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ABSTRACT: 
 
The key step in object-oriented image classification is the segmentation of the image into discrete meaningful objects. Generally the 
relation between the segmentation parameters and the corresponding segmentation outcome is far from being obvious, and the 
definition of suitable parameter values is usually done through a troublesome and time consuming trial and error process. This paper 
proposes a method for the automatic adaptation of segmentation parameters based on Genetic Algorithms. The intuitive and 
computationally uncomplicated fitness function proposed expresses the similarity of the segmentation result with a reference 
provided by the user. The method searches the solution space for a set of parameter values that minimizes this fitness function. A 
prototype including an implementation of a widely used segmentation algorithm was developed to assess performance of the 
method. A set of experiments on two pairs of LANDSAT and IKONOS images was carried out and the method was able in most 
cases to come close to the ideal solution.   
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1. INTRODUCTION 

The remote sensing technology has experienced an amazing 
development over the last decades. Particularly with the advent 
of high spatial resolution space-borne sensors for commercial 
purposes, the amount of available data about the earth surface 
increased enormously. Moreover the high spatial resolution 
images exposed the limitations of the traditional pixel-wise 
classification techniques (Blaschke, 2001). This scenario 
boosted the demand for new automatic image interpretation 
methods. 
 
One important advance in this field was the introduction of the 
object-oriented image classification approach (Blaschke, 2001). 
Methods based on this approach endeavor to explore all the 
semantic information contained in homogeneous image 
segments, not present in single pixels.   
 
The key step in object-oriented image classification is the 
segmentation of the image into discrete meaningful objects. In 
fact, the performance of the whole interpretation depends 
essentially on the segmentation quality, and that depends on 
two major factors: the selected segmentation program and the 
segmentation parameter settings. 
 
The first aspect is addressed by Meinel and Neubert in a recent 
publication (Meinel, 2004). The authors assess the quality of 
seven widely used segmentation programs over a pair of 
IKONOS images. The programs under analysis are ranked 
according to the adherence of their outcomes to a visually 
delineated reference.  
 

The second quality conditioning aspect relates to the parameter 
adaptation. Most segmentation algorithms devised so far must 
be tuned in order to produce the desired outputs and cope with 
the varying characteristics (e.g. lightning conditions) of the 
images. Before starting the classification itself, the analyst must 
adapt the parameter values so that the segmentation produces 
meaningful objects. Generally the relation between the 
parameter values and the corresponding segmentation outcome 
is, however, far from being obvious, and the definition of 
suitable parameters is usually done through a troublesome and 
time consuming trial and error process. 
 
The fact that most image processing (IP) algorithms and 
operators require some sort of tuning to perform properly in a 
given application has motivated the research on methods and 
tools to reduce the burden of IP parameter adaptation. As a 
result many semiautomatic approaches have been proposed, 
starting with simple graphic support tools, e.g. (Schneider, 
1997), going through interactive systems, e.g. (Matsuyama, 
1993), in which the user is required to rate the result after each 
adaptation iteration  (Crevier, 1997), up to nearly automatic 
solutions that requires a minimum of human intervention.  
 
The fully automatic approaches to adapt IP-parameters are 
usually based on a quality measure that is computed by 
comparing the outcome produced by the IP-operator with an 
available reference result. Quite often genetic algorithms (GA) 
(Davis, 1990) are applied to search the parameter-space for the 
solution that optimizes the selected quality measure (fitness 
function) (Bhanu, 1991; Bhanu, 1994; Kueblbeck, 1997). One 
important characteristic of GA is that they do not require any 
explicit model of the underlying process and can work with 
virtually any fitness function.  



 

 
In spite of the noticeable efforts reported in the literature, there 
is up till now no general solution to the problem of automatic 
adaptation of segmentation parameters. The performance of the 
GA based approaches depends on designing a fitness function 
that truly expresses the goodness of a segmentation outcome. 
Moreover, depending on the complexity of the process being 
optimized, the GA may involve unacceptable computational 
costs. 
 
