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ABSTRACT: 
 
Laser scanning or LiDAR data are increasingly used in forestry applications but also e.g. in urban environments or for building 
reconstructions. Huge point clouds are usually converted to a grid or are pre-processed in specific software packages. In this paper 
we present a methodology to extract and delineate single trees from small footprint, high intensity laser scanning point data in a GIS 
environment. Additional image data are only used for visualisation purposes and for accuracy assessment. The objective was to 
demonstrate the potential of a fully GIS-based workflow. After various pre-processing steps within the GIS, we developed a local 
maxima algorithm to identify tree tops. Secondly, we developed a region growing algorithm to delineating the respective tree 
crowns. It utilizes the original laser point data and not a derived raster data set such as a DSM. The algorithm was tested for six test 
plots located within the National Park Bavarian Forest (Germany) which is considered a natural or near-natural forest. For these 
plots, the results of extensive field surveys were available. Dominant trees could be detected with an accuracy of 72.2% but the 
overall tree detection rate was 51%. Suboptimal scan sampling distribution hinders perfect tree crown delineation. Our main goal - 
to develop and demonstrate a complete GIS-based workflow from Laser data pre-processing, algorithm development, analysis, to 
visualisation etc. – was reached. However, locating and counting trees within the LiDAR point cloud, particularly in multi-tiered 
deciduous plots and juvenile stands, requires the assistance of field-validation data and some subjective interpretation.  
 
 

1. INTRODUCTION 

Laser scanning survey technology, or LiDAR (light detection 
and ranging), takes advantage of the constancy of the speed of 
light by transmitting laser pulses from a known source to a 
target and timing the period between pulse transmission and 
reception of the reflected pulse (Bachman 1979). While the 
term “LiDAR” is commonly used in North America and 
predominantly in international journals, the German speaking 
research community mainly refers to “Laser scanning”. While 
the underlying basic concepts originated in the 1980ies, 
methods to systematically process 3D point clouds are 
relatively young. For instance, Baltsavias (1999a) and Wehr 
and Lohr (1999) provide basic formulas which are used widely.  
 
Since the mid to late 1980s, the use of LiDAR for forestry 
applications has advanced with technology. For example, 
research using early generation airborne LiDAR sensors has 
been directed towards forest inventory surveys (Aldred and 
Bonner 1985), timber volume estimation (Maclean and Martin 
1984), and forest canopy characterization (Nelson et al. 1984). 
Various researchers demonstrated the applicability of profiling 
LiDAR for the estimation of stand heights, crown cover density 
and ground elevation below the forest canopy (Aldred and 
Bonner, 1985). MacLean and Krabill (1986) also noted that the 
application of LiDAR for estimating forest attributes and terrain 
mapping may be possible as the amplitude waveforms of the 
reflected laser energy from a forest canopy exhibited similar 
characteristics to waveforms recorded from mapping 
bathymetry. For a comparison of LiDAR to photogrammetry, 
the reader is referred to Baltsavias (1999b). Given the ability to 
accurately measure topography, it was realized that certain 
forest attributes could be quantified from forest canopy profiles 
derived from LiDAR data. Specifically, various forest attributes 
can be directly retrieved from LiDAR data, such as canopy 
height, subcanopy topography, and vertical distributions of 

canopies. Attributes that can be predicted using empirical 
models from LiDAR data, include above-ground biomass, basal 
area, mean stem diameter, vertical foliar profiles and canopy 
volume (Dubayah and Drake, 2000; Lim et al., 2003a). 
 
More recently, several researchers have applied new generation 
commercially available discrete pulse airborne LiDAR sensors 
to the task of stand-level tree height estimation (e.g. Magnussen 
and Boudewyn 1998), height-based timber volume estimates 
(e.g. Næsset 1997; Lim et al. 2003a) and, most recently, species 
differentiation (Holmgren and Persson 2004). Riano et al. 
(2004) presented a methodology for estimating crown fuel 
parameters at individual tree and plot levels in an intensively 
managed, homogeneous Scots pine forest. Andersen et al. 
(2005) present and evaluate an approach to estimate several 
critical canopy fuel metrics, including canopy fuel weight, 
canopy bulk density, canopy base height, and canopy height, 
using high-density, multiple-return LIDAR data collected over 
a Pacific Northwest conifer forest.  
 
