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ABSTRACT:

The present study explores the performance of apaoametric approach applied to the classificatibforest types in an area of
Northern Italy (Province of Trentino). The invegtimn has been carried out by classifying a LanBsEV image on the basis of a
reference data set derived from ground surveysvemugl interpretation of aerial photos.

The work compares the accuracies obtained witlerdifft configurations of a k-NN classifier. In pawdiar the paper focuses on the
choice of the best band combination and of the mari horizontal distance between training field plahd unclassified pixels.
The optimal parameter set is evaluated by a leaeceait cross-validation strategy.

As the conventional configuration of the methodde#o a distortion in the estimate of the differelatss surfaces, a correction
methodology is also considered. It consists of asimg the error probability from a preliminary chification and applying
appropriate prior probabilities to each forest typénfluence the pixel assignment to the differelasses and consequently the area

estimation.

1. INTRODUCTION

Nowadays field works represents the main way taately
describe the state of forests. However, new teduyies can
provide alternative tools useful for collecting &duhal data.
In particular airborne and space borne sensorswarently
used in forestry as an auxiliary data source, siheg offer a
synoptic view of large areas allowing at the saime tthe
fast acquisition of data that can be digitally mesed.
Several applications of remotely sensed data hasen b
developed to estimate forest characteristics andattsform

the results of field measurements into maps (Hameé a
Rauste, 1993). This is especially the case for bésma

measurements (Ardd, 1992; Anderson et al., 1938fst
productivity (Ahern et al., 1991), tree cover perege
(Duncan et al., 1993), and leaf area index (Curraale
1992; Nemani et al., 1993). Correlations of satelliata,
mainly based on Landsat 5 TM images, with foregefory
attributes have been found by several authors, fergthe
discrimination of tree species (De Wulf et al., @@%or the
assessment of basal area (Franklin, 1986), canopgrc
(Butera, 1986; Peterson et al.,1986; Oza et al.9)198af
area index (Spanner et al., 1990) biomass (FrankB86),
stand height (Horler and Ahern, 1986) and stem melu
(Poso et al., 1984, 1987; Tomppo, 1990; Maselil e2005;
Muinonen and Tokola, 1990).

These studies have demonstrated that the operhtisaaof
digital data can be limited by the complexity ofeth
relationships existing between spectral charatitesisand
forest attributes. For these reasons conventidassification
methods, that assume relatively simple relatiorsshigtween
land surfaces and spectral characteristics, hauen of
produced unsatisfactory results (Maselli et alQ30

The possibility to minimize these problems is pded by the
use of more flexible classification methods as tien-
parametric ones. Non-parametric methods, introdigeBix
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and Hodges (1951), are discrimination procedurasdh not
require any assumptions about the statistical idigton of
the data unlike the common parametric approachels as
likelihood ratios (Hardin, 1994).

The most common non-parametric method applied
produce classifications and estimates of continufouest
variables is the k-Nearest Neighbour (kNN).

The kNN method is used to generalize informati@mTifield
plots to pixels for map production. The decisioterassigns
each pixel to a class among the closest k labet&iding
pixels; the k pixels correspond to the field platdhere
different variables have been observed. Closenedsfiised
in terms of a metric distance in the multi-specsgzace.
Nearest neighbour techniques have been used exabnfar
forestry estimations in Nordic countries. Tompp®9Q),
Nilson (1994) and Trotter et al. (1997) used tlehmégue to

to

estimate forest volume; Muinonen and Tokola (1990),

Franco-Lopez et al., (2001) and Bauer (2001) appiie
method for satellite images classification.

The method is highly appreciated because it almwsredict
all the measured variables at the same time fdn pael or
for area units of interest (Tomppo and Halme, 2004)
However there are some problems that should bentatke
account when integrating satellite images and fadth for

mapping and monitoring purposes. Although the non-

parametric methods do not require any specificridigion
of the data, they assume the sample distributidielof plots
to be representative of the spatial variation &f fbrests in
the study area. Moreover,
measurements to remotely sensed data, differertskof
error may be involved: incorrect matching betwetot prea
and corresponding pixel area, image noises, tidifigrence
in field data and image acquisition. Finally, tophpthe
kNN-estimation method, the following assumption®udd
be done: i. the image pixel values depend onlyhenforest

when scaling from field



condition and not on the geographic location (Kildnd
Paivinen, 1987); ii. similar kinds of forest exigtthe study

area and their spectral responses depend on their

characteristics. As a consequence of all factetedi above,
kNN performances critically depend on a calibratgrocess
which aims to properly set the involved parameters.

The aim of this paper is to show the accuracy ol kirest
type classification when plot wise aerial photenpretation,
combined with field data and other auxiliary infation, are
used as training data. In the calibration phaséerdifit
configurations of a k-NN classifier were tested phrticular
this study focuses on the choice of the best banthination
and the setting of the maximum geographic distdreteeen
training field plots and unclassified pixels. Spieci
procedures to incorporate auxiliary information evealso
tested. The optimal setting of the parameters vediget by
means of a leave-one-out cross-validation strategy.

