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ABSTRACT:

An algorithm for least squares matching of overlapping 3D surfaces is presented. It estimates the transformation parameters between
two or more fully 3D surfaces, using the Generalized Gauss-Markoff model, minimizing the sum of squares of the Euclidean
distances between the surfaces. This formulation gives the opportunity of matching arbitrarily oriented 3D surfaces simultaneously,
without using explicit tie points. Besides the mathematical model and execution aspects we pay particular interest to the reduction of
the computational expenses. An efficient space partitioning method is implemented in order to speed up the correspondence search,
which is the main portion of the computational efforts. The simultaneous matching of sub-surface patches is given as another
strategy. It provides a computationally effective solution, since it matches only relevant multi-subpatches rather then the whole
overlapping area. A practical example including computation times is given for the demonstration of the method.

* Corresponding author. http://www.photogrammetry.ethz.ch

1. INTRODUCTION

For 3D object modeling data acquisition must be performed
from different standpoints. The derived local point clouds must
be transformed into a common system. This procedure is
usually referred to as registration. In the past, several efforts
have been made concerning the registration of 3D point clouds.
One of the most popular methods is the Iterative Closest Point
(ICP) algorithm developed by Besl and McKay (1992), Chen
and Medioni (1992), and Zhang (1994). The ICP is based on
the search of nearest point-to-point or point-to-tangent plane
pairs in the two sets, and estimating the rigid transformation,
which aligns them. Then, the rigid transformation is applied to
the points of one set, and the procedure is iterated until
convergence. It does not use the local surface gradients in order
to direct the solution to a minimum. Originally, it was not
designed to register range data with scale factor or with higher
order deformations. Several reviews and comparison studies
about the ICP variant methods are available in the literature
(Jokinen and Haggren, 1998; Campbell and Flynn, 2001;
Rusinkiewicz and Levoy, 2001; Gruen and Akca, 2005).

The ICP, and in general all surface registration methods,
requires heavily computation. Computational complexity of the
original algorithm is of order O(n2), which can take a lot of time
when working with real-size data sets. Using the high
performance computers or parallel computing systems (Langis
et al., 2001) was proposed as a solution in order to reduce the
processing time. However the main research emphasize has
been given to the hardware-independent solutions.

The ICP algorithm always converges monotonically to a local
minimum with respect to the mean-square distance objective
function (Besl and McKay, 1992). This monotonic convergence
behaviour leads slow convergence, which is typically 30-50
iterations (Besl and McKay, 1992; Zhang, 1994; Cunnington
and Stoddart, 1999; Pottmann et al., 2004), even more in the
extreme cases. Reducing the number of iterations is an option to

accelerate the ICP. In their original publication Besl and
McKay (1992) proposed an accelerated version of the ICP
which updates the parameter vector using the linear or parabolic
type of extrapolations. Pottmann et al. (2004) forced the
parameter vector to a helical motion in the parameter space.
Both of the methods change the convergence from monotonic to
quadratic type. However manipulating the parameter vector
without any statistical justification may cause two dangers:
over-shooting the true solution, and deteriorating the
orthogonality of the rotation matrix. The gradient descent types
of algorithms assure substantially less number of iterations than
the ICP variants (Szeliski and Lavallee, 1996; Neugebauer,
1997; Fitzgibbon, 2001). They adopted the Levenberg-
Marquardt method for the estimation.

