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ABSTRACT: 
 
An instantaneous synthetic aperture radar (SAR) derived flood extent map helps retrieving the distributed conveyance parameters in 
one-dimensional flood routing models. These models are generally calibrated based on the sole use of ground data. This research 
aims to use earth observation (EO) data in order to establish a significant parameter retrieval strategy, providing an alternative model 
calibration technique. Owing to model structural errors, parameter equifinality and the fuzziness of the available radar and ground 
data used for calibration, there are some uncertainties with respect to the model predictions. In order to assess these uncertainties in a 
statistical framework, Monte Carlo simulations of a well-documented flood event in the Alzette river floodplain, Luxembourg are 
used to explore the parameter space of roughness coefficients. It is shown that many parameter sets perform equally well. The 
subsequent generalized likelihood uncertainty estimation (GLUE) methodology is used to compare both calibration strategies. Due to 
the coarse resolution of the available radar scenes and the difficulty in defining an appropriate radar backscattering threshold value 
during the inundation delineation, the exact flood extent is relatively uncertain. Hence, it is recommended to use a fuzzy-rule based 
calibration procedure with the available instantaneous flood boundaries derived from ERS and Envisat radar scenes. The uncertainty 
bounds of the flood extension predictions are assessed for the two types of calibration procedures based on ground survey data and 
earth observation data respectively. It is shown that both techniques provide similar performances. By combining EO data with 
ground based data in the calibration procedure, the parameter space will be constrained providing more reliable flood extension 
predictions i.e. with narrower uncertainty bounds. This study shows that earth observation data are very useful for hydraulic model 
calibration and that their combined use with ground data provides more accurate inundation simulations.  
 
 

                                                                 
*  Corresponding author. 

1. INTRODUCTION 

Despite the physical appeal of the river flow computations in 
hydraulic flood propagation models, calibration remains a 
compulsory stage in inundation modelling. Elevations of high 
water marks and aerial photography are the most commonly 
used ground data during model calibration. Due to its large 
footprint, its all weather, day and night capabilities, the 
synthetic aperture radar (SAR) imagery shows considerable 
advantages over these ground data as well as over remotely 
sensed data obtained by sensors operating at visible 
wavelengths. Maps of flooded areas can be obtained very 
quickly and at low cost. Moreover, the sparseness of punctual 
ground data often hampers the calibration and evaluation of 
distributed roughness parameters in hydraulic models. Hence, 
the main objective of this study is to establish a parameter 
retrieval strategy based on SAR data, thus providing an 
alternative model calibration technique that will be compared to 
the more common one based on traditional mapping methods.  
 
As pointed out by Aronica et al. (1998), the application of a 
fuzzy rule based calibration technique along with a generalized 
likelihood uncertainty estimation (GLUE) procedure constitutes 
a new paradigm in the way we interpret the predictions of 
physically based models (see also Romanowicz and Beven, 

2003). Many different parameter values give rise to almost 
equivalent model simulations in terms of performance measures 
related to the different reference data, a phenomenon commonly 
termed equifinality (Beven, 1993). In fact, potential error 
sources are numerous in hydraulic modelling (model 
uncertainty, parameter uncertainty, error in observed data) and 
no set of calibrated parameters enables an entirely successful 
simulation of all state variables at each stage of the flood event. 
However, the uncertainties of the predicted spatially distributed 
flood extent can be reduced when combining objective 
functions based on different types of observations available 
after the flood event. The uncertainty reduction by introducing 
multi-response data describing several aspects of the modelled 
system has been widely explored in recent years (Freer et al., 
2004).  
 
However, in the past only a few studies have investigated the 
potential use of earth observation data in model calibration (see 
for instance Horritt et al., 2001). This is why we intend in this 
study to find out if the inclusion of further earth observations, 
which the model is required to replicate, can ultimately lead to a 
significant reduction of uncertainties related to the model 
predictions.  