The present work addresses these topics and investigates the 
performance of a GA-based adaptation method working in 
conjunction with a particular segmentation algorithm. This 
work also proposes an intuitive and computationally 
uncomplicated fitness function for the GA.  
 
A software prototype of the automatic adaptation method was 
built for performance assessment. Although the method can be 
easily extended to a variety of segmentation algorithms, 
experiments were limited to the algorithm proposed in (Baatz, 
2000) and used in the eCognition software package 
(eCognition, 2005).  
 
The subsequent text is organized in the following way. It begins 
with a brief overview of genetic algorithms. Next, a description 
of the segmentation algorithm used is made. A detailed 
description of the proposed adaptation method is then 
presented. The succeeding section reports the experimental 
evaluation carried out within this work. The final section 
contains the main conclusions of our work and suggests future 
research directions. 
 
  

2. GENETIC ALGORITHMS 

2.1 Genetic Algorithm’s Principle 

A genetic algorithm (GA) is a computational search technique 
to find approximate solutions to optimization problems. They 
are based in the biological evolution of species as presented by 
Charles Darwin (Darwin, 1859). The main principle of the 
Darwin’s Theory of Evolution is that individual characteristics 
are transmitted from parents to children over generations, and 
individuals more adapted to the environment have greater 
chances to survive and pass on particular characteristics to their 
offspring.  
 
2.2 Genetic Algorithm’s Structure 

In evolutionary computing context individuals represent 
potential solutions for a given problem, and their relevant 
characteristics with respect to the problem are called genes. 
 
A population is a set of individuals in a particular generation, 
and individuals in a population are graded as to their capacity to 
solve the problem. That capacity is established by a fitness 
function, that indicates numerically how good an individual is 
as a solution to the problem (Michalewicz, 1998). 
 
GAs propose an evolutionary process to search for solutions 
that maximize or minimize a fitness function. This search is 
made iteratively, over generations of individuals. For each 
generation the less fitted individuals are discarded, and new 
individuals are generated by the reproduction of the fittest. The 
creation of the new individuals is done by the use of genetic 
operators. 

 
2.3    Genetic Operators 

A genetic operator represents a rule for the generation of new 
individuals. The classical genetic operators are crossover and 
mutation. Mutation change gene values in a random fashion, 
respecting the genes’ search space. Mutation is important to 
introduce a random component in the solution’s search, in order 
to avoid convergence to local minima. 
 
Crossover operators act by mixing genes between two 
individuals to create a new one that inherits characteristics of 
their parents. The general idea is that as a individual’s fitness is 
a function of its characteristics, the exchange of good genes can 
produce better fitted individuals, depending on the genes 
inherited from their parents. Less fitted individuals can also be 
generated by this process, but they will have a low chance of 
being selected for reproduction.  
 
There are many other genetic operators in the literature 
(Michalewicz, 1994). Most of them are variants of crossover 
and mutation, adapted for specific types of problems. 
 
 

3. SEGMENTATION PROCEDURE 

The segmentation procedure used in this work is based on the 
region growing algorithm proposed in (Baatz, 2000). The 
algorithm is a stepwise local optimization procedure that 
minimizes the average heterogeneity of the image objects.  
 
Objects grow from single pixels, merging to neighboring 
objects. In each processing step an object can be merged to the 
neighbor that provides for the smallest growth of global 
heterogeneity. The merging decision is based on minimizing the 
resulting object’s weighted heterogeneity, an arbitrary measure 
of heterogeneity weighted by object size. 
 
The heterogeneity measure has a spectral and a spatial 
component. Spectral heterogeneity is defined over the spectral 
values of the pixels belonging to the object, and it is 
proportional to the standard deviation of the pixels’ spectral 
values, weighted by arbitrary spectral band weights.  
 
