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ABSTRACT: 
 
The present study explores the performance of a non parametric approach applied to the classification of forest types in an area of 
Northern Italy (Province of Trentino). The investigation has been carried out by classifying a Landsat 5 TM image on the basis of a 
reference data set derived from ground surveys and visual interpretation of aerial photos.  
The work compares the accuracies obtained with different configurations of a k-NN classifier. In particular the paper focuses on the 
choice of the best band combination and of the maximum horizontal distance between training field plots and unclassified pixels. 
The optimal parameter set is evaluated by a leave-one-out cross-validation strategy. 
As the conventional configuration of the method leads to a distortion in the estimate of the different class surfaces, a correction 
methodology is also considered. It consists of computing the error probability from a preliminary classification and applying 
appropriate prior probabilities to each forest type to influence the pixel assignment to the different classes and consequently the area 
estimation. 
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1. INTRODUCTION 

Nowadays field works represents the main way to accurately 
describe the state of forests. However, new technologies can 
provide alternative tools useful for collecting additional data.  
In particular airborne and space borne sensors are currently 
used in forestry as an auxiliary data source, since they offer a 
synoptic view of large areas allowing at the same time the 
fast acquisition of data that can be digitally processed. 
Several applications of remotely sensed data have been 
developed to estimate forest characteristics and to transform 
the results of field measurements into maps (Hame and 
Rauste, 1993). This is especially the case for biomass 
measurements (Ardö, 1992; Anderson et al., 1993), forest 
productivity (Ahern et al., 1991), tree cover percentage 
(Duncan et al., 1993), and leaf area index (Curran et al., 
1992; Nemani et al., 1993). Correlations of satellite data, 
mainly based on Landsat 5 TM images, with forest inventory 
attributes have been found by several authors, e.g. for the 
discrimination of tree species (De Wulf et al., 1990), for the 
assessment of basal area (Franklin, 1986), canopy cover 
(Butera, 1986; Peterson et al.,1986; Oza et al., 1989), leaf 
area index (Spanner et al., 1990) biomass (Franklin, 1986), 
stand height (Horler and Ahern, 1986) and stem volume 
(Poso et al., 1984, 1987; Tomppo, 1990; Maselli et al., 2005; 
Muinonen and Tokola, 1990).  
These studies have demonstrated that the operational use of 
digital data can be limited by the complexity of the 
relationships existing between spectral characteristics and 
forest attributes. For these reasons conventional classification 
methods, that assume relatively simple relationships between 
land surfaces and spectral characteristics, have often 
produced unsatisfactory results (Maselli et al., 2003). 
The possibility to minimize these problems is provided by the 
use of more flexible classification methods as the non-
parametric ones. Non-parametric methods, introduced by Fix 

and Hodges (1951), are discrimination procedures that do not 
require any assumptions about the statistical distribution of 
the data unlike the common parametric approaches such as 
likelihood ratios (Hardin, 1994).  
The most common non-parametric method applied to 
produce classifications and estimates of continuous forest 
variables is the k-Nearest Neighbour (kNN). 
The kNN method is used to generalize information from field 
plots to pixels for map production. The decision rule assigns 
each pixel to a class among the closest k labelled training 
pixels; the k pixels correspond to the field plots where 
different variables have been observed. Closeness is defined 
in terms of a metric distance in the multi-spectral space.  
Nearest neighbour techniques have been used extensively for 
forestry estimations in Nordic countries. Tomppo (1990), 
Nilson (1994) and Trotter et al. (1997) used the technique to 
estimate forest volume; Muinonen and Tokola (1990), 
Franco-Lopez et al., (2001) and Bauer (2001) applied the 
method for satellite images classification.  
The method is highly appreciated because it allows to predict 
all the measured variables at the same time for each pixel or 
for area units of interest (Tomppo and Halme, 2004).  
However there are some problems that should be taken into 
account when integrating satellite images and field data for 
mapping and monitoring purposes. Although the non-
parametric methods do not require any specific distribution 
of the data, they assume the sample distribution of field plots 
to be representative of the spatial variation of the forests in 
the study area. Moreover, when scaling from field 
measurements to remotely sensed data, different kinds of 
error may be involved: incorrect matching between plot area 
and corresponding pixel area, image noises, timing difference 
in field data and image acquisition. Finally, to apply the 
kNN-estimation method, the following assumptions should 
be done: i. the image pixel values depend only on the forest 



