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ABSTRACT: 

 

We developed an irrigation mapping methodology that relies on remotely sensed inputs from MODerate Resolution Imaging 

Spectroradiometer (MODIS) instrument, globally extensive ancillary sources of gridded climate and agricultural data and on an 

advanced image classification algorithm.  In the first step, we used climate-based indices of surface moisture status and a map of 

cultivated lands to provide potential, first-cut at global irrigation.  To detect actual irrigation, in the second step, we used spatio-

temporal and spectral signatures from MODIS remotely sensed data.  In particular, we explored three types of irrigation-related 

indices: i) Annual – where we exploited the difference in annual greenness variability between irrigated and non-irrigated crops and 

related this difference to precipitation availability; ii) Spectral – where we exploited a vegetation index (Green Ratio Index) that is 

sensitive to chlorophyll content; and iii) Inter-annual – where we explored the differences in inter-annual changes in vegetation 

greenness associated with precipitation between irrigated and non-irrigated crops.  In the third step, we combined our potential 

irrigation dataset, remotely sensed indices, and training examples within a supervised classification tool based on a non-parametric 

decision-tree algorithm to make a binary (i.e. irrigated vs. non-irrigated) irrigated agriculture map.  A test of irrigation mapping 

procedure in a pilot study over the continental US produced a high spatial resolution (1 km) map of irrigated areas with better than 

80 percent map accuracy and expected spatial patterns such as a strong east-west divide with most irrigated areas concentrated on the 

arid west along dry lowland valleys.  Future improvements of the method will include estimation of sub-pixel presence of irrigation 

using remotely-sensed skin temperature measurements. 
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1. INTRODUCTION 

1.1 Motivation and Objective 

Accurate information on irrigation extent is fundamental to 

many aspects of the Earth Systems Science and global change 

research. These include modeling of water exchange between 

the land surface and atmosphere, analysis of the impact of 

climate change and variability on irrigation water 

requirements/supply, and management of water resources that 

affect global food security. However, the current extent of 

irrigated areas over continental to global scales is still uncertain 

and available maps are derived primarily from country level 

statistics and maps that are often outdated. Even in locations, 

such as the US, where the general extent of irrigated areas is 

known, irrigation-related information exists only in disparate 

datasets and cannot be easily synthesized into a single 

continental scale database. 

 

To overcome these limitations, our objective is to develop a 

methodology to map irrigated agriculture globally with data 

from the Moderate Resolution Imaging Spectroradiometer 

(MODIS) instrument at 1-km spatial resolution and ancillary 

data on climate. Our irrigation mapping methodology is 

objective, it uses contemporary data, it is robust enough to 

handle complex forms of irrigation that occur around the globe, 

and can be repeated across space and time. This irrigation 

mapping effort is part of our larger research program to 

understand anthropogenic effects, specifically that of irrigation 

on global water and energy cycles, climate, agricultural 

productivity, and agricultural water sustainability.  In this paper, 

we present the methodology and give an example from the 

Continental US. 

 

 

1.2 Existing Datasets on Global Irrigation 

Currently, there are three global irrigated area products with 

varying degrees of quality and accuracies.  While such datasets 

have obvious limitations such as being outdated and relatively 

coarse resolution, they represent the state of the knowledge for 

the extent of irrigated areas over large geographic regions. The 

first one of these is the FAO Global Map of Irrigation Areas 

(GMIA) developed by Döll and Siebert (1999) who combined 

heterogeneous information on the (approximate) location of 

irrigated areas with information on the total irrigated area from 

national and international sources to generate the first global 

“irrigated lands” map (Figure 1a). The map is a digital raster 

product with 5-min. spatial resolution and for each cell contains 

information on the percentage of area equipped for irrigation 

over the period between 1995 and 1999.  The map of Döll and 

Siebert (1999) has become the de facto present-day information 

source for spatial distribution of global irrigated areas although 

its quality is highly dependent on the national and sub-national 

data sources used in its making (Figure 1b). 

 

The second product was developed by the Remote Sensing and 

GIS group at the International Water Management Institute 

(IWMI) as the Global Irrigated Area Map (GIAM). This dataset 

has been produced using AVHRR NDVI and Land Surface 

Temperature data ca. 1999 augmented with additional 

information from SPOT Vegetation, JERS-1, and Landsat 

GeoCover 2000 data, mapped into 10-km grid resolution. 