The spatial heterogeneity component is based on the deviation 
of the object’s shape from a compact and a smooth shape. 
Compactness is defined as the ratio of the perimeter of the 
object and the square root of its area (the number of pixels it 
contains), and smoothness is defined as the ratio of the object’s 
perimeter and the length of its bounding box (parallel to the 
image borders). 
 
To simulate the parallel growth of the segments, objects are 
selected for merging only once in each iteration, in an evenly 
distributed fashion.  
 
The merging decision mechanism is of key importance to this 
work, as it is where the external parameters of the segmentation 
procedure are employed. A fusion factor is calculated for each 
neighbor of the selected object, the neighbor for which this 
factor is minimum will be merged to the object, but only if the 
fusion factor is smaller than a certain threshold, defined as the 
square of the so called scale parameter. The procedure stops 
when no more objects can be merged. 
 



 

As shown by equation 1, the fusion factor f contains a spectral 
heterogeneity component hcolor and a spatial heterogeneity 
component hshape. The relative importance of each type of 
heterogeneity is set by the color weight wcolor. 
 

( ) shapecolorcolorcolor hw1hwf ⋅−⋅= +  (1)
 
Equation 2 shows the formulation of the spectral component of 
the fusion factor, where Obj1 is the object selected for merging, 
Obj2 is a neighbor object and Obj3 is the result of the merging 
of Obj1 and Obj2. In the equation c is a spectral band index and 
wc is an arbitrary band weight; σc is the standard deviation of 
the pixel values for band c, considering all pixels belonging to 
an object; and n is the number of pixels of each object. 
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The spatial component of the fusion factor has again two 
components (equation 3), a compactness component hcmpct and a 
smoothness component hsmooth. The relative importance of each 
component is set by the weight wcmpct.  
 

smoothcmpctcmpctcmpctshape hw1hwh ⋅−⋅= 
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Equations 4 and 5 show how the spatial components hcmpct and 
hsmooth are calculated. In the equations l stands for the perimeter 
of the objects and b for the perimeter of the objects’ bounding 
box. 
 














⋅+⋅−⋅=

Obj2

2Obj
Obj2

1Obj

1Obj
Obj1

Obj3

3Obj
Obj3cmpct n

l
n

n
l

n
n
l

nh  (4)

 











⋅+⋅−⋅=

2Obj

2Obj
Obj2

1Obj

1Obj
Obj1

3Obj

3Obj
Obj3smooth b

l
n

b
l

n
b
l

nh  (5)

 
Throughout the segmentation procedure objects grow based on 
an adjustable criteria for heterogeneity. This adjustment can be 
made by setting the values of the segmentation parameter, the 
spectral band weights (wc), the color weight (wcolor) and the 
compactness weight (wcmpct). 
 
Adjusting the scale parameter influences the overall object size: 
the larger its value, the bigger the resulting segments. 
Additionally, the influence of each spectral channel, the 
influence of shape against color, and of compactness against 
smoothness in shapes can be set. 
 
Given a particular image’s spectral and spatial characteristics, 
the land use/land cover characteristics of the investigated site, 
and the relevance of certain classes of objects for the users’ 
applications, those parameters can change considerably. And 
finding a good set of parameters for each case is by no means a 
trivial task.     
 
4. ADAPTATION OF SEGMENTATION PARAMETERS 

USING A GENETIC ALGORITH  

4.1 Processing Scheme 

In this work a genetic algorithm evolves the segmentation 
parameters mentioned in the last section. 
 

In the devised GA each individual consists of a set of 
segmentation parameters, each parameter representing a gene. 
The fitness of an individual is calculated by comparing the 
segmentation produced by the use of its genes with the target 
segmentation. The fittest individuals are the ones that provide 
for the best segmentations in terms of that comparison.  
 
The gene values of the individuals in the initial population are 
generated randomly. As the evolutionary process advances, new 
generations of individuals are created by reproduction 
operations, in which the individuals exchange genes or are 
subjected to mutation. The selection of individuals for 
reproduction takes the fitness values into consideration, in a 
way that the fittest individuals have a larger probability of 
being selected. Furthermore, the reproduction process keeps the 
best individuals from one generation to the next.  
 