 

condition and not on the geographic location (Killki and 
Paivinen, 1987); ii. similar kinds of forest exist in the study 
area and their spectral responses depend on their 
characteristics. As a consequence of all factors listed above, 
kNN performances critically depend on a calibration process 
which aims to properly set the involved parameters.  
The aim of this paper is to show the accuracy of kNN forest 
type classification when plot wise aerial photo-interpretation, 
combined with field data and other auxiliary information, are 
used as training data. In the calibration phase different 
configurations of a k-NN classifier were tested. In particular 
this study focuses on the choice of the best band combination 
and the setting of the maximum geographic distance between 
training field plots and unclassified pixels. Specific 
procedures to incorporate auxiliary information were also 
tested. The optimal setting of the parameters was defined by 
means of a leave-one-out cross-validation strategy. 
As the conventional configuration of the method leads to a 
distortion in the estimate of the different class surfaces, a 
correction methodology was also considered. This consisted 
of computing the error probabilities from a preliminary 
classification to derive prior probabilities for each forest type; 
these probabilities were then used to guide the pixel 
classification and consequently to improve the area estimates. 
 
 

2. STUDY AREA 

The study area is located in the Eastern Italian Alps and 
covers about 40.000 ha of the Trento Province corresponding 
to the Alta-Valsugana district. This area belongs to the 
Alpine mountain region and its elevation ranges between 400 
and 2400m. The forest composition is therefore strongly 
influenced by elevation, slope and aspect. Broad-leaved 
deciduous forests dominate lower and warmest areas. At the 
highest elevation forests are dominated by mixed conifers. 
The dominant forest species in the area is Picea abies, 
followed by Larix decidua and Pinus sylvestris. Among 
broadleaved species, the more frequent is Fagus sylvatica, 
while other coniferous and broadleaved species are less 
common. 
 
 

3. MATERIALS AND METHODS 

3.1 Data set and image pre-processing  

A ground reference data set, distributed all over the study 
area, was obtained by means of the integration of field 
surveys, the forest planning database of Trentino Province 
and the photo-interpretation of 1:10.000 black and white 
orthophotos from 1996.  
596 plots were identified with a resulting sampling intensity 
of 0.015 plot/ha.  
The spectral signatures of all forest types found in 
correspondence of the training points were initially 
considered. Next, because of the poor separability and high 
spectral similarity among some original classes, some of 
these were aggregated and a classification scheme with six 
types was adopted. Table 1 shows the distribution of six 
different forest types in the reference data set. 
A mono-temporal Landsat 5TM (path 192, row 28) dated 19 
June 2000 was used, georeferenced and geometrically 
rectified to ensure correspondence between field plots and 
corresponding pixels. 

No topographic correction was applied to the images because 
previous studies carried out in the same area showed that 
these methods don’t produce remarkable improvements in the 
overall classification accuracy when compared to one reached 
with the use of the original non-corrected images (Puzzolo et 
al, 2005). 
 

Forest types 
number of 

points 
% 

Forests of Picea abies/Abies alba 268 46.3 
Forests of other broadleaves  61 10.5 

Forests of other conifers 86 14.9 
Forests of Castanea sativa 12 2.1 
Forests of Fagus sylvatica 65 11.2 
Forests of Larix deciduas 87 15.0 

 
Table 1.  Forest types identified in the study area 

 
Since the relationship between forest and spectral 
characteristics may not be constant over a large area (mainly 
because of the elevation variations which can affect the 
vegetation structure and composition), a 10m digital 
elevation model was used as ancillary source of information. 