With the advent of commercial systems (Wehr and Lohr 1999; 
Lim et al., 2003b) a significant increase of empirical studies and 
the development of analysis algorithms and methodologies can 
be observed for the years 1999 and 2004. General knowledge 
and widely used algorithms have been developed. For instance, 
it is widely known that airborne LiDAR estimates of tree 
heights tend to slightly underestimate ground-truth 
measurements. Knowing such facts and having access to many 
literature studies one can easily adopt LiDAR based estimates. 
Various remote sensing systems and techniques have been 
explored for forestry applications and are reviewed e.g. by 
Wulder (1998), Lefsky et al. (2001) with a comparison of 
various remotely sensed data sources with LiDAR or by Lim et 
al. (2003b). Typically, most optical sensors are only capable of 
providing detailed information on the horizontal distribution 
and not the vertical distribution of vegetation in forests. LiDAR 
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remote sensing is capable of providing both horizontal and 
vertical information with the horizontal and vertical sampling 
dependent on the type of LiDAR system used and its 
configuration (i.e., discrete return or full waveform LiDAR). 
The sensor technology used in the paper is a fiber scanner of the 
company TopoSys which is widely used throughout Europe. 
Schnadt and Katzenbeisser (2004) comprehensively describe 
the technology behind a fiber scanner and why this technology 
is suitable for edge detection and forest penetration. For a 
summary of research into airborne LiDAR technology for forest 
mensuration purposes, the reader is referred to Lim et al. 
(2003b). 
 
Several studies for single tree detection using Laser scanning 
data already exist, e.g. Holmgren and Persson (2004), 
Brandtberg et al. (2003), Morsdorf et al. (2004) and Pitkänen et 
al. (2004). These and many other studies are mainly working 
with surface and terrain models derived from the laser data to 
extract and identify trees. In contrast we developed an 
algorithm that works on (pre-processed) laser point data only. 
Reasons for this are twofold: First we wanted to avoid under- or 
overestimation of tree heights due to interpolation of a raster 
surface. Secondly, the developed algorithm uses a sorting 
mechanism for point data for a more accurate delineation of 
single tree crowns (details see chapter 2.4). 
 
 

2. MATERIAL AND METHODS 

2.1 Test Site 

 
 
Fig. 1: Study area with 6 Silva models based on field 

measurements of the dominant tree crown locations. 
 
The mapping experiments described herein were conducted on 
six plots in the Bavarian Forest national park which is located 
in south eastern Germany along the border to the Czech 
Republic.  Three major forest types are present in the park: 
mountain spruce forest with Picea abies and some Sorbus 
aucuparia above 1100 m, submontane mixed forest with Picea 
abies, Abies alba, Fagus sylvatica and Acer pseudoplatanus on 
the slopes between 600 and 1100 m and spruce forest in moist 
depressions in the valleys where cold air may collect. Much of 
the mountain spruce stands were severely attacked by the 
spruce bark beetle (Ips typographus) in the 1990s. To capture 
some of the different canopy characteristics, six plots were 
chosen from a set of 44 reference sites established either 
between 2001 and 2002, or as part of a longer term permanent 
sample plot scheme. The plots are distributed within four test 
areas each with an overall size of 30 km2 (Figure 1). Airborne 

data and imagery were collected for each of these areas. A more 
comprehensive description of the study site can be found in 
Heurich et al. (2003).  
 
2.2 Data and pre-processing steps 

The size of the six test plots varied from 20 by 50 to 20 by 100 
meters. In each of the sites every tree position was measured in 
the field with an accuracy of several centimetres. For each tree 
higher than 5 meters DBH (Diameter Breast Height), height and 
starting point (base) of the crown were measured separately. 
 
The airborne LiDAR system ”Falcon” from TopoSys GmbH 
was used to survey the test areas on three dates: leaf-off (March 
and May, 2002) and leaf-on (September 2002). The TopoSys 
System is based on two separate glass fibre arrays of 127 fibres 
each. Its specific design produces a push-broom measurement 
pattern on the ground. For further details see Wehr and Lohr 
(1999) and Schnadt and Katzenbeisser (2004). The average 
point density for these flights was 10pts/m². First and last pulse 
data were collected during the flights. The datasets were 
processed and classified using TopPit (TopoSys Processing and 
Imaging Tool) software to interpolate a Digital Surface Model 
(DSM) and a Digital Terrain Model (DTM) both with a 
resolution of 0.5 m.  
First and last pulse data of the summer flight were used to 
extract and delineate single tree crowns. Through several image 
processing steps original LiDAR pulses were prepared for 
import in a GIS software environment. Various techniques were 
used to process the original point data. These steps include the 
merging of the single flight data sets, the generation of relative 
heights by subtracting DEM values from LiDAR point data, the 
correction of negative respectively error values in the resulting 
data sets and various GIS data integration steps (cf. Blaschke et 
al. 2004a). 
 