The evolutionary process stops after a fixed number of 
generations, and the gene values of the fittest individual are 
taken as the final adapted segmentation parameters.  
 
For computational efficiency, segmentation may be restricted to 
a small window around each target segment. This considerably 
reduces the processing time in comparison to segmenting the 
whole image at each fitness evaluation. 
 
4.2 Fitness Evaluation 

The fitness of an individual should indicate how good the 
segmentation of the input image is in comparison to the target 
segmentation. In mathematical terms, given a set of target 
segments S and a parameter vector P, a fitness function F(S, P) 
that appropriately expresses the goodness of a segmentation 
outcome must be defined. Once the fitness function F is chosen, 
the task of the GA consists in searching for the parameter vector 
Popt, for which the value of F is minimum: 
 

( )[ ]( )P,SFminargP Popt =  (6)
 
The fitness function devised in this work is defined as follows. 
Let Si denote the set of pixels belonging to the ith segment of the 
set S. Let Oi(P) denote the set of pixels belonging to the 
segment with the largest intersection with Si among the 
segments produced by using P as parameter values of the 
segmentation algorithm. The fitness function is then given by 
the equation below: 
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in which ‘-‘ represents the set difference operator, ‘#( )’ is the 
cardinality function, and n is the number of segments in the set 
S.  Note that a perfect match between the target segmentation 
and the output segmentation with parameters P corresponds to 
F=0. 
 
It is also important to point out that S does not need to represent 
a complete segmentation of the input image, where every pixel 
of the image would belong to a segment in S. In fact, in the 
experiments presented in this paper, S contains only 5 or 10 
segments.  
 



 

4.3 Reproduction Procedure 

As stated before, the initial population, or the first generation of 
individuals, is created by setting random values for the genes of 
each individual. After fitness evaluation, a new population is 
created by substituting the M worst individuals of the prior 
population, being M a positive integer value smaller than the 
population size. 
 
The new individuals are created by genetic operations over 
selected individuals of the prior population. The selection of 
individuals is done by a roulette mechanism, that takes into 
consideration normalized fitness values (Davis, 1990). 
 
The following genetic operators were used (Davis, 1990; 
Michalewicz, 1994). One point crossover: two individuals 
exchange genes; arithmetic crossover: a linear combination of a 
set of genes of two individuals is performed; mutation: the 
value of a gene is modified by a random value; two types of 
creep mutation: gene values are adjusted (added or subtracted) 
by smaller or larger randomly generated values. 
 
The selection of the reproduction operation is also done by a 
roulette mechanism, considering a predefined probability value 
for each operator. To prevent convergence to local minima, the 
operators’ probabilities are interpolated during the evolution 
process (Davis, 1990), decreasing crossover probability while 
enhancing mutation and creep probabilities. 
 
4.4 Implementation 

A software prototype of the described automatic adaptation 
method was built for performance assessment. Although the 
method is not restricted to any particular segmentation 
algorithm, our experiments were limited to the algorithm 
proposed in (Baatz, 2000), and a C++ version of the 
aforementioned segmentation procedure was written 
specifically for that purpose. The genetic algorithm was also 
implemented in C++.  
 
The parameters of the GA: number of generations, population 
size and genetic operations’ initial and final probability values 
were set in a configuration file, so that the tuning of the GA 
could be made without the need for reprogramming.  
 
Gene value domain, in terms of the maximum and minimum 
allowed values, as well as the decimal precision for each gene 
were also set in the configuration file. 
 
The segmentation parameters: scale parameter, color and 
compactness weights were coded each into a single gene. The 
band weights (red, green and blue channel weights in the 
particular case of the experiments presented here) were coded 
into a single gene. A special coding method was devised so that 
this single value would be translated into a unique set of band 
weight values. This was done in order to avoid the possibility of 
multiple optimal solutions, as the band weights are normalized 
in our implementation of the segmentation algorithm.  
  