3.2 kNN technique 

The kNN algorithm assigns each unknown pixel to the field 
attributes of the most similar reference pixels for which field 
data exists. Similarity is expressed as the distance between 
the query point and the neighbouring ones.  
When using kNN, different types of distance metrics can be 
selected:  

• Minkoski distance; 
• Euclidean distance; 
• Manhattan distance; 
• Mahalanobis distance 
 

Let D = {p1, . . . , pn} be a set of training pixels pi. For each 
pixel a vector of different attributes m is known. Given the 
training pixel D = {p1, . . . , pn}, the spectral distance between 
the pixel p to be classified and each training pixel pi is 
computed. To this unknown pixel an attribute vector m is 
assigned; m is obtained by calculating the mean or mode over 
all k-nearest pi for continuous and categorical attributes 
respectively. Some applications assign different weights to 
the training pixels depending on auxiliary variables. 
 
3.3 kNN configuration  

In the current test the output variable was categorical and the 
nearest neighbour classifier assigned the most frequent class 
to each pixel p. In our kNN configuration each of the selected 
nearest neighbours contributes to the decision in the same 
way. 
The distances between neighbours were calculated using the 
Euclidean metric, which is the easiest to compute, because 
the use of other metrics does not generally contribute to a 
considerable improvement of the estimation accuracy 
(Maselli et al., 2005).  
The Euclidean distance is defined as the shortest distance 
between two points in the multi-spectral space. It is 
computed as (1):  
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where jpx , = digital number for the feature j; nf = number of 

features in the spectral space. 
 
3.4 kNN calibration 

Prior to any implementation, the kNN algorithm needs to be 
calibrated to find its best configuration. This step allows for 
the identification of the kNN parameters able to produce the 
best classification accuracy. Following a widely used 
approach, the current calibration was performed using a 
leave-one-out strategy. This technique uses the training data 
sample to estimate the classification accuracy by leaving out 
one sampling unit and classifying that unit on the basis of the 
rest of the sample. This omission is repeated for every unit 
allowing to calculate the classification error. (Gong, 1986).  
In order to minimize the effects of possible positional errors, 
mean filters of 3x3 and 5x5 pixels were applied to the study 
images. The leave-one-out cross validation results derived 
from the filtered images were then compared with the ones 
obtained using the original TM bands.  
As already mentioned, the relationship between forest and 
spectral characteristics may not be constant over a large area. 
Observations for adjacent pixels are in fact expected to be 
positively correlated while distant observations are expected 
to be uncorrelated (McRoberts et al., 2002).  
For this reason we applied a method that allowed us defining 
optimal geographical reference areas, in both vertical and 
horizontal directions (VRA and HRA), from which the 
nearest field plots are selected. The area has to be large 
enough to include all variation of forest cover types and to 
exclude, at the same time, more distant zones with different 
characteristics. Different combinations of VRA and HRA 
were tested and compared in terms of cross validation 
accuracy. 
The last calibration step concerns the band combination. 
Since all available bands are not always needed and can even 
reduce the classification accuracy, a subset of bands was 
selected to be used in the final classification. All 63 possible 
combinations of the six TM bands were tested to select the 
subset which gave the highest classification accuracy. The 
thermal infrared band (TM6) was not considered due to its 
lower spatial resolution.  
After the calibration, the optimal number of neighbours was 
chosen according to two different criteria: the k value had to 
be large enough to minimize the misclassification probability 
and small enough to minimize the bias. When k=1, the 
prediction incorporates all the variability existing in the 
observations, whereas the variability is reduced when k>1 
because the prediction is based on the mode of multiple 
observations (McRoberts et al., 2002). 
The best configuration of the kNN classification we found 
was then applied to the study area; the accuracy results, 
derived through a leave-one-out cross validation method, are 
presented in terms of global error matrix, overall accuracy, 
producer’s accuracy, user’s accuracy, and kappa index. The 
results of Chi-square (χ2) tests, which allow to identify 
systematic errors (i.e. classification bias), are also presented; 
they were used to check if the true class distribution of the 
original sample is well represented.  