Another acceleration choice is to reduce the number of
employed points. Hierarchical coarse to fine strategy is a
popular approach (Zhang, 1994; Turk and Levoy, 1994;
Neugebauer, 1997). They start the iteration using a lower
resolution. While the algorithm approaches the solution, the
resolution is hierarchically increased. Some authors used only a
sub-sample of the data. The following sub-sampling strategies
have been proposed: selection of points in smooth surface areas
(Chen and Medioni, 1992), random sampling (Masuda and
Yokoya, 1995), regular sampling (Guehring, 2001), selection of
points with high intensity gradients (Weik, 1997), and selecting
the points according to distribution of surface normals
(Rusinkiewicz and Levoy, 2001). Godin et al. (2001) used a
feature vector based random sampling. Distance minimization is
performed only between pairs of points considered compatible
on the basis of their viewpoint-invariant attributes, e.g.
intensity, surface normal, curvature, etc. The hierarchical
methods usually give satisfactory results. However sub-
sampling based methods are very sensitive to data content, i.e.
noise level, occlusion areas, complexity of the object, etc., and
may not exploit the full accuracy potential of the registration.
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The main computationally expensive part of the ICP is the
exhaustive search for the correspondence. For a review of
existing surface correspondence algorithms we refer to Planitz
et al. (2005). Besl and McKay (1992) reported that 95% of the
run-time is consumed for searching the correspondence.
Speeding up the correspondence computation is another option
in order to accelerate the ICP. Point-to-projection methods
provide very fast solutions, since they reduce the problem to a
2D search when the sensor acquisition geometry or calibration
parameters are known (Blais and Levine, 1995; Jokinen and
Haggren, 1998). Recently Park and Subbarao (2003) gave a
mixed method combining the accuracy advantage from the
point-to-plane technique and speed advantage from the point-
to-projection technique. In addition they gave an overview over
the three mostly employed techniques, i.e. point-to-point, point-
to-(tangent) plane, and point-to-projection. Projection to multi-
z-buffers is another technique (Benjemaa and Schmitt, 1997).
The multi-z-buffer technique provides a 3D space partitioning
by segmenting the overlapping areas into z-buffer zones
according to known depth direction. In general point-to-
projection methods can solve the correspondence problem very
quickly, but acquisition geometry and sensor calibration
parameters must be known in advance. On the other hand, they
only give approximations, and resulting registration is not as
accurate as the point-to-point or point-to-plane methods.

Searching the correspondence is an algorithmic problem in fact,
and can be substantially optimized by employing the special
search structures. Search structures accelerate the registration by
restricting the search space to a subpart of the data. The k-D tree
(k dimensional binary search tree) was introduced by Bentley
(1975), and is likely the most well-utilized nearest neighbor
method (Zhang, 1994; Eggert et al., 1998; Greenspan and
Yurick, 2003). The k-D tree is a binary search tree in which
each node represents a partition of the k-dimensional space. The
root node represents the entire space, and the leaf nodes
represent subspaces containing mutually exclusive small subsets
of the relevant point cloud. The space partitioning is carried out
in a recursive binary fashion, i.e. letting at each step the
direction of the cutting plane alternate between yz-, xz- and xy-
plane. The average performance of the k-D tree search is of
order (nlogn), and the memory requirement is of order O(n).
However constructing a k-D tree is quite complicated task and
consumes a significant time of span, which is typical for all kind
of tree-search algorithms. The Oct-tree, which is the 3D analogy
of the quad-tree, was also used (Jackins and Tanimoto, 1980;
Szeliski and Lavallee, 1996; Pulli et al., 1997). Brinkhoff
(2004) investigated the usage of hash trees and R-trees, which
have originally been developed for spatial database systems.
Recently Wang and Shan (2005) applied the space partitioning
technique to a relational database for effective management of
LIDAR data. They ordered the 3D cells based on the principle
of Hilbert space-filling curve, which provides fast access and
spatial query mechanisms.

Pre-computed 3D distance map is another solution (Danielsson,
1980). Unfortunately, storing the complete uniform distance
map at the desired accuracy can be expensive in term of
memory requirement. Szeliski and Lavalle (1996) used an
approximate but efficient pre-computed distance map named
octree spline whose resolution increases hierarchically near the
surface. Greenspan and Godin (2001) developed a nearest
neighbor method, which calculates the spherical neighborhoods
of each point in the preprocessing step, and tracks the evolution
of point correspondence across iterations. Jost and Huegli
(2003) combined a coarse to fine strategy with a fast closest

point search by employing a nearest neighbor algorithm. They
gave an extensive overview on the fast implementation of the
ICP as well.

In our previous work an algorithm for least squares matching of
overlapping 3D surfaces was given (Gruen and Akca, 2004;
Gruen and Akca, 2005). It estimates the transformation
parameters between two or more fully 3D surfaces, using the
Generalized Gauss-Markoff model, minimizing the sum of
squares of the Euclidean distances between the surfaces. This
formulation gives the opportunity of matching arbitrarily
oriented 3D surfaces simultaneously, without using explicit tie
points. Our mathematical model is a generalization of the least
squares image matching method, in particular the method given
by Gruen (1985).

