Table 2 shows the comparison results. The differences 

in percentage between simulated and statistical yield are mostly 

under 10%, except the situation in Beijing and Shandong. It is 

evident that crop yield of the area is underestimated by the 

spatial EPIC model, especially for Beijing. The reason is that 

Beijing and Shandong is the developed region in North China. 

The cropland in these regions are applied a very good field 

management with a better irrigation condition, fertilizer 

condition and so on. But only the simple and ordinary field 

operation parameters are inputted into the spatial EPIC model, 

which result in the underestimating situation. If the EPIC crop 

parameters established by USDA can be adjusted to be suitable 

for the application in North China, and the detailed field 

management information, such as the cropping system, 

irrigation schedule, fertilizer schedule and tillage schedule, can 

be obtained and be inputted into the spatial EPIC model. It 

should be possible to improve the simulation accuracy.   

 

Table 2.  Comparison between the simulation yield from spatial 

EPIC model and the statistical yield  (Ton/hectare) 

SUMMER CORN WINTER WHEAT 
Region 

Simulated Statistical Error Simulated Statistical Error 

BeiJing 2.979  4.820 38.2%  2.598  3.959 34.4%  

TianJin 3.686  3.864 4.6%  2.812  2.829 0.6%  

HeBei 3.647  3.623 0.7%  2.654  2.965 10.5%  

ShanDong 3.639  4.356 16.5%  2.669  3.388 21.2%  

HeNan 3.706  3.323 11.5%  3.002  3.322 9.6%  

ShanXi 3.796  3.993 4.9%  2.528  2.576 1.9%  

Note: “Simulated” means yield simulated by model; “Statistical” means the 
average statistical yield from the China Statistical Yearbook from 1982-1991.  

 

 

 
Figure 2.  The simulated yield per hectare of winter wheat by 

spatial EPIC model in North China 

 

 

 

Figure 3.  The simulated yield per hectare of summer corn by 

spatial EPIC model in North China 

 

5.2 Validation of Combining the Spatial EPIC Model and 

MODIS LAI Product 

Winter wheat – summer corn rotation is the dominant cropping 

system in North China. According to ground observation data, 

the key crop phenological stages are emergence (October), 

recovering (February), heading (May), maturity (June) of winter 

wheat and emergence (June or July), tasseling (August), 

maturity (October) of summer maize. The maturity of winter 

wheat and the sowing of summer maize usually occur within 20 

days. The leaf area index should reach maximum values during 

the heading (winter wheat) and tasseling (maize) stages. The 

colour-coded images of monthly MODIS LAI product for East 

Asia from year 2002 (September) to year 2003 (August) are 

shown in figure 4. From the consecutive images of monthly LAI 

in one year, it is evident to see the change profile of LAI value. 

But temporal resolution seems to be impossible to retire the 

model parameters to calibrate the spatial EPIC model. The 

higher resolution MODIS LAI product in 8-days or daily in 

some key stage should be obtained for the integration. 

Therefore, the validation of combining the spatial EPIC model 

and MODIS LAI product is not conducted yet. 

 

 

6. CONCLUSIONS 

The operational methodology of crop yield assessment in 

regional level was introduced in this study by integrating EPIC 

model with NASA MODIS LAI product, ground-based 

ancillary data, and GIS. The spatial EPIC model was developed 

and validated in North China firstly. The result indicated that 

the spatial EPIC model could simulate crop yield efficiently at 

regional level. But crop management information required by 

model, such as planting time, irrigation schedule and fertilizer 

schedule et al., is crucial for simulation accuracy and is not 

available by field measurement. Satellite remotely sensed data 

cans provide a real-time assessment of the magnitude and 

variation of crop condition parameters. Therefore the 

methodology of combining MODIS LAI product with Spatial 

EPIC model to improve yield simulation accuracy was built 

secondly, but it was not conducted and validated due to be lack 

of the necessary input data set yet.  

 



 

 
 

Figure 4. Colour-coded images of monthly MODIS LAI product  

for East Asia from year 2002 (September) to year 2003 (August) 
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