(Thenkabail et al, 2005). The Beta release of this product has 53 

irrigated classes, derived from the 628 classes in the master file. 

 

Finally, the third product is a sub-product of the USGS Global 

Land Cover Map (Loveland et al., 2000).  Under the auspices of 

the IGBP-DIS (International Geosphere Biosphere Programme-

Data and Information System), a global land-cover database 



was generated based on 1-km AVHRR observations received 

during the period April 1992 through September 1993. The 

USGS global land-cover data set includes several legends, all  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  A) Global Map of Irrigation Areas (GMIA) shown as 

percentage of each 5min cell obtained using FAO country 

reports and other ancillary data; B) GMIA per country quality. 

 

based on the same database (Loveland et al., 2000).  Of these, 

the Global Ecosystems Legend contains four classes defined as 

irrigated land: irrigated grassland, rice paddy and field, hot 

irrigated cropland, and cool irrigated cropland.  When 

combined, these classes provide one of the few sources of 

remotely sensed information on spatial distribution of irrigation 

at global scales. 

 

While these data sources provide the best available source of 

information regarding the distribution of irrigation at global 

scales they also suffer from serious shortcomings.  For example, 

the Doll and Siebert map (GMIA) primarily represents the areas 

equipped to be irrigated circa 1995-2000.  However, the 

irrigated agricultural lands are extremely dynamic, driven by 

each year’s precipitation availability, the choice of crop type, 

and the ability to irrigate on the farmers end.  Moreover, the 

irrigated areas were determined from disparate data sources, 

primarily at the county level, the sub county information is less 

reliable. For example, a comparison of this product to the other 

mentioned products over Mexico where it is said to have low 

reliability (according to Figure 1b above) reveals stark 

differences and relative omission/commission errors (Figure 2-

middle). The major shortcoming of the USGS map is that 

irrigated areas were determined as part of a broader 

classification scheme, not just irrigation.  Thus the emphasis 

was primarily placed on other land cover types and thus 

irrigated classes has received less attention and decreased 

classification accuracy. A recent comparison by Vorosmarty 

(2002) of irrigated lands depicted by the USGS map to the 

country-level reports of irrigated area points to major 

uncertainties in the capacity to classify and inventory irrigated 

lands due to highly politicized nature of FAO data reports as 

well as technical limitations of the more objective geophysical 

datasets. This deficiency is also revealed in Figure 2-top.  

Likewise the major drawback of the IWMI global irrigation 

map product (GIAM) is that ground-truth data obtained only in 

India, SE Asia, Africa, and South America were used to adjust 

and refine global irrigation classes.  This makes the IWMI 

product highly parameterized per region for which extensive 

ground data exists.  Over areas without such data and over the 

entire globe, the irrigation classes are rather less reliable (Figure 

2-bottom). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  Comparison of three global irrigation products over 

Mexico.  As shown, the GLCC dataset (top) has large omission 

errors while the other two datasets have both relative 

omission/commission errors. 

 
2. IRRIGATION MAPPING METHODOLOGY 

2.1 Overview 

As part of our objective to map irrigated lands globally, our 

proposed irrigation mapping procedure meets several important 

criteria.  First, the procedure is automated and repeatable across 

space and time.  Second, it is robust enough to capture many 

different forms of irrigated lands across large geographic 

regions. Third, it relies on high quality and objective remotely 

sensed observations.  To meet these criteria, we take an image 

classification approach to irrigation mapping problem.  While 

the intent is irrigation mapping, the fundamental process is 

image classification of remotely sensed, multi-temporal, multi-

spectral images, guided by a climate index specifically suited 

for irrigation presence. 

 

Our irrigation mapping procedure has three major parts that are 

schematically shown in Figure 3. In the first part, we calibrate a 

climatological moisture (or dryness) index along with existing 

agricultural maps to define irrigation potential.  In the second 

part, we identify irrigation-related remotely sensed temporal and 

spectral indices.  In the third and final part, we combine 

irrigation potential and remotely sensed indices within a 

supervised classification algorithm to locate irrigation at 

moderate spatial resolution (500m – 1000m).  We initially 

tested our procedure in the US to map irrigated lands across the 

entire country.  Our preliminary results from this first 

implementation of the procedure are extremely encouraging and 

warrant pursuing in other locations around globe. In the sections 

A 

B 

IGBP-AVHRR ca 1992 

GMIA - FAO 

IWMI - AVHRR 



that follow, we describe the steps our procedure in greater 

detail.  In the last section, we show the first examples from the 

US. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.  Schematic representation of the proposed irrigation 

mapping procedure.   