Simultaneous to the LiDAR range measurements, image data 
were recorded with the line scanner camera of TopoSys, which 
were used only for the following visual accuracy assessment 
and for some illustration purposes in this paper but not for the 
tree identification and analyses described herein. The camera 
provides 4 channels: B (440-490 nm), G (500-580 nm), R (580-
660 nm) and NIR (770-890 nm). Ground resolution was also 0.5 
meters.  
 

Sensor type Pulsed fibre scanner 
Wave length 1560 nm 
Pulse length 5 nsec 
Scan rate 653 Hz 
Pulse repetition rate  83.000 Hz 
Scan with 14.3° 
Data recording first and last pulse 
Flight height 800 m 

 
Table 1: System parameters for the Laser Scanner flights. 

 
2.3 Step 1: Tree detection  

After all pre-processing steps only the raw Laser point first 
pulse data were used for the first part of the analysis, the 
identification of single trees through finding local maxima. The 
DTM derived by TopoSys was only used for the pre-processing 
to calculate the relative heights for the LiDAR point data. It is 
important to note that the identification of the single maxima is 
not an end in itself in our approach but it is necessary to 
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subsequently derive tree crowns by applying region growing 
algorithms.  

 

 
To filter the single trees out of the enormous amount of LiDAR 
points (in our study about 10 to over 20 returns per square 
meter (first & last pulse together)), we developed a local 
maxima method in a GIS environment. The used tree finding 
algorithm is based on a regression model (cf. Pitkänen et al., 
2004; Hasenauer, 1997; Kini and Popescu, 2004) linking the 
crown-width to the tree-height:   

 CD = a + b*TH 

Where: CD = maximum diameter of a tree crown (in m) and TH 
= tree height (in m) 
 
The result is a local maximum search algorithm with a dynamic 
search radius, depending on the z (tree height) value of the 
analysed point. The assumption ‘the higher a tree, the bigger is 
its crown width’ has to be calibrated for the specific conditions 
(forest density, different climatic conditions etc.), which are 
influencing the crown width coherence. The model in our 
approach is calibrated for the average tree/crown proportion in 
the test area. Due to the very heterogeneous forest structure in 
the National Park Bavarian Forest (mixed forests, different age 
classes…) the formula is a more robust compromise and is not 
calibrated for special species or specific structures. The final 
parameters used were a= 1.54 and b= 0.123. Using these values 
in the formula mentioned above, the smallest possible 
detectable tree crown width is 1.54 m. Clearly, in very dense 
stands and/or juvenile stands this can lead to an underestimation 
of the amount of trees (cf. accuracy assessment for plot 59 in 
chapter 3).  

 
Fig. 2: Results of step one: found tree tops with underlying 

image data. 
 
2.4 Step 2: Crown delineation 

The resulting local maxima were used as seeding points to 
delineate the corresponding tree crowns. For this purpose, we 
developed a region growing algorithm. As discussed earlier, 
there are plenty of algorithms available with various pros and 
cons (for a recent overview on image segmentation see 
Blaschke et al. 2004b). Starting from the treetops, every nearest 
neighbour point is compared with the initial point. Nearest 
neighbours are defined as the 8 neighbouring moving window 
centroids (see below).  