In this study we focus on the computational aspects in order to
optimize the run-time. We implemented a rapid method for
searching the correspondence, which is the main portion of the
computational effort. We opt for a space partitioning method
given by Chetverikov (1991) called boxing, since it is easy to
implement and time-effective for constructing the box and ac-
cessing the data. In the original publication it was given for 2D
point sets. We straightforwardly extend it to the 3D case. We
combined our 3D boxing structure with a hierarchical local and
adaptive nearest neighborhood search. Our second acceleration
strategy is the simultaneous matching of sub-surface patches,
which are selected in cooperative surface areas. It provides a
computationally effective solution, since it matches only rele-
vant multi-subpatches rather then the whole overlapping areas.

The details of the mathematical modeling of the proposed
method and the execution aspects are explained in the following
section. The two acceleration strategies are given in the third
section. A practical example for the demonstration of the
feasibility of the method is presented in the fourth section.

2. LEAST SQUARES 3D SURFACE MATCHING (LS3D)

Assume that two different partial surfaces of the same object are
digitized/sampled point by point, at different times (temporally)
or from different viewpoints (spatially). f (x, y, z) and g (x, y, z)
are conjugate regions of the object in the left and right surfaces
respectively. In other words f (x, y, z) and g (x, y, z) are discrete
3D representations of the template and search surfaces. The
problem statement is estimating the final location, orientation
and shape of the search surface g (x, y, z), which satisfies
minimum condition of the least squares matching with respect
to the template f (x, y, z). In an ideal situation one would have

),,(),,( zyxgzyxf = (1)

Taking into account the noise and assuming that the template
noise is independent of the search noise, Equation (1) becomes

),,(),,(),,( zyxgzyxezyxf =− (2)

where e (x, y, z) is a true error vector. Equation (2) are
observation equations, which functionally relate the
observations f (x, y, z) to the parameters of g (x, y, z). The
matching is achieved by least squares minimization of a goal
function, which represents the sum of squares of the Euclidean
distances between the surfaces. The final location is estimated
with respect to an initial position of g (x, y, z), the approximation
of the conjugate search surface g0(x, y, z).
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To express the geometric relationship between the conjugate
surface patches, a 7-parameter 3D similarity transformation is
used:

[ zyx ]T = [ zyx ttt ]T + m R [ 000 zyx ]T (3)

where R = R(�,�,�) is the orthogonal rotation matrix, [tx ty tz ]T

is the translation vector, and m is the uniform scale factor. This
parameter space can be extended or reduced, as the situation
demands it.

In order to perform least squares estimation, Equation (2) must
be linearized by Taylor expansion.
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where pi ∈{tx , ty , tz , m, �, �, �} is the i-th transformation
parameter in Equation (3). Differentiation of Equation (3) gives:

κ+ϕ+ω++= dddddd 13121110 aaamatx x

κ+ϕ+ω++= dddddd 23222120 aaamaty y (6)

κ+ϕ+ω++= dddddd 33323130 aaamatz z

where aij are the coefficient terms, whose expansions are trivial.
Using the following notation
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and substituting Equations (6), Equation (4) results in the
following:
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In the context of the Gauss-Markoff model, each observation is
related to a linear combination of the parameters, which are
variables of a deterministic unknown function. The terms {gx ,
gy , gz} are numeric first derivatives of this function g (x, y, z).
Equation (8) gives in matrix notation

PA lxe ,−=− (9)

where A is the design matrix, xT= [dtx dty dtz dm d� d� d�]
is the parameter vector, and l = f (x, y, z) – g0(x, y, z) is the
discrepancy vector that consists of the Euclidean distances
between the template and correspondent search surface
elements. The template surface elements are approximated by
the data points, on the other hand the search surface elements
are represented in two different kind of piecewise surface forms
(planar and bi-linear) optionally. In general both surfaces can be
represented in any kind of piecewise form.

With the statistical expectation operator E{} and the assump-
tions E{e}= 0, E{eeT}= �0

2Pll
-1 Equation (9) is a Gauss-Markoff

estimation model, where P =Pll is a priori weight matrix.