 
2.2 Effective Irrigation Potential 

Irrigation is practiced in most countries at scales ranging from 

small subsistence farming to national enterprises.  But the actual 

location is determined by a combination of factors including 

climate, resource availability, crop patterns, and technical 

expertise.  Climate plays an important role in presence and 

distribution of irrigation as it determines natural moisture 

availability (precipitation), crop water demand (evaporation), 

and crop schedules.  In this study, we developed a climate-based 

index for outlining potentially irrigated areas.  A map of 

potentially irrigated areas in the form of a climate-based index 

provides the first approximation for areas that potentially 

require irrigation, which we further refine using remote sensing 

data. 

 

Over large areas, presence and distribution of irrigation is 

primarily controlled by natural moisture availability at the 

surface.  For example, in arid and semi-arid parts of the world, 

dry atmosphere and the lack of rain-supplied moisture requires 

exclusive use of irrigation to grow crops.  In more humid 

locations, on the other hand, irrigation, if necessary at all, is 

often in the form of supplemental irrigation, meeting the excess 

demand of crops whose growth cycle is out of sync with natural 

precipitation.  Thus, climatic moisture availability (or dryness) 

provides the first level of information on potential presence of 

irrigation at a given location. 

 

One index that provides suitable information on surface 

moisture status and the geobotanic state is the Radiative 

Dryness Index proposed by Budyko (1974): 

 

! 

D =
R

"P
             (1) 

 

where R is mean annual net radiation, which we estimated from 

Earth-Sun geometry, observed mean air temperature, and 

observed humidity; P is mean observed annual precipitation; 

and ! is latent heat of vaporization. The dryness ratio has been 

widely used to classify climate regimes and corresponding land 

cover in simple climate models (e.g. Gutman et al., 1984).  

While D provides important information on climatic moisture 

availability, it is not directly related to irrigation.  To relate the 

D to irrigation, we plotted D against percent irrigation presence 

information from the GMIA product (Siebert et al, 2005). This 

relationship is shown in Figure 4 as black open circles (original 

aggregated data) and a black curve (fitted).  While the 

relationship between D and fractional irrigated area show some 

expected patterns, the curvilinear nature of the relationship is 

hard to interpret.  To relate dryness characterized by D to the 

Water Availability Paramete, Gutman et al (1984) used the 

empirical relationship suggested by Lettau (1969): 

 

  

! 

W =
tanhD

D
, D " 0    (2) 

 

The relationship between W and fractional irrigated area is 

given in Figure 4 by a linear fit of the original aggregated data.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. The relationship between D, W, and global fractional 

irrigated area obtained from the GMIA product. D is plotted as  

circles and the fitted curve, while W is plotted as triangles and 

the straight fitted line.  Note that W linearizes the relationship 

between D and irrigated area and thus it is used to map 

irrigation potential. 

 

 

Using this linear relationship between W and fractional irrigated 

area, we mapped climate-based irrigation potential.  The darkest 

areas in Figure 5a show highest potential for irrigation based 

solely on climate.  Since we are ultimately interested in irrigated 

croplands, we further refined this map by masking out areas that 

are known to be not cultivated (Ramankutty and Foley, 1996) 

(Figure 5b).  We call this final masked product the effective 

irrigation potential map and it shows some expected patterns.  

For example, while the entire Australian continent has a very 

high irrigation potential due to generally dry climate of the 

region, only cultivated lands along the southeast and southwest 

corners of the country have high effective irrigation potential. 
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Figure 5. Effective Irrigation Potential (B) created by crop 

masking the original irrigation potential map (A) developed by 

relating W to irrigation presence. 

 

In our irrigation mapping procedure, we used effective 

irrigation potential as ancillary information in the classification 

process, which has generally resulted in improved classification 

accuracies of remotely sensed images (Strahler, 1980; McIver 

and Friedl, 2002).   