 

5. PERFORMANCE EVALUATION 

5.1 Input Images 

Image data of two different sources were used: pansharped 
ETM Landsat and IKONOS images, produced in 2001 and 

2002, and with spatial resolutions of approximately 15 and 1 
meter respectively. From each scene two 256 by 256 pixel 
images were cut over sites with different land cover 
characteristics. Figures 1 and 2 show the images cut from the 
Landsat scene (images 1 and 2) and figures 3 and 4 show the 
images cut from the IKONOS scene (images 3 and 4). 
 

 
 

Figure 1. Image 1 (Landsat ETM) 
 

 
 

Figure 2. Image 2 (Landsat ETM) 
 

 
 

Figure 3. Image 3 (IKONOS) 
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Figure 4. Image 4 (IKONOS) 
 
5.2 Selection of Target Segments 

In the practical use of the proposed method, a human operator 
will draw the target segments by hand. Generally there will be 
in such a case no guarantee that a set of parameter values for a 
perfect match exists. In fact, an eccentric choice of segment 
samples may hinder to attain a good fitness evaluation.   
 
In order to purge this aspect from our analysis, we selected as 
target segments samples produced by the same segmentation 
algorithm working with known parameter values. So, in our 
experiments the only possible cause of a poor fitness evaluation 
is the departure from the optimum solution. 
 
For each experiment the input images were segmented using 
different parameters. Sample segments were selected manually 
from the resulting segmentation to be used as the input target 
segmentation for the GA. The basic criterion for the selection of 
samples was to end up with a well spatially distributed set of 
segments that did not intercept the borders of the images. 
 
At first, experiments were performed varying only the scale 
parameter, color weight and compactness weight, and 
maintaining the band weights fixed at the value 1. The results of 
those experiments are, however, not presented in this paper due 
to the limited space available. Table 1 shows the parameters 
used in the experiments presented in this paper. In the table, the 
parameter values of the target segmentation are shown in the 
top line of the rows that represent the experiments. 
 
5.3 Genetic Algorithm Parameters 

After several experiments executed to tune the GA, with the 
definition of the set of parameters that would facilitate 
convergence, avoiding local minima at the same time, the 
following parameters were defined for the GA: population size 
of 50 individuals, 40 generations, 90% of the individuals 
changed from one generation to the next. 
 
The scale parameter could vary from 0 to 100, and the other 
segmentation parameters from 0 to 1. The decimal precision set 
for the scale parameter and for the color weight and 
compactness weight was 0.01, the precision for the band 
weights was set to 0.1.  
 
5.4 Results 

The experiment results are stated in Table 1. The columns 
scale_param, w_color, w_cmpct, w_b1, w_b2 and w_b3 show 
the values used in the target segmentation (on the top line), and 

the values of the fittest individual found by the GA in five runs 
of each experiment (on the bottom line). The column evaluation 
shows the fitness value of that individual.  
 