 

2. THE STUDY SITE AND THE AVAILABLE DATA 

A flood prone area of the river Alzette, approximately 10 km in 
length, is selected as test site for this research. The selected 
river reach with its surrounding villages has been subject to 
severe flooding in the past. A well documented medium sized 
flood event in January 2003, with an estimated return period of 
5 years, was used in this study. The available database 
comprises pre-flood and flood SAR images, continuous 
discharge measurements upstream and downstream of the river 
reach, surveyed high water marks and GPS control points of the 
maximum flood extent. A set of photographs taken during the 
flooding event is also available. Acquired during the rising limb 
and at the peak discharge respectively, two ERS-2 SAR and 
Envisat ASAR scenes cover the flooded area at two distinct 
stages of the event (Figure 1). Except for two markedly wide 
alluvial plains upstream and downstream of Luxembourg-city 
(one of these figures as test site in this study), the Alzette river 
flows through a narrow valley system, making it impossible to 
use earth observation data to delineate the flood extension 
conveniently.  

               
Figure 1.  Upstream hydrograph for the 2003 flood event. The 

satellite overpass times are indicated. The high water 
marks correspond to the peak flow. 

 
2.1 Pre-processing 

The SAR instrument on board of the ERS-2 satellite is a C band 
(5.3 GHz) radar, operating in VV polarization with a spatial 
resolution of 30 m and a pixel size of 12.5 m (ESA, 1992). The 
Envisat satellite offers the ASAR instrument that enables to 
acquire data with alternate polarisation (AP). The combination 
of like- and cross-polarisations provides increased capabilities 
for flood mapping (Henry et al., 2003). In this study, the AP 
SAR data were acquired with a VV and VH polarisation 
combination. Among the three available radar scenes, the VH 
polarisation in the AP precision image allowed the best 
differentiation of “flooded” and “non-flooded” areas.  
 
The radar data are first radiometrically calibrated and then 
orthorectified using a 75 m resolution DEM. The internal 
geometric coherence is evaluated at 1-2 pixels, i.e. the 
horizontal shift between any two images never exceeds this 
value. The calibration procedure used in this study to calculate 
the backscattering coefficient is based on Laur et al. (1998). 
Speckle noise is reduced using the Frost filtering with a 5 x 5 
moving average filter.  
 
 

3. METHODS 

3.1 Flood boundary delineation using radar imagery 

Due to the specular backscattering on plain water surfaces and 
the resulting low signal return, the flood mapping through SAR 
is quite straightforward. However, in the transient shallow water 
zone between the flooded and the non-flooded part of the 
floodplain (with protruding vegetation producing increased 
signal returns), the radar signal only gradually increases, thus 
making the accurate delineation of the flood boundary more 
difficult. Hence, a rather arbitrary choice of a backscattering 
threshold value is needed during the automatic binary 
segmentation of flooded/unflooded areas of the radar scene. 
Because of the poorly defined flood boundaries it is therefore 
highly recommended to use a fuzzy rule based calibration 
technique as a general approach to hydraulic modelling with 
uncertain data derived from earth observation data. Wind 
roughening is also a well known effect that eventually has to be 
taken into account. Despite these limitations, the use of SAR 
imagery compares favourably with other remote sensing 
systems (Biggin and Blyth 1996). In a case study Horritt et al. 
(2001) found that, despite the aforementioned limitations, the 
SAR segmentation algorithm classified 70 % of the SAR 
shoreline within 20 m of the shoreline as derived from aerial 
photographic data. 
 
Because of the lack of standardised, reproducible methods (De 
Roo et al., 1999), a rather simplistic threshold approach was 
used in this study to obtain the inundation maps from the two 
available radar scenes. Therefore, profiles of pixel values at 
several cross sections of the river floodplain are drawn and 
confronted with the GPS control points of the maximum lateral 
flood extent. Thus, threshold values of radar backscattering are 
determined and used to classify the radar image as “flooded” 
and “non-flooded” respectively. As this raw classification 
method does not provide entirely satisfying results, three 
probability classes were defined reflecting the lack of 
knowledge about the “real” flood extent in the whole area 
(Figures 2 3). At each cross section the coordinates of the 
extension with high, intermediate and low probability of 
flooding are defined. Therefore, in a next section, a fuzzy 
performance measure will be defined that at each cross section 
reflects the uncertainties in the maximum flood extension as 
derived from the radar data.  
 