The unknown transformation parameters are treated as
stochastic quantities using proper a priori weights. This
extension gives advantages of control over the estimating
parameters. We introduce the additional observation equations
on the system parameters as

bbb PI lxe ,−=− (10)

where I is the identity matrix, lb is the (fictitious) observation
vector for the system parameters, and Pb is the associated
weight coefficient matrix. The least squares solution of the joint
system Equations (9) and (10) gives as the Generalized Gauss-
Markoff model the unbiased minimum variance estimation for
the parameters

)()(ˆ T1T
bbb llx PPAPPAA ++= − (solution vector) (11)

rbbb )(ˆ TT2
0 vvvv PP +=σ (variance factor) (12)

lxv −= ˆA (residuals vector for surface observations) (13)

bb lxv −= ˆI (residuals vector for parameter observations) (14)

where ^ stands for the Least Squares Estimator, and r is the
redundancy. Since the functional model is non-linear, the
solution is obtained iteratively. In the first iteration the initial
approximations for the parameters must be provided. After the
solution vector (Equation 11) is solved, the search surface
g0(x, y, z) is transformed to a new state using the updated set of
transformation parameters, and the design matrix A and the
discrepancies vector l are re-evaluated. The iteration stops if
each element of the alteration vector x̂ in Equation (11) falls
below a certain limit: | dpi |<ci .

The numerical derivative terms {gx , gy , gz} are defined as local
surface normals n. Their calculation depends on the analytical
representation of the search surface elements. Two first degree
C0 continuous surface representations are implemented: triangle
mesh form, which gives planar surface elements, and optionally
grid mesh form, which gives bi-linear surface elements. The
derivative terms are given as x-y-z components of the local
normal vectors: [gx gy gz]

T = n = [nx ny nz]
T.

The proposed method provides mechanisms for internal quality
control by means of theoretical precision and correlation
measures. Typical convergence rate for a good data
configuration case is 5-6 iterations. A simple weighting scheme
adapted from the Robust Estimation Methods is used to localize
the occluded parts and the outliers. For the details of the method
we refer to Gruen and Akca (2005).

3. ACCELERATION STRATEGIES

3.1 Fast correspondence search with boxing structure

The computational effort increases with the number of points in
the matching process. The main portion of the computational
complexity is to search the corresponding elements of the
template surface patch on the search surface, whereas the
parameter estimation part is a small system, and is quickly
solved using Cholesky decomposition followed by back-
substitution. Searching the correspondence is guided by an
efficient boxing structure (Chetverikov 1991), which partitions
the search space into boxes. For a given surface element, the
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correspondence is searched only in the box containing this
element and in the adjacent boxes.

Let points Ai ={xi , yi , zi}∈ S, i = 0,1,…,N-1, represent the object
S ∈�3, and are kept in list L1 in spatially non-ordered form. The
boxing data structure (Fig. 1) consists of a rearranged point list
L2 and an index matrix I = Iu,v,w whose elements are associated
to individual boxes: u,v,w = 0,1,…,M-1. The items of L2 are
coordinates of N points placed in the order of boxes. I contains
integers indicating the beginnings of the boxes in L2.

Initialization. Defining the box size.
Step 1. Recall min, max{xi , yi , zi} of data volume.
Step 2. Define number of boxes along x-y-z axes. For the

sake of simplicity, they are given same (M) here.

Pass 1. Computing I.
Step 1. Allocate an M x M x M size accumulator array

B = Bu,v,w which is to contain the number of points in each box.
Step 2. Scan L1 and fill B. For any point Ai the box indices

are as follows:
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where � � stands for the truncation operator, and DX , DY and DZ

are dimensions of any box along the x-y-z axes respectively.
Step 3. Fill I using the following recursive formula:
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Pass 2. Filling L2.
Step 1. For all u, v and w, set Bu,v,w = 0.
Step 2. Scan L1 again. Use Equation (15), I and B to fill L2.

In L2 , the first point of the (u,v,w)-th box is indexed by I while
the address of the subsequent points is controlled via B whose
value is incremented each time a new point enters the box.
Finally, release the memory area of B.