 
2.3 Remote Sensing of Irrigation 

The effective irrigation potential map shows areas that are 

potentially irrigated.  These areas may not always coincide with 

areas that are actually irrigated, which is due to infrastructure 

and water availability. To map actual irrigation, we used 

remotely sensed indices based on data from the MODIS sensor. 

 

MODIS Data 

 

The MODIS sensor includes seven spectral bands that are 

designed exclusively for monitoring Earth’s land surfaces. The 

MODIS instrument is located on-board both Terra and Aqua 

platforms, and when combined, provides at least twice-daily 

global coverage at 250- and 500-m spatial resolutions.  

Compared to the heritage AVHRR instrument, the MODIS data 

offers enhanced spectral, spatial, radiometric, and geometric 

quality for improved mapping and monitoring of vegetation 

activity.  Hence, to date, MODIS land data has been an integral 

part of production of a large variety of land cover maps, 

including irrigation (Friedl et al., 2002; Thenkabail, et al., 2005; 

Xiao et al., 2006). 

 

A large array of standard MODIS data products are 

operationally produced by the MODIS Land Science Team and 

made available to the scientific community on a timely basis.  

One of these products is the Nadir BRDF-adjusted Reflectance 

(NBAR) data (MOD34B4) (Schaaf et al., 2002).  This product 

provides cloud-screened and atmospherically corrected surface 

reflectances for all MODIS land bands that have been corrected 

for view- and illumination-angle effects.  This angular 

correction substantially reduces the source of noise related to 

surface and atmospheric anisotropy.  Currently, the NBAR data 

is produced at aggregated 1 km spatial resolution, every 16 days 

with a total of 23 observations over the calendar year, 

geographically organized in a MODIS tile system with the 

Sinusoidal Projection.  In this study we used 2 calendar years 

(2002/2003) of NBAR data (total of 46 observations). 

 

2.3.2  Irrigation-related Indices 

 

Remote sensing of irrigated lands over large geographic regions 

involves significant challenges in terms of both selecting 

spectral bands or indices that contain maximum amount of 

irrigation related information and relating this information to 

complex forms of irrigation presence.  

 

To determine actual irrigation presence we identified spatio-

temporal patterns of vegetation greenness from remotely sensed 

data.  In particular, we have identified three types of irrigation-

related signatures.  These signatures are: 1)Annual, we exploit 

the variability in timing of greenness between irrigated and non-

irrigated croplands and precipitation; 2) Spectral, we use the 

Green Ratio Index (GRI) (Gitelson et al 2006) to amplify the 

signal; and 3) Inter-annual, we exploit inter-annual changes in 

vegetation greenness based on the hypothesis that irrigated 

lands would have less inter-annual variability as development of 

those crops does not depend on precipitation. 

 

Annual Indices 

 

There is an overwhelming consensus that the Normalized 

Difference Vegetation Index (NDVI) is an important vegetation 

monitoring tool (Tucker, 1979; Goward et al., 1991; DeFries et 

al., 1998).  NDVI is defined as: 

 

! 

NDVI =
"
nir
# "

red

"
nir
# "

red

    (3) 

 

where !nir and !red respectively represent NIR and red 

reflectances.  NDVI has been closely related to plant moisture 

availability (Nicholson et al. 1990), leaf area index (Xiao et al. 

2002), primary production (Prince, 1991); and vegetation 

fraction (Gutman and Ignatov, 1998). 

 

While NDVI has been widely used to monitor vegetation 

greenness in agricultural settings under a variety of climatic 

conditions, overwhelmingly, it is the temporal NDVI signal that 

has often been most related to irrigation (Tucker and Gatlin, 

1984; Martinez-Beltran and Calera-Belmonte, 2001; Ozdogan et 

al. 2006).  In particular, greenness associated with non-irrigated 

crops in arid/semi-arid landscapes is often a direct result of 

rainfall events while greenness associated with irrigated sites is 

generally independent of rainfall and would show a 

development cycle completely different than that of rain-fed 

crops.  This differential temporal behaviour of irrigated and 

non-irrigated cultivations is illustrated in Figure 6 for a 

relatively arid location in northwestern US where year 2002 

vegetation greenness for irrigated (solid) and non-irrigated 

(dashed) croplands are plotted in the form of mean smoothed 

NDVI profile (left Y-axis).  Also plotted in the same figure is 

the monthly mean precipitation for the same year (right Y-axis). 