 
Figure 2.  Spectral profile across a river transect 

 
The resulting classified image (Figure 3) shows several flooded 
areas that are not directly connected to the riverbed. These 
patterns can be explained by surface runoff, groundwater 
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resurgence or misclassified pixels of the SAR imagery. The 
latter can be partially removed after confronting the classified 
image with photographs taken during the event. A further 
evaluation of the flood map can be achieved by combining the 
resulting image with a high resolution digital elevation model in 
order to derive the water elevation at each cross section. By 
comparing the profile of the water line with the elevation of the 
river bed, doubtful values can be outlined and eventually be 
removed from the reference data used during calibration. 
 

 
Figure 3.  Three probability classes of flooding are defined 

 
3.2 Flood propagation modelling 

It is nowadays commonly accepted that, once riverbank 
overtopping occurs, river flow becomes two-dimensional. As 
2D inundation models become more readily available, the 
calibration based on flood maps derived from earth observation 
data will become more popular. It is somewhat surprising that 
despite the obvious limitations in 1D model formulation, it has 
been shown that in some river reaches simple 1D models and 
the more sophisticated 2D models performed equally well 
(Horritt and Bates, 2002). Computational advantages therefore 
suggest that 1D models should be used whenever the 
topography of the floodplain allows considering the 1D river 
flow hypotheses.  
 
The widely used 1D HEC-RAS model is used in the present 
study. This model requires a minimal amount of input data and 
computer resources and is thus very easy to use. The unsteady 
flow model UNET, which is part of HEC-RAS, solves the full 
1D St Venant equations for unsteady open channel flow. The 
required input data comprises the topographical description of 
adjacent river and floodplain cross sections, the dimensions of 
hydraulic structures and the boundary conditions at the 
upstream and downstream end of the river reach. The 
description of the flood propagation is based on the commonly 
used Manning-Strickler formula which means that three 
roughnesses (one for the channel and two for the floodplains) 
are the free parameters that need to be calibrated in order to 
minimise the difference between simulations and observations. 
Nearly all one-dimensional and quasi two-dimensional flood 
propagation models use Manning’s equation to estimate 
empirically the friction slope (Pappenberger et al., in press).  
 
Downstream of Luxembourg-city, the HEC-RAS model was set 
up using 74 cross-sections that describe the channel and 
floodplain geometry. These data are extracted in GIS based on a 
high resolution, high accuracy DEM. The latter was obtained by 

combining the data describing the ground surveyed cross-
sections and the floodplain data obtained by airborne laser 
altimetry. The inflow hydrograph of the January 2003 flood 
event constitutes the upstream boundary. At the downstream 
end of the river reach, the friction slope is set to the average 
channel slope. Assuming normal flow, the Manning equation 
then allows calculating for each time step the water height 
which is used as downstream boundary condition.  
 
Nowadays, connections between 1D hydraulic models and 
Geographical Information Systems (GIS) allow for the accurate 
2D mapping of simulated inundations. Hence, the comparison 
of these modelled flood extents with remotely sensed flood 
areas has become straightforward. However, the needed export 
of the model results into GIS makes that this remains a very 
time consuming task. As a matter of fact, in the present study, 
where a large number of computational runs were carried out, 
the distributed 2D inundation data are therefore processed in 
order to become compatible with 1D model calibration and 
evaluation. Therefore, the x and y coordinates at the intersection 
of the digitised flood boundary and each of the river cross 
sections considered in the model formulation, are extracted in 
the GIS environment. Next, for each model run and at each 
cross section, the distance between the simulated and the radar 
derived flood extent is computed and used to determine the 
likelihood of the underlying parameter set. Point measurements 
of stage and travel time do not need to be transformed prior to 
1D model calibration and evaluation. 
 