The memory requirement is of order O(N) for L2 and O(M 3) for
I. For the sake of clarity of the explanation, L2 is given as a
point list containing the x-y-z coordinate values. If one wants to
keep the L1 in the memory, then L2 should only contain the
access indices to L1 or pointers, which directly point to the
memory locations of the point coordinates.

Access procedure.
Step 1. Using Equation (15), compute the indices ui , vi and

wi of the box that contains point Ai .
Step 2. Use the boxing structure to retrieve the points

bounded by the (u,v,w)-th box. In L2 , I indexes the first point,
while the number of points in the box is given by the following
formula:

�
�

�

�
�

�

	

−
−<−
−<−
−<−

−−−

−−+

−+

+

else

1ifelse

1ifelse

1if

1,1,1

1,1,0,0,1

1,,0,1,

,,1,,

MMM

MMuu

Mvuvu

wvuwvu

IN

MuII

MvII

MwII

(17)

The access procedure requires O(q) operations, where q is the
average number of points in the box. One of the main
advantages of the boxing structure is a faster and easier access
mechanism than the tree search-based methods provide.

Figure 1. 3D Boxing. (Left) Boxing bounds all the data points,
(Right) the boxing data structure.

The boxing structure, and in general all search structures, are
designed for searching the nearest neighborhood in the static
point clouds. In the LS3D surface matching case, the search
surface, which the boxing structure is established for, is
transformed to a new state by the current set of transformation
parameters. Nevertheless there is no need neither to re-establish
the boxing structure nor to update the I and L2 in each iteration.
Only positions of those four points (Fig. 1) are updated in the
course of iterations: O ={xmin , ymin , zmin}, X ={xmax , ymin , zmin},
Y ={xmin , ymax , zmin}, Z ={xmin , ymin , zmax}. They uniquely define
the boxing structure under the similarity transformation. The
access procedure is the same, except the following formula is
used for the indices calculation:
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where · stands for vector dot product. If the transformation is a
similarity rather than a rigid body, the DX , DY and DZ values
must also be updated in the iterations.

In our implementation, the correspondence is searched in the
boxing structure during the first few iterations, and in the
meantime its evolution is tracked across the iterations.
Afterwards the searching process is carried out only in an
adaptive local neighborhood according to the previous position
and change of correspondence. In any step of the iteration, if the
change of correspondence for a surface element exceeds a limit
value, or oscillates, the search procedure for this element is
returned to the boxing structure again.

3.2 Simultaneous multi-subpatch matching

The basic estimation model can be implemented in a multi-
patch mode, that is the simultaneous matching of two or more
search surfaces g i (x, y, z), i=1,…,k to one template f (x, y, z).

iiiii PA lxe ,−=− (19)

Since the parameter vectors x1 ,…, xk do not have any joint
components, the sub-systems of Equation (19) are orthogonal to
each other. In the presence of auxiliary information those sets of
equations could be connected via functional constraints, e.g. as
in the Geometrically Constrained Multiphoto Matching (Gruen,
1985; Gruen and Baltsavias, 1988) or via appropriate
formulation of multiple (>2) overlap conditions.
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An ordinary point cloud includes enormously redundant
information. A straightforward way to register such two point
clouds could be matching of the whole overlapping areas. This
is computationally expensive. We propose multi-subpatch mode
as a further extension to the basic model, which is capable of
simultaneous matching of sub-surface patches, which are
interactively selected in cooperative surface areas. They are
joined to the system by the same 3D transformation parameters.
This leads to the observation equations

iiii PA lxe ,−=− (20)

with i =1,…, k subpatches. They can be combined as in
Equation (9), since the common parameter vector x joints them
to each other. The individual subpatches may not include
sufficient information for the matching of whole surfaces, but
together they provide a computationally effective solution, since
they consist of only relevant information rather than using the
full data set.

4. EXPERIMENTAL RESULTS

A practical example is given to show the capabilities of the
method. The experiment was carried out using own self-
developed C/C++ software that runs on an Intel® P4 2.53Ghz
PC. The object is a chapel, which is located in Wangen,
Germany. It is around 20x9 meters in size. The date set consists
of 14 point clouds, which were acquired by the IMAGER 5003
(Z+F) terrestrial laser scanner. Each scan file contains 2.64
million points. The average point spacing is around 1-2 cm.