The non-irrigated crops exhibit two peaks, first following 

planting in the fall and second before harvest in late spring/early 

summer, closely following the moisture availability through 

precipitation.  In contrast, irrigated crops peak in greenness 

during mid-summer when moisture availability is the smallest 

and greenness value of non-irrigated crops drops to its lowest 

value. Note that the lack of precipitation in the summer time at 

this location causes a large moisture deficit and makes irrigation 

absolutely necessary. In this particular location, the irrigated 

0 100 
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and non-irrigated crops exhibit clearly distinct temporal 

greenness profiles especially when related to precipitation 

availability and we exploit this annual index in our irrigation 

mapping procedure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. An example annual index in the form of 2002 NDVI 

profiles for irrigated (solid line) and non-irrigated (dashed line) 

crops in northwestern US.  Also plotted is the monthly 

precipitation availability.  Note that irrigated crops peak in 

greenness when moisture availability from precipitation is the 

lowest suggesting irrigation presence. 

 

Spectral Indices 

 

A more difficult case for distinguishing irrigated crops from 

non-irrigated ones occurs in locations where the same crop type 

is grown with and without irrigation in the same growing 

season.  Our preliminary work with NDVI in Nebraska, USA 

suggests that while irrigated fields exhibit slightly larger NDVI 

than non-irrigated counterparts, possibly due to constant 

availability of moisture, the difference in NDVI is small and 

potentially useless in distinguishing irrigated fields.  Thus, a 

more sensitive index is required to make this distinction. 

 

Large body of research into spectral remote sensing of 

vegetation canopies indicates that moisture stress in vegetation 

is strongly manifested in spectral indices related to Chlorophyll 

content (Gitelson et al, 2003).  One such index, suggested by 

Gitelson et al (2006) to be used with the MODIS sensor, is the 

Green Ratio Index (GRI) defined as: 

 

! 

GI = ("
nir
/"

Green
) #1  (4) 

 

where !green is the reflectance in green spectral region.  The 

theoretical foundation of the GRI is based on the observation 

that in the green spectrum (centered around 510 nm) specific 

absorption coefficient of chlorophylls is very low while green 

leaves absorb more than 80 percent of incident light in this 

spectral range (e.g., Gitelson and Merzlyak 1994).  In contrast, 

depth of light penetration into leaves in the blue and red spectral 

ranges is four- to six-fold lower (e.g., Merzlyak and Gitelson, 

1994).  Therefore, in the green, absorption of light is high 

enough to provide high sensitivity of GRI to Chl content but 

much lower than in the blue and red to avoid saturation 

(Gitelson et al., 2003).  To demonstrate the sensitivity of GRI to 

irrigation presence, we plotted temporal GRI profiles of 

irrigated (solid line) and non-irrigated (dashed line) maize in 

Figure 7.  While the two temporal profiles are identical in 

timing of greenness, the absolute values are significantly 

different, suggesting that soil moisture stress in maize 

associated with lack of moisture exhibits smaller GRI and thus 

lower Chlorophyll content than irrigated maize. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Mean temporal profiles of GRI associated with 

irrigated (solid line) and non-irrigated (dashed line) maize in 

Nebraska, USA.  Note the difference in absolute value of GRI.  

Also plotted is one standard deviation around the mean for each. 

 

Inter-annual Indices 

 

Water available for agricultural crops through precipitation 

varies significantly across years.  In addition to management 

practices such as fertilizer and tilling, this natural variability of 

moisture contributes significantly to each year’s crop quality 

and yield that can be monitored from space through vegetation 

indices.  In contrast, the status and quality of croplands that 

receive significant amounts of irrigation on a regular basis 

would be expected to be independent of natural precipitation 

availability as natural water limitation is alleviated by artificial 

application of water through irrigation.  Thus, inter-annual 

variation in vegetation greenness for irrigated fields would be 

expected to be less than inter-annual greenness variation of non-

irrigated croplands assuming the same crop type is examined 

across years.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Inter-annual profiles of NDVI anomaly (defined as 

deviation from 5-year mean) for irrigated and non-irrigated 

maize in Midwestern US.  Also plotted is bi-monthly 

precipitation. 