As the conventional configuration of the methoddiedo a
distortion in the estimate of the different classfaces, a
correction methodology was also considered. Thissisted
of computing the error probabilities from a preliraiy
classification to derive prior probabilities forakeforest type;
these probabilities were then used to guide theelpix
classification and consequently to improve the asganates.

2. STUDY AREA

The study area is located in the Eastern ItaliapsAand
covers about 40.000 ha of the Trento Province spmeding
to the Alta-Valsugana district. This area belongs the

Alpine mountain region and its elevation rangesvieen 400
and 2400m. The forest composition is therefore nsfiso
influenced by elevation, slope and aspect. Broadelda
deciduous forests dominate lower and warmest afdathe

highest elevation forests are dominated by mixeqifecs.

The dominant forest species in the areaPisea abies,

followed by Larix decidua and Pinus sylvestris. Among

broadleaved species, the more frequenfFagus sylvatica,

while other coniferous and broadleaved species lese

common.

3. MATERIALSAND METHODS
3.1 Data set and image pre-processing

A ground reference data set, distributed all over study
area, was obtained by means of the integrationielfl f
surveys, the forest planning database of TrentirmviRce
and the photo-interpretation of 1:10.000 black amiite
orthophotos from 1996.

596 plots were identified with a resulting samplingensity
of 0.015 plot/ha.

The spectral signatures of all forest types foumd i
correspondence of the training points were initiall
considered. Next, because of the poor separabifity high
spectral similarity among some original classesnescof
these were aggregated and a classification schdthesix
types was adopted. Table 1 shows the distributibrsixo
different forest types in the reference data set.

A mono-temporal Landsat 5TM (path 192, row 28) d&té

June 2000 was used, georeferenced and geometrically

rectified to ensure correspondence between fietdsphnd
corresponding pixels.

No topographic correction was applied to the imdyssause
previous studies carried out in the same area sihdivat
these methods don’t produce remarkable improvenierte

overall classification accuracy when compared te @mached
with the use of the original non-corrected imageszgoloet

al, 2005).

number of
Forest types points %
Forests oPicea abies/Abies alba 268 46.3
Forests of other broadleaves 61 10.5
Forests of other conifers 86 14.9

Forests ofCastanea sativa 12 2.1

Forests ofagus sylvatica 65 11.2

Forests of arix deciduas 87 15.0

Table 1. Forest types identified in the study area

Since the relationship between forest and spectral
characteristics may not be constant over a larga @nainly
because of the elevation variations which can tffee
vegetation structure and composition), a 10m digita
elevation model was used as ancillary source ofinétion.

3.2 kNN technique

The kNN algorithm assigns each unknown pixel to ftakl
attributes of the most similar reference pixelsvidnich field
data exists. Similarity is expressed as the distaretween
the query point and the neighbouring ones.
When using kNN, different types of distance metdas be
selected:

e Minkoski distance;

. Euclidean distance;

e Manhattan distance;

e Mahalanobis distance

Let D ={py, . - . ,pn} be a set of training pixelgi. For each
pixel a vector of different attribute® is known. Given the
training pixel D = {,, . . . ,pn}, the spectral distance between
the pixel p to be classified and each training pixglis
computed. To this unknown pixel an attribute veatois
assigned; m is obtained by calculating the meanaite over
all k-nearestp; for continuous and categorical attributes
respectively. Some applications assign differenights to
the training pixels depending on auxiliary variable

3.3 kNN configuration

In the current test the output variable was caiegband the
nearest neighbour classifier assigned the mosuémiclass
to each pixep. In our kNN configuration each of the selected
nearest neighbours contributes to the decisiorhé same
way.

The distances between neighbours were calculated tise
Euclidean metric, which is the easiest to compbtzause
the use of other metrics does not generally caumgitio a
considerable improvement of the estimation accuracy
(Maselliet al., 2005).

The Euclidean distance is defined as the shortistarite
between two points in the multi-spectral space. idt
computed as (1):
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where Xp'j = digital number for the featujenf = number of

features in the spectral space.

3.4 kNN calibration

Prior to any implementation, the kNN algorithm ne¢d be
calibrated to find its best configuration. Thispstdlows for
the identification of the kNN parameters able toduce the
best classification accuracy. Following a widelyeds
approach, the current calibration was performechgusa
leave-one-out strategy. This technique uses thieirigpdata
sample to estimate the classification accuracyehyihg out
one sampling unit and classifying that unit on lasis of the
rest of the sample. This omission is repeated ¥eneunit
allowing to calculate the classification error. (@9 1986).