 
The developed algorithm selects the first point in the GIS point 
data layer and searches for higher points within the maximum 
distance (the crown-radius) calculated by the formula. If the 
selected point is the highest within this restricted neighbouring 
area, it is interpreted as a treetop and gets stored in a new table. 
This procedure is repeated for every point and all tree tops 
found are stored in a table. The algorithm has to take into 
account all the LiDAR point data. It is obvious that this method 
can be time consuming (highly depending on the size of the plot 
and the dense / amount of the LiDAR points). To speed up 
calculation time, a moving window method is used to reduce 
the number of LiDAR points for the local maximum search. 
The test area is devided into small tiles (in this case 1 x 
1meters). The moving window analysed the respective window 
maximum and reports it to the window centroid including the 
points original x,y,z values to keep the accuracy of the 
measured LiDAR points (cf. Blaschke et al., 2004a). With the 
aid of the moving window analysis only the highest point per 
square was used to find the single trees which results in a point 
reduction by at least the factor of 10 and a visible acceleration 
of calculation time. 

 
a) b)

• • • • • • • • • •
29 25 25 27 28 29 25 25 27 28
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• • • • • • • • • •

27 28 26 24 25 27 28 26 24 25
Initial Point Initial Point

• • • • • • • • • •
29 30 29 23 20 29 30 29 23 20

• • • • • • • • • •
28 29 27 28 25 28 29 27 28 25

• • • • • • • • • •
25 25 26 28 29 25 25 26 28 29

c) d)
• • • • • • • • • •

29 25 25 27 28 29 25 25 27 28

• • • • • • • • • •
27 28 26 24 25 27 28 26 24 25

Initial Point Lowest Point Initial Point
• • • • • • • • • •

29 30 29 23 20 29 30 29 23 20

• • • • • • • • • •
28 29 27 28 25 28 29 27 28 25

• • • • • • • • • •
25 25 26 28 29 25 25 26 28 29  This approach is lossless, as the smallest possible crown width 

is 1.54 meters (according to the calibrated formula), therefore 
no dominant tree will be lost by using a moving window size of 
1x1 meter. By means of this approach it was possible to 
separate the dominant trees (in our test area: usually higher than 
10 meters in dense forest) with adequate time and accuracy. 
Due to the complex forest structure of the test sites, the 
detection of understory trees was not very successful. 

 
Fig. 3: a) the Initial Point (local maximum); b) comparing 

which of the 8 neighbours (max-window-centroids) 
has a lower z-value, assigning the Tree IDs and 
selecting the lowest point; c) repeat step b until one 
of the stopping criteria is reached; d) delineated tree 
crown. 

 
Figure 3 illustrates the interactive principle of the algorithm: as 
long as the value of the LiDAR point under consideration is 
lower than the value of the initial point, the ID of the seed point 
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(local maximum) is stored in the table for this laser pulse. The 
algorithm uses only the moving window centroids from Step 1 
to avoid misclassification through laser point returns from 
below the surface. To make sure that points from smaller trees 
are not misleadingly assigned to higher ones, the algorithm 
starts with the smallest tree and stops with the highest. This is 
achieved by sorting the growing point table automatically 
before each new iteration in an ascending order. In contrast to 
crown delineating algorithms using raster datasets, this is one 
important benefit of using point data. In addition, there are three 
additional stopping criteria implemented in the region growing 
algorithm to avoid inappropriate delineations especially in 
dense forest stands: 

• If the height value of a point is lower than 5 meters it 
will not be assigned to any tree (crown) which limits 
the lowest possible tree that can be found to this 
height. This limitation is necessary to avoid points 
from understory trees which were not found by the 
local maxima method to get assigned to a “wrong” 
tree.  

• If the height value of a point is lower than 75% of the 
value of the respective treetop the point is not 
assigned. This criterion should improve wrong 
delineations in preliminary versions of the algorithm, 
where delineated regions included also smaller trees 
directly affiliated to much higher neighbours. 

• Setting a limit for the maximum crown width. We had 
the best results with a region growing limit of 10 
metres in every direction. 

 

 
 
Fig. 4: Delineated trees in LiDAR point data: local maxima 

(left) and assigned laser point data (right). 
 

3. RESULTS 

As commonly known, LiDAR point clouds are huge data sets. 
Due to computer advances they are becoming more and more 
common in normal PC-based computer environments and 
consequently more seamlessly integrated in geospatial 
workflows. In this paper we wanted to demonstrate a fully GIS-
based workflow. At least for smaller subsets of the data we 
could prove that the enormous amount of LiDAR data can be 
handled within a GIS environment if certain point filtering 
methods are used.  
The used local maxima method works best in well spaced, 
mature conditions where we were able to find more than 92% of 

all trees higher 10 meters (plot 64). Correspondingly good 
results are achieved for the well spaced matured spruce forest in 
plot 50 (> 82%). In the less spaced plots 22, 57 and 60 the 
identification rates are dropping noticeably (52%, 66% and 
51%) for all trees but they show still good success rates for the 
identification of the dominant trees (78%, 68% and 66%). 
 