30.0 0.80 0.50 0.6 0.3 0.1 1 1 27.7 0.65 0.33 0.6 0.3 0.1 0.09 

30.0 0.80 0.50 0.3 0.1 0.6 2 1 25.4 0.69 0.32 0.3 0.1 0.6 0.00 

60.0 0.80 0.50 0.6 0.3 0.1 3 1 44.2 0.82 0.57 0.6 0.3 0.1 0.02 

60.0 0.80 0.50 0.3 0.1 0.6 4 1 44.2 0.71 0.32 0.3 0.1 0.6 0.01 

30.0 0.80 0.50 0.6 0.3 0.1 5 2 27.8 0.76 0.38 0.6 0.3 0.1 0.01 

30.0 0.80 0.50 0.3 0.1 0.6 6 2 29.0 0.70 0.35 0.3 0.1 0.6 0.02 

60.0 0.80 0.50 0.6 0.3 0.1 7 2 41.6 0.56 0.14 0.6 0.3 0.1 0.06 

60.0 0.80 0.50 0.3 0.1 0.6 8 2 53.7 0.79 0.47 0.3 0.1 0.6 0.00 

30.0 0.80 0.50 0.1 0.3 0.6 9 3 29.7 0.77 0.42 0.1 0.4 0.5 0.00 

30.0 0.80 0.50 0.6 0.3 0.1 10 3 30.2 0.81 0.50 0.6 0.3 0.1 0.01 

60.0 0.80 0.50 0.1 0.3 0.6 11 3 58.8 0.80 0.51 0.3 0.2 0.5 0.02 

60.0 0.80 0.50 0.6 0.3 0.1 12 3 57.6 0.74 0.28 0.7 0.2 0.1 0.11 

30.0 0.80 0.50 0.1 0.3 0.6 13 4 26.2 0.62 0.25 0.1 0.3 0.6 0.03 

30.0 0.80 0.50 0.3 0.6 0.1 14 4 17.2 0.34 0.34 0.2 0.5 0.1 0.27 

60.0 0.80 0.50 0.3 0.6 0.1 15 4 44.5 0.65 0.24 0.3 0.6 0.1 0.21 

60.0 0.80 0.50 0.1 0.3 0.6 16 4 53.4 0.79 0.57 0.1 0.3 0.6 0.26 

 
Table 1.  Experiment parameters and results. 

 
The fitness value achieved for the Landsat images were all very 
close to zero, the ideal value. For the IKONOS images, slightly 
worst results were obtainded in the experiments 14, 15 and 16. 
Those results can be can be explained by the greater complexity 
of the shapes of the sample segments used in those experiments, 
related to the particular choice of band weights.   
 
A visual inspection of the results shows that the resulting 
segments are very similar to the sample target segments. This 
indicates that the proposed fitness function is close related to 
the subjective human evaluation of the segmentation result. 
 
It is interesting to notice the slight deviations of the scale 
parameter, color weight and compactness weights from the 
parameters used in the target segmentation. The, in average, 
largest deviation from the compactness weights can be 
explained by the largest importance given for spectral 
heterogeneity in the target segmentation, translated by the value 
of the color weight (0.8). Deviations from the scale parameter 
can be explained by the particular selection of the sample 



 

segments, as no particular effort was made to select the largest 
segments in the target segmentation. Visual inspection confirms 
those considerations once some of the largest segments, from 
the ones not selected as samples, correspond to sometimes a 
few segments in the resulting segmentation. 
 
It is also worth mentioning that our experiments showed a 
similar performance for both sensors as well as for all test areas.  
 
 

6. CONCLUSIONS AND FUTURE WORKS 

The experimental results in terms of the evaluation of the best 
individuals found for the various experiments show the 
potential of the devised approach for the adaptation of 
segmentation parameters. 
 
The GA was able in some cases to find more than one solution. 
While this can impose certain difficulties for the convergence of 
the GA, it shows the robustness of the developed methodology. 
This is endorsed by the similar performance observed in our 
experiments for both sensors and for distinct test areas. 
  
A new experimental environment is currently under 
development, in which the user can draw segments over the 
image objects of interest and use those segments as the target 
segments for fitness evaluation. One objective of this 
investigation is to check if this approach can be used as an 
initial step in an adaptable object extraction technique. 
 
Further developments of the implemented prototype are also 
under consideration, especially for its optimization in terms of 
reducing the time needed for the experiments. Currently, in a 
standard Pentium 4 1.8GHz processor, each experiment takes 
about 3,5 hours.  Parallel computation of the evaluation of 
individuals in a generation is being considered. A further 
improvement of the GA can also help in that sense, the use of 
cultural algorithm concepts (Becerra, 2005) may help to 
accelerate the convergence to optimal solutions. 
 
Moreover, the development of the computer technology will 
soon reduce the observed processing time to more satisfactory 
levels.  
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