3.3 Model calibration 

Remote sensing data sets (ERS-2 SAR and Envisat ASAR) and 
high water marks are used for calibration.  These reference data 
have in common that they are relatively uncertain. Hence, fuzzy 
measures are most appropriate to reflect this noise in the data 
sets. The only condition a fuzzy membership function 
describing the likelihood of a given parameter set must satisfy is 
that it must vary between 0 and 1 (Freer at al., 2004). At those 
cross sections where high water marks are available, a fuzzy 
product definition of the performance measure (PM) was used, 
having the following form of trapezoidal membership function 
(Equation 1):  
 
 

 

 
 

(1) 

 
 
where ( )TT WYM ,Θ  indicates the model, conditioned on input 

data YT and observations WT. For each cross section i, x is the 
distance between the simulated water level and the surveyed 
high water mark. The parameters a, b (in this study -0.5 and 0.5 
meters) define the core and the parameters c, d (in this study      
-1.5 and 1.5 meters) define the support of the trapezoidal 
membership function. The core defines the range of simulated 
water levels where the parameter set is credited with the highest 
possible likelihood value. The support is the range of water 
levels where we have a non-zero membership value. The 
performance measure of this model is given by the product of n 
fuzzy measures (n is the number of cross sections where HW is 
available). The maximum possible PM is 1.    
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Similar PMs are used with the radar data. The difference with 
the elevation data is that the parameters of the fuzzy 
membership function are now varying in space in order to take 
into account the individual inundation probability classes at 
each cross section (Figure 3). A custom PM was used, having 
the following form of membership function (Equation 2): 
 
 

 

 
 
 
(2) 

 
 
For each cross section i, d is the distance between the simulated 
water extent and the surveyed flood boundary of the highest 
probability class. The parameters Lstrong, Lmedium and Lweak are 
the membership values of the corresponding probability classes 
(1, 0.75 and 0.25 respectively).The resolution of the radar scene 
is taken into account with the parameter res. A fuzzy additive 
performance measure is used with each radar derived flood 
boundary. A multiplicative combination of PMs at each cross 
section would lead to the rejection of all models. These 
equations define a custom fuzzy membership set for the 
simulated flood extents (Figure 4). 
 

 
Figure 4.  Fuzzy number used in this study 

 
3.4 Generalized Likelihood Uncertainty Estimation 
(GLUE) 

The GLUE procedure is a Bayesian Monte Carlo based 
technique, which allows for the concept of equifinality in the 
evaluation of modelling uncertainty (Beven, 1993). This 
approach is recommended in inundation modelling, because it 
rejects the concept of optimal models in favour of multiple 
behavioural models. In our study, the GLUE prediction limits 
are conditional probabilities of the simulated flood extent at 
each river cross section, which are conditioned on the choice of 
the model and the errors in both radar and ground based data.  
 
First, a uniform sampling strategy is employed within user 
defined a priori feasible parameter ranges. A large number of 
simulation runs are required to sample the plausible parameter 
space adequately. As this research intends to assess multi-
objective variations in the model performance within a GLUE 
framework, the results of each run are compared to the 
calibration data presented in the preceding section. Hence, the 
multi-objective data that the model should be able to replicate, 
are the surveyed high water marks (HW) and the flood 

boundaries derived from the two radar data sets. Next, the user 
needs to define acceptable performance measures that will 
discriminate between “non-behavioural” and “behavioural” 
model runs, i.e. parameter sets that reproduce satisfactorily the 
observed hydrometric and inundation data respectively. The 
behavioural criteria for the multiple objectives are given in 
Table 1. 
 

 
Table 1. Performance measures and their acceptability criteria 

 
These threshold PM values are used to reject the simulations 
that deviate too much from the observations. Because of the 
subjective choice of the discriminating rejection criteria, this 
method has been criticized in the past (Gupta et al., 1998) 
Therefore, a null-information model is calculated first. At the 
time of the satellite overpasses and during peak flow, the 
available continuous stage measurements at the boundaries of 
the river reach and at the intermediate bridges are linearly 
interpolated. The resulting flood map is used to calculate the 
three performance measures. A “behavioural” hydraulic model 
should perform better than this simplified mapping method and, 
consequently, these PMs are used as acceptability criteria 
during the further research (Table 1).  
 