 

To test this hypothesis, we analyzed five years of MODIS 

NDVI data for maize and soybeans in Midwestern US (Figure 

8).  Analysis of inter-annual data suggests that irrigated maize 

indeed exhibits lower inter-annual variability (shown in Figure 

8 as the solid line) than vegetation greenness associated with 

non-irrigated maize fields (displayed as the dashed curve) which 

varies significantly across years, following precipitation. 
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2.4 Classification Algorithm 

As our approach to irrigation mapping is a supervised 

classification methodology, it requires training data that 

characterizes the desired output classes (irrigation in this case).  

We derived these training (learning) samples from several 

dozen high spatial resolution satellite imagery acquired by the 

Landsat 7 ETM+ sensor circa 2000.  The location of the 

training sites were chosen to represent major irrigated land areas 

of the US and interpreted with the help of ancillary data sources 

such as county based irrigated area maps as well as based on 

characteristic shapes of irrigated fields.  These training locations 

were used to extract cloud- and snow-screened high quality 

examples of the three irrigation related indices representing the 

annual, spectral, and inter-annual behaviour of irrigated and 

non-irrigated crops.  We then used these sample data as training 

examples in the learning phase of the decision tree classification 

algorithm as shown in Figure 3. 

 
3. IMPLEMENTATION IN THE CONTINENTAL US 

The first step in our implementation of the irrigation mapping 

procedure for the Continental US was to screen the MODIS 

time series data for clouds and snow cover. We used the quality 

control cloud flags that are included in the NBAR data files in 

the form of cloud masks for each 16-day time period for a total 

of 23 files per year. To minimize the potential impact of snow 

cover, especially in the winter months, we generated snow 

masks using the Normalized Difference Snow Index (Hall et al., 

1995).  Pixels corresponding to clouds and snow were then 

excluded from the analysis.  The second step was to train the 

decision tree model with the example datasets of irrigation 

indices and effective irrigation potential derived from the 

training sites described above to automatically generate the 

rules and thresholds to identify irrigation.  We then applied the 

trained decision tree to all of the individual MODIS tiles that 

cover the Continental US.  Each tile consisted of cloud and 

snow screened time series of vegetation index values 

representing a total of 138 per-pixel observations (2 years 

between 2002 and 2003, 23 observations per year, and 3 

vegetation indices).  The end result of the classification 

algorithm was a two-class map showing irrigated and non-

irrigated areas over the Continental US (Figure 9). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Irrigation in the Continental US circa 2002 obtained 

by implementing the procedure proposed here.  The distribution 

of irrigated lands follows expected patterns.  In the arid western 

portion of the US, irrigation occurs in narrow dry valleys such 

as the central valley of California.  In more humid eastern 

portion of the Us, irrigation occurs along major agricultural 

provinces. 

To qualitatively assess the final irrigation map as a result of our 

mapping procedure, we compared it to the year 2002 USDA 

dot-map (Figure 10).  The USDA dot-map was generated by 

randomly placing a dot for each 5,000 ha of irrigated area in 

each US county, regardless of the location of irrigation.  At the 

continental scale, this dot-map is the only source of information 

on irrigation presence.  Nevertheless, comparison of this dot-

map to the map generated by implementing our mapping 

procedure reveals good agreement, suggesting that our proposed 

methodology is able to capture major irrigation patterns in the 

continental US.  Moreover, it provides additional information 

on irrigation location, beyond the limits of the standard dot-map 

products. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.  County-based irrigation dot-map for the US for the 

year 2000 obtained from the USDA.  The USDA dot-map was 

generated by randomly placing a dot for each 5,000 ha of 

irrigated area in each US county, regardless of the location of 

irrigation. 

 

While our preliminary test product is at relatively high spatial 

resolution (500-1000 m) it may fail to capture sub-pixel 

presence and variability of irrigation, especially if irrigated 

fields are much smaller than the spatial resolution of the 

observing sensor.  This issue may be especially important when 

the proposed methodology is applied to locations (for example 

in China) where irrigated agricultural fields are known to be 

small (Ozdogan and Woodcock, 2006).  To improve subpixel 

representation of irrigation, we tested several different subpixel 

mapping methods and discovered that skin temperature is 

inversely related to irrigation presence.  The future 

improvements of the proposed procedure will incorporate 

remotely-sensed skin temperature data to recover subpixel 

irrigation information once irrigated/non-irrigated pixels have 

been identified. 
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