Fourteen consecutive matching processes were performed using
the simultaneous multi-subpatch approach of the LS3D
matching method. The results are given in Table 1. The initial
approximations of the unknowns were provided by interactively
selecting 3 common points on both surfaces prior to matching.
The scale factor m was fixed to unity by infinite weight value
((Pb)ii →�). The iteration criteria values ci were selected as 0.1
mm for the translation vector and 10cc for the rotation angles.

One of the scans was selected as the reference, which defines
the datum of the common coordinate system. Since it is a closed
object, there is need for a global registration, which distributes
the residuals evenly among all of the scans, and also considers
the closure condition, i.e. matching of the last scan to the first
one. For this purpose we used the block adjustment by
independent model solution, which was formerly proposed for
global registration of laser scanner point clouds, but for the case
of retro-reflective targets as tie points (Scaioni and Forlani,
2003). In the LS3D matching processes, the final
correspondences were saved to separate files. Then all these
files were given as input to a block adjustment by independent
model procedure, which concluded with 1.6 mm a posteriori
sigma value. Visual inspection of the final model showed the
success of matching in all overlapping areas. The final model
contains ca. 11.5 million triangles (Fig. 2).

A comparison against the non-accelerated versions is made for
the matching experiments #4, #5, #6 and #7 (Table 2). The non-
accelerated version exhaustively searches the correspondence in
a large portion of the search surface during the first few
iterations. In the following iterations it uses the same adaptive
local neighborhood search as in the accelerated version. The
results of both Tables 1 and 2 refer to the multi-subpatch
approach. For a fair comparison approximately the same
number of points were employed in the template and search
surfaces. It is apparent that the accelerated version substantially

decreases the processing times (here by factors 2 to 3). This is
the sole effect of the space partitioning technique.

Table 1. Numerical results of “Chapel” example.
# No. of

template
points

No. of
search
points

Iter. No. of
patches

Time

(sec.)

Sigma
naught
(mm)

1 106,577 458,015 8 9 13.3 3.5
2 12,090 219,732 8 5 3.8 3.3
3 33,929 779,130 7 6 16.5 2.8
4 113,374 144,610 8 7 14.2 2.8
5 189,969 342,388 7 5 22.5 2.8
6 29,432 441,624 7 9 4.6 3.9
7 52,816 243,666 11 7 9.4 3.6
8 117,929 493,070 7 5 27.1 3.3
9 69,756 353,357 8 3 10.6 3.1

10 106,656 271,633 6 4 15.1 2.8
11 40,007 239,615 12 4 5.8 3.7
12 48,384 389,649 8 6 5.9 3.0
13 49,427 471,845 14 4 10.8 3.9
14 7,394 963,379 10 4 4.2 3.8

Table 2. Numerical results of non-accelerated version.
4 113,625 144,610 9 7 26.5 2.8
5 189,970 342,388 7 5 64.4 2.8
6 29,431 441,624 8 9 11.5 3.9
7 52,816 243,666 13 7 24.7 3.6

Figure 2. The final result of “Chapel” example. Top (above) and
frontal (below) views of the final model.

5. CONCLUSIONS

An algorithm for the least squares matching of overlapping 3D
surfaces is presented. Our proposed method, the Least Squares
3D Surface Matching (LS3D), estimates the transformation
parameters between two or more fully 3D surfaces, using the
Generalized Gauss Markoff model, minimizing the sum of
squares of the Euclidean distances between the surfaces. The
mathematical model is a generalization of the least squares
image matching method and offers high flexibility for any kind
of 3D surface correspondence problem. The least squares
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concept allows for the monitoring of the quality of the final
results by means of precision and reliability criterions.

Two acceleration strategies are given as well. The multi-
subpatch approach of the LS3D is combined with an efficient
space partitioning technique. The practical example shows that
our proposed method can provide successful matching results in
reasonable processing times. The use of our space partitioning
technique alone leads to a speed up of computing times by
factor 2-3. Another aspect of our experiment is that registration
of the point clouds of medium or large sized objects can be
performed automatically without using retro-reflective or other
special kinds of targets.
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