The likelihoods of the remaining behavioural model runs are re-
scaled to sum unity. At the end of this procedure, these results 
are used to form likelihood-weighted cumulative distribution 
functions of the simulated water levels at each river cross 
section. The uncertainty quantiles of each cross section are 
linearly interpolated to produce percentile inundation maps for 
the whole area. The focus of this study being the parameter 
uncertainty, this GLUE analysis is performed with the effective 
channel and floodplain roughness coefficients. The latter should 
not to be mixed with the real physical parameters as the 
effective parameters may compensate for uncertainties in the 
topographical description and/or the discharge measurements, 
both of which are not individually assessed in this study.  
 
 

4. RESULTS AND DISCUSSION 

In total 22000 runs of the model with randomly chosen 
roughness coefficients (from a uniform distribution between 
0.001 and 0.2) were generated. However, numerical instabilities 
that occurred with many parameter sets lead to the rejection by 
the model itself of almost half of them. These instabilities may 
be associated to many possible origins (Pappenberger et al., 
2004). Finally 11608 initial sets remain for the further analysis.  
For each run, different performance measures were calculated. 
The dotty plots in Figure 5 represent a projection of the 
parameter space into 1 dimension. Each dot represents the 
objective associated with a single parameter set. Each column is 
associated with one of the 3 parameters considered in the 
hydraulic model: channel roughness, left and right floodplain 
roughness. These plots are presented for the three performance 
measures that were considered in this study: high water marks 
(HW), flood boundaries derived from ERS SAR and ENVISAT 
ASAR respectively. The performance measures in Figure 5 are a 
multiplicative combination of the HW PMs and an additive 
combination of the ERS and Envisat PMs at each river cross 
section.  
 

Performance measure Equation Acceptability Criteria

HW fuzzy product Equation 1 0.8 (maximum possible = 1)

Envisat fuzzy additive Equation 2 56 (maximum possible = 118)

ERS fuzzy additive Equation 2 40 (maximum possible = 90)
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Figure 5 Dotty plots of parameter distributions for the different 

PMs 
 
Obviously, a large number of parameter sets perform  almost 
equally well. It is shown that the model performance mainly 
depends on the channel roughness coefficients whereas the 
model only shows limited sensitivity for the two floodplain 
friction parameters. Depending on the choice of the channel 
roughness, good fits can be achieved in the whole range of the 
sampled parameter values. In particular, a maximum likelihood 
value of 1 could be obtained for many different roughnesses in 
respect with the measured high water marks. The dotty plots 
also show that a considerable range of performance measures 
are produced inside the sampled parameter range. Clearly, some 
of these parameter sets produce output that has to be considered 
to be non-behavioural, i.e. the response deviates so far from the 
observations that the model cannot be considered as an 
adequate representation of the system. The parameter spaces of 
the simulations meeting the behaviourability criteria (Table 2) 
have only the channel roughness parameter constrained to its 
lower range from the initial sampling limits. The total number 
of behavioural simulations for each objective is given in Table 
2. The dotty plots associated to each one of these objectives 
show the consistencies of the results and the friction parameters 
were more or less stationary between the two considered flood 
stages. With only 286 behavioural parameter sets remaining, the 
most important reduction of parameter sets is achieved with the 
HW criteria. As these data are the most reliable, a relatively 
high threshold PM value can be chosen. The fuzziness of the 
radar data hampers the use of higher threshold PM values. 
 