In order to minimize the effects of possible pasitil errors,
mean filters of 3x3 and 5x5 pixels were appliedhte study
images. The leave-one-out cross validation resigtsved
from the filtered images were then compared with ¢imes
obtained using the original TM bands.

As already mentioned, the relationship betweensfoend
spectral characteristics may not be constant olamge area.
Observations for adjacent pixels are in fact exgadb be
positively correlated while distant observations akpected
to be uncorrelated (McRobessal., 2002).

For this reason we applied a method that allowedefising
optimal geographical reference areas, in both cadrtand
horizontal directions (VRA and HRA), from which the
nearest field plots are selected. The area hasetdalye
enough to include all variation of forest coverdgpand to
exclude, at the same time, more distant zones aiftarent
characteristics. Different combinations of VRA andRA
were tested and compared in terms of cross vadidati
accuracy.

The last calibration step concerns the band cortibma
Since all available bands are not always neededcanaven
reduce the classification accuracy, a subset ofibamas
selected to be used in the final classification.6® possible
combinations of the six TM bands were tested teciehe
subset which gave the highest classification acyurdhe
thermal infrared band (TM6) was not considered thuds
lower spatial resolution.

After the calibration, the optimal number of neighbs was
chosen according to two different criteria: thedtue had to
be large enough to minimize the misclassificatiombability

and small enough to minimize the bias. When k=% th

prediction incorporates all the variability exiginn the

observations, whereas the variability is reduceadrwk>1

because the prediction is based on the mode ofipgiault
observations (McRoberts al., 2002).

The best configuration of the kNN classification fea&ind

was then applied to the study area; the accurasyltse

derived through a leave-one-out cross validatiothodw are

presented in terms of global error matrix, oveeaturacy,

producer’s accuracy, user’s accuracy, and kappexintihe

results of Chi-squareyd) tests, which allow to identify
systematic errors (i.e. classification bias), ds® aresented;
they were used to check if the true class distidioubf the

original sample is well represented.

The correspondence between the extent of the ground
references and that of the classified areas (Ma$é®0) was
also computed by (2):

N —iabs(c‘ -r,)

corr = 'ﬂ# 2)

corr = correspondence rows/columns

N = total number of pixels

Ci = marginal summary of column i

Ri = marginal summary of row i

In this first trial we assumed that the prior protiies of a
given pixel were equal for all classes.

3.5 Alternative kNN configuration

The values found in the error matrix were used &dor
discrimination process based on prior probabilifidse study
proposes to use the error matrix derived from thst f
classification as an additional information souirterder to
reduce the interclass confusion. The matrix, in, faas been
shown to be useful for correcting the statisticaights in
discrimination processes and it can be used todwparea
estimates of different cover types (Masellal., 1990; 1992).
The information deriving from the error matrix was
incorporated into the classification process chaade prior
probability for each class. The prior probabilitiegere
derived from the ratios of the class frequenciethénground
reference data (marginal summary of columns in eher
matrix) over those in the classification data (nveab
summary of rows in the error matrix) and then used
changing the probability extraction of each claBse main
difficulty in following this approach is to calcu& prior
probabilities appropriate to achieve optimal result

4. RESULTSAND DISCUSSION

The algorithm was first used with mono-spectraladdn
accordance with other studies (Lillesaadal., 2004), the
best single band for discriminating forest types wand 4.
Other authors found the best results are achiev@dgu
visible or middle infrared bands (McRobedsal., 2002). A
reason for differences could be found in the fett tthe
optimal band selection depends upon both the iraagethe
application (Spanneet al., 1984). In addition, the optimal
band combination depends on the characteristicghef
training data, forest density and considered season
(McRobertset al., 2002).

The two tested filters produced results comparalitle those
produced without filter: the accuracy varies betwéd6% and
50%. On the whole, images filtered using a 5x5 nfdter
provided best results in terms of overall accurdegure 1)
but the smoothing effect of filtering is questiolebecause
of the masking effect on the spectral differencébe
argument for using a multiple pixel window to adsireplot
location error (Franco Lopez, 2001) remains debatabt, in
our test, the classification was completed inclgditter.
Different HRA e VRA sizes were considered. Probahlg d
to the characteristics of training set and of stadga, the
2km HRA and the 500m VRA reached the maximum cross
validation accuracy (67%).
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Figure 1. Overall classification accuracy for thofferent
filters at increasing value of k

The geographical space defined by this combinagidmws
representing the spatial variation of the field eovThe
accuracy decreased to 62% when considering thenmaxi
geographical window (5km HRA and 700m VRA), probably
because a too wide selection area led to includegh
number of training plots which were less repredergaof
local conditions.