The correspondence between the extent of the ground 
references and that of the classified areas (Maselli, 1990) was 
also computed by (2): 
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corr = correspondence rows/columns 
N = total number of pixels 
Ci = marginal summary of column i 
Ri = marginal summary of row i 
In this first trial we assumed that the prior probabilities of a 
given pixel were equal for all classes. 
 
3.5 Alternative kNN configuration 

The values found in the error matrix were used for a 
discrimination process based on prior probabilities. The study 
proposes to use the error matrix derived from the first 
classification as an additional information source in order to 
reduce the interclass confusion. The matrix, in fact, has been 
shown to be useful for correcting the statistical weights in 
discrimination processes and it can be used to improve area 
estimates of different cover types (Maselli et al., 1990; 1992).  
The information deriving from the error matrix was 
incorporated into the classification process changing the prior 
probability for each class. The prior probabilities were 
derived from the ratios of the class frequencies in the ground 
reference data (marginal summary of columns in the error 
matrix) over those in the classification data (marginal 
summary of rows in the error matrix) and then used for 
changing the probability extraction of each class. The main 
difficulty in following this approach is to calculate prior 
probabilities appropriate to achieve optimal results.  
 
 

4. RESULTS AND DISCUSSION 

The algorithm was first used with mono-spectral data. In 
accordance with other studies (Lillesand et al., 2004), the 
best single band for discriminating forest types was band 4. 
Other authors found the best results are achieved using 
visible or middle infrared bands (McRoberts et al., 2002). A 
reason for differences could be found in the fact that the 
optimal band selection depends upon both the image and the 
application (Spanner et al., 1984). In addition, the optimal 
band combination depends on the characteristics of the 
training data, forest density and considered season 
(McRoberts et al., 2002).  
The two tested filters produced results comparable with those 
produced without filter: the accuracy varies between 40% and 
50%. On the whole, images filtered using a 5x5 mean filter 
provided best results in terms of overall accuracy (Figure 1) 
but the smoothing effect of filtering is questionable because 
of the masking effect on the spectral differences. The 
argument for using a multiple pixel window to address plot 
location error (Franco Lopez, 2001) remains debatable but, in 
our test, the classification was completed including filter.  
Different HRA e VRA sizes were considered. Probably due 
to the characteristics of training set and of study area, the 
2km HRA and the 500m VRA reached the maximum cross 
validation accuracy (67%). 
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Figure 1.  Overall classification accuracy for three different 

filters at increasing value of k 
 
The geographical space defined by this combination allows 
representing the spatial variation of the field cover. The 
accuracy decreased to 62% when considering the maximum 
geographical window (5km HRA and 700m VRA), probably 
because a too wide selection area led to include a high 
number of training plots which were less representative of 
local conditions. 
Comparing the cross validation accuracies reached for the 63 
band combinations we tested, we can observe that the overall 
accuracy did not vary too much and ranged between 0.62 and 
0.67. The band combination which produced the most 
accurate classification was TM2, TM3 and TM7, confirming 
that the classification accuracy with all six bands was inferior 
to the accuracy obtained using a band subset. This finding 
can be explained by the high correlation between bands in the 
same spectral regions.  
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Figure 2.  Overall classification accuracy before and after 
calibration at increasing value of k 

 
Using the Euclidean distance, equal weighting among 
neighbours, a mean filter of 5x5 pixels, a HRA of 2km, a 
VRA of 500m and k=5 an overall accuracy of 67% was 
achieved (Figure 2). 
When the number of neighbours was varying from 5 to 1 the 
accuracy decreased approximately of 4% (Table 2). but the 
true class distribution of the original sample was preserved 
(χ2

est<χ
2
tab). This means that the classification accuracy can be 

improved when k increases, but the estimates will be affected 
by bias.  
The most frequent class, which aggregates Picea abies and 
Abies alba forests, showed the higher accuracy. The Larix 
decidua class, even though represented by a high plot 
number, was not correctly classified (Table 3) being it was 
confused with other conifers. 
 