 
 
Fig. 5: 3D scene of the assigned point data with extruded local 

maxima illustrated graphically as tree trunks. 
 
The proportion of all trees found in the sample plots was only 
about 51%. In total, we were able to find 192 out of 266 
dominant trees (72.2%). The main reason for the relatively low 
overall detection rate is caused by one outlier (plot 59) where 
only 28.8% of all trees were found (59.5% dominant trees). 
This mainly depends on the juvenile, very dense forest structure 
(up to 2 trees per square meter) in plot 59 (without this 
untypical plot – at least for the National Park – the overall 
detection rate would be 68% of all trees). At the moment the 
used formula limits us to find only one tree per 1.54 meters, the 
density of the stand and the percentage of the detected trees is 
inversely related. 
Obviously the local maxima method is best suited to find 
dominant trees (cf. Maltamo et al., 2004 and Pitkänen, 2001). 
The accuracy assessment for the dominant trees therefore 
resulted in values of 72.2% and even 77.5% without the outlier 
plot 59. For well spaced, old stands like plot 64 and plot 50, the 
detected trees reached values between 81% and 92% for the 
dominant trees. In total we got quite a low error of commission 
(false positives) of approx. 2%. 
 
The accuracy assessment for the delineation of the tree crowns 
was carried out only visually so far (cf. discussion chapter). A 
first qualitative visual accuracy assessment shows promising 
results (Figures 4 and 5). Not all laser points could be assigned 
to the respective tree. These critical points were not taken into 
account. We tried to calibrate the algorithm “conservatively” to 
assign all corresponding points and by accepting to loose a few 
points rather than to get wrong assigned laser points. 
 
 

4. DISCUSSION AND OUTLOOK 

We developed algorithms to identify and delineate individual 
trees and presented a workflow that allows us to analyse 
LiDAR point data within a GIS environment. Using 
comprehensive and spatially highly accurate field survey data 
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we could verify the results of the study and regard them to be 
satisfactory. As stated above, the overall detection rate of 51% 
of all trees (72% of the dominant trees) may sound low to the 
reader but compared to other results documented in the 
literature, the figures are acceptable. For instance, Heurich et al. 
(2004) detected about 44% of all trees in the same study area 
(Bavarian Forest National Park), Maltamo et al. (2004) detected 
about 40% of all trees in a boreal nature reserve and Tiede et al. 
(2004) applied an object-based image segmentation approach 
on the same plots with a detection rate below 50%.  

The biggest problem at the moment is the unbalanced 
distribution of the laser points in the used data sets. Although 
the laser points are located almost every 10 centimetres within 
the flight direction, there are gaps of more than one metre 
perpendicular to the flight direction. In our study this results in 
two main problems: 

• Many “real” treetops may be missed by the Laser 
scanner  

• The dispersion algorithm for delineating the crowns 
returns some no data-values, which leads partly to small 
holes in the delineated crowns shapes 

 
It is important to note that comparing the tree location maps 
using the technique described was carried out to facilitate tree-
level comparisons of manually measured and LiDAR-derived 
metric information. This was not carried out to test the utility of 
the TopoSys sensor for tree stem mapping. Although it should 
further be noted that with refinements of the techniques used 
here and feature recognition algorithms, automated stem 
mapping and tree extraction from the LiDAR-3D point cloud 
data are conceivable and should be evaluated more thoroughly. 
 
When working in a GIS environment the “classic” accuracy 
assessment techniques from remote sensing are not fully 
satisfying. Especially for quantifying the accuracy of delineated 
tree crowns the questions are: when can we identify an object in 
one data set as being the same object in another data set? Do we 
need user-defined or application-specific thresholds for 
geometric overlap, shape-area relations, centroid movements, 
etc? (cf. Blaschke, 2005) 
Currently, additional studies are ongoing which include an 
object-based accuracy assessment to compare automatically 
delineated crowns and manually delineated crowns by an 

interpreter with the help of a new tool called LIST (Lang et al., 
submitted).  
 
Another goal for future work is, to test the algorithms not only 
in other study areas (perhaps a transfer to more homogeneous 
forests can return even better results) but also with other Laser 
scanning data. It would be especially important to compare and 
validate the results to datasets with a lower point density.  
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