 
Table 2. Behavioural simulations for indivual and combined 

PMs 
 
The effect of combining different PMs is shown in Table 2. 
Only parameter sets meeting the behaviourability criterium of 
each one of the multiple objectives are retained in the final 
sample. Clearly, the number of behavioural simulations is 
considerably reduced. More than half of the 286 selected 
parameter sets are rejected based on the additional criteria and 
finally only 140 among the initial 22000 runs are considered as 
behavioural. Most notably, the additional ERS PM constrains 

the model response most. This is not surprising as the ERS 
picture was taken during the rising limb preceding by several 
hours the peak discharge whereas the Envisat picture was taken 
close to peak discharge. Hence, the flood data derived from 
Envisat is somewhat redundant to the high water marks and the 
resulting parameter constrain is not noteworthy. 
 

 
Figure 6. Updated 5% and 95% percentile inundation maps for 

behavioural simulations of individual and combined 
PMs (Envisat overpass time) 

 
The progressive constraining of the model predictions by 
incorporating the additional Envisat radar data is also shown on 
Figure 6 with the distance between the boundary limits of the 
5% and 95% quantile flood maps gradually narrowing. This 
means that simulations conditioned using all the PMs show 
smaller ranges of model behaviours than models conditioned 
only using the ground data. Only locally, for instance at the 
upstream end of the river reach, some major uncertainties 
subsist. The uncertainty maps based on the final parameter set 
constrained using all 4 PMs of Table 1 give inundation maps at 
peak discharge that are very close to what was observed by 
Envisat at the same time (Figure 7). Most importantly the range 
of simulated flood boundaries generally brackets the observed 
extents. It is not surprising that the uncertainty reduction by 
incorporating additional distributed radar data becomes most 
effective in those areas of the floodplain where surveyed point 
data are missing. The resulting uncertainties tend to be higher at 
an initial stage of the flood (during ERS-2 overpass). This may 
be due to changing roughness values with increasing water 
levels that lead to some doubtful parameter values being 
included and some good sets being rejected when considering 
high water marks only. Moreover, at a preliminary stage of the 
flood, small changes of the channel roughness coefficient may 
have a large impact on the simulated extent. This is due to the 
fact that when the river channel is bankfull, small changes of the 
water level tend to induce large changes of the flood extent. By 

Behavioural simulations*

Acceptability criteria Total number

HW 286

Envisat 3926

ERS 4542

HW & Envisat 212

HW & ERS 143

HW & Envisat & ERS 140

* Total number of simulations was 22000
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incorporating the ERS objective, the subsequent parameter 
constrain becomes visible in some areas. 
 
 

5. CONCLUSION 

The findings in this flood propagation study showed the 
equifinality of roughness coefficients and outlined the need for 
multi-response evaluation. Most importantly, it was shown that 
simulations calibrated with radar data performed almost equally 
well than the models only conditioned on ground data. The 
main difference between both calibration methodologies can be 
related to the increased fuzziness of earth observation data that 
leads to larger prediction uncertainties. Due to this redundancy, 
the responses of models that were initially conditioned using 
measured high water marks could not be significantly 
constrained with synchronically obtained radar observations. 
This does not mean that on different sites with sparse ground 
data sets, the constrain could not become significant. On our 
test site, however, a significant constrain was only achieved 
with radar data sets obtained several hours before peak flow 
occurred. This suggests that in order to become complementary 
to existing ground data, the radar coverage should be different 
in time and/or space from the point data sets. This approach 
could also help addressing the well-known problem of changing 
roughness values with increasing water levels. However, if the 
time interval between available data sets is too long, this may 
lead to the rejection of all model simulations. Therefore, it will 
be interesting to investigate whether additional data sets of 
different flood events will further constrain the plausible 
parameter sets or, in contrast, will lead to the rejection of all 
simulations. 

 
Figure 7. Comparison of the “best” simulation (based on radar 

observation) and the corresponding Envisat derived 
flood area 

 
It has also been pointed out in this study that the application of 
a fuzzy rule based calibration technique, along with a 
generalized likelihood uncertainty estimation (GLUE) 
procedure, constitutes a valuable approach in inundation 
modelling. Fuzzy performance measures are perfectly suited for 
radar data with no knowledge of the error structure. Dealing this 
way with the most important sources of uncertainties could 
ultimately lead to an increase of confidence that flood managers 
will have in the simulation results. 
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