k OA (%) Chi-square  
1 61.66 1.4 
2 63.90 67.0 
3 64.59 22.1 
4 66.15 33.3 
5 67.36 23.8  

 
Table 2.  Overall classification accuracy and Chi-Square test 
(χ2tab=11.07; P=0.05;df=5) calculated for different numbers 

of neighbours 
 

Forest types PA UA 
Forests of Picea abies/Abies alba 88.06 76.87 

Forests of other broadleaves  33.33 55.77 
Forests of other conifers 53.49 63.89 

Forests of Castanea sativa 52.31 53.13 
Forests of Fagus sylvatica 58.33 53.85 
Forests of Larix deciduas 62.30 53.52 

OA 67.36% 
Kappa 0.5315 

 
Table 3.  Confusion matrix at the end of calibration process 

 
Applying the modified prior probabilities (Table 4) the 
producer’s accuracy increased of 10% for larch forests while 
the mean producer accuracy did not change significantly. 
Overall accuracy and Kappa coefficient were not suited to 
appreciate the improvements brought by these prior 
probabilities but the marginal summaries of the error matrix 
showed a remarkable improvement. As a result, the overall 
accuracy and Kappa remained constant, respectively around 
65% and 0.5, but the correspondence coefficient passed from 
0.82 to 0.95, indicating an improved area estimation of most 
classes. Moreover the χ2 statistic was not significant 
(χ2

est<χ
2
tab, P=0.05), indicating that the classification was not 

affected by systematic errors (Table 5).  
 

Forest types PA UA 
Forests of Picea abies/Abies alba 85.07 81.14 

Forests of other broadleaves  45.98 44.94 
Forests of other conifers 53.49 57.50 

Forests of Castanea sativa 44.62 47.54 
Forests of Fagus sylvatica 50.00 50.00 
Forests of Larix deciduas 55.74 60.71 

OA 66.15% 
Kappa 0.5227 

 
Table 4.  Confusion matrix with the prior probability use 

 
5. CONCLUSIONS 

Since the ‘80s, the kNN method is commonly used for 
mapping forest variables. The method requires the selection 
of a few estimation parameters by a calibration process.  
In this study, the use of filtered images, combined with 
setting a spatial range in which the nearest field plots are 
chosen and cx 



 

  

class True reference 
Classification without 

priors (k=5) 
Classification whit priors

Forests of Picea abies/Abies alba 46.29% 53.02% 48.53% 
Forests of Larix deciduas 10.54% 12.26% 9.67% 
Forests of other conifers 14.85% 12.44% 13.82% 

Forests of Fagus sylvatica 2.07% 2.25% 2.07% 
Forests of Castanea sativa 11.23% 11.05% 10.54% 

Forests of other broadleaves  15.03% 8.98% 15.37% 

  OA: 67.36% OA: 66.15% 

  corr: 0.82 corr: 0.95 

  χ2: 23.8 χ2: 1.75 

 
Table 5.  Marginal summaries of confusion matrixes without and with prior probabilities compared to the ground references, 

correspondence coefficients and Chi-Square tests (χ2tab=11.07; P=0.05; df=5) 
 
 
the selection of an appropriate band combination made possible 
to improve the classification accuracy. 
When the calibration process was implemented the accuracy 
rose from 50% to 70%. One of the most important steps in kNN 
method is the choice of k. The results of Chi Square test showed 
that the selection of k=1 is appropriate to maintain the variance 
of observations and to preserve appropriate variability in 
predictions. Besides, the leave-one out cross validation showed 
that the selection of a higher k, equal to 5, is useful to maximize 
the classification accuracy. 
The error matrix derived from the first classification process 
was used as ancillary data source. The use of this information to 
set prior probabilities improved the discrimination of some 
classes but not the overall accuracy of the classification. 
However the use of external information preserved the class 
distribution of the original sample and provided better area 
estimation.  
Considering that the method was only tested using a single data 
set and on a single study area, further investigations are needed. 
The proposed configuration should be validated in areas with 
different forest types and topographic characteristics and with 
training dataset of different sizes. 
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