Comparing the cross validation accuracies reachethé63
band combinations we tested, we can observe thatwérall
accuracy did not vary too much and ranged betwegh @&nd
0.67. The band combination which produced the most
accurate classification was TM2, TM3 and TM7, coniing
that the classification accuracy with all six bamgss inferior

to the accuracy obtained using a band subset. firfdsg
can be explained by the high correlation betweerban the
same spectral regions.
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Figure 2. Overall classification accuracy befand after
calibration at increasing value of k

Using the Euclidean distance, equal weighting among
neighbours, a mean filter of 5x5 pixels, a HRA ohRka
VRA of 500m and k=5 an overall accuracy of 67% was
achieved (Figure 2).

When the number of neighbours was varying from % the
accuracy decreased approximately of 4% (Table &).tte
true class distribution of the original sample vmeserved
(PesSxan).- This means that the classification accuracytzan

improved when k increases, but the estimates wilhffected

by bias.

The most frequent class, which aggreg®eea abies and
Abies alba forests, showed the higher accuracy. Tiaeix

decidua class, even though represented by a high plot

number, was not correctly classified (Table 3) Qeiinwas

confused with other conifers.

k OA (%) Chi-square
1 61.66 1.4
2 63.90 67.0
3 64.59 22.1
4 66.15 33.3
5 67.36 23.8

Table 2. Overall classification accuracy and Chirx8q test
(x2tab=11.07; P=0.05;df=5) calculated for differenmbers

of neighbours

Forest types PA UA
Forests oPicea abies/Abies alba 88.06 76.87
Forests of other broadleaves 33.33 55.77
Forests of other conifers 53.49 63.89
Forests ofCastanea sativa 52.31 53.13
Forests ofagus sylvatica 58.33 53.85
Forests of arix deciduas 62.30 53.52
OA 67.36%
Kappa 0.5315

Table 3. Confusion matrix at the end of calibratiwocess

Applying the modified prior probabilities (Table 4pe
producer’s accuracy increased of 10% for larchsfwrevhile
the mean producer accuracy did not change signtfica
Overall accuracy and Kappa coefficient were noteslito

appreciate the

improvements brought by these prior

probabilities but the marginal summaries of the@ematrix
showed a remarkable improvement. As a result, theratl
accuracy and Kappa remained constant, respectarelynd
65% and 0.5, but the correspondence coefficieraguhom
0.82 to 0.95, indicating an improved area estinmtbmost
classes. Moreover the? statistic was not significant
(PesCr?an P=0.05), indicating that the classification was n
affected by systematic errors (Table 5).

Forest types PA UA
Forests oPicea abies/Abies alba 85.07 81.14
Forests of other broadleaves 45.98 44.94
Forests of other conifers 53.49 57.50
Forests ofCastanea sativa 44.62 47.54
Forests ofagus sylvatica 50.00 50.00
Forests of arix deciduas 55.74 60.71
OA 66.15%
Kappa 0.5227

Table 4. Confusion matrix with the prior probalilitse

5. CONCLUSIONS

Since the ‘80s, the kNN method is commonly used for
mapping forest variables. The method requires éhecton

of a few estimation parameters by a calibratiorcess.

In this study, the use of filtered images, combineith
setting a spatial range in which the nearest figlts are

chosen and



class True reference C|a55|f|cat|on_W|thout Classification whit priors
priors (k=5)

Forests oPicea abies/Abies alba 46.29% 53.02% 48.53%
Forests of.arix deciduas 10.54% 12.26% 9.67%
Forests of other conifers 14.85% 12.44% 13.82%

Forests ofFagus sylvatica 2.07% 2.25% 2.07%
Forests ofCastanea sativa 11.23% 11.05% 10.54%
Forests of other broadleaves 15.03% 8.98% 15.37%
OA: 67.36% OA: 66.15%
corr: 0.82 corr: 0.95
v2:23.8 y2: 1.75

Table 5. Marginal summaries of confusion matriwéhout and with prior probabilities compared te tiround references,
correspondence coefficients and Chi-Square tg2tal{=11.07; P=0.05; df=5)

the selection of an appropriate band combinatiodengossible
to improve the classification accuracy.

When the calibration process was implemented tlaeiracy
rose from 50% to 70%. One of the most importamsste KNN
method is the choice of k. The results of Chi Sqteseshowed
that the selection of k=1 is appropriate to mamtaie variance
of observations and to preserve appropriate vditiabin
predictions. Besides, the leave-one out cross \@idahowed
that the selection of a higher k, equal to 5, sfulso maximize
the classification accuracy.

The error matrix derived from the first classificat process
was used as ancillary data source. The use oirtfoisnation to
set prior probabilities improved the discriminatiafi some
classes but not the overall accuracy of the ciassion.
However the use of external information preserveel tlass
distribution of the original sample and providedttée area
estimation.

Considering that the method was only tested usisiggle data
set and on a single study area, further investigatare needed.
The proposed configuration should be validated rgas with
different forest types and topographic charactessand with
training dataset of different sizes.
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