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ABSTRACT: 
Leaf area index (LAI) is a key variable for the understanding and modelling of several eco-physiological processes within a 
vegetation canopy. The LAI could thus provide vital information for the management of the environment and agricultural practices 
when estimated continuously over time and space thanks to remote sensing sensors such as CHRIS/PROBA.  
The spaceborne ESA-mission CHRIS/PROBA provides multi-temporal observations of the land surface in the spectral and 
directional information dimensions. This system represents a rich source of information for Earth observation purposes specifically 
adapted for monitoring the high dynamic of agricultural crops. For this purpose a radiative transfer model (RTM) is coupled to a 
canopy structure dynamic model (CSDM). The coupled models are used to exploit the complementary content of the spectral and 
temporal information dimensions for LAI estimation over a maize canopy. The resulting estimation of the temporal and spatial 
variation of LAI is improved by integrating multi-temporal CHRIS/PROBA data and ground meteorological observations. Further, 
the presented method provides the continuous LAI time course over the season, which is required by crop growth and land surface 
process models. 
 
 

1. INTRODUCTION 

Leaf area index (LAI) as defined by the single sided area of 
green leaves per unit of horizontal soil (Privette et al. 2001) is a 
key variable governing several processes such as 
photosynthesis, transpiration or rain interception. Estimates of 
LAI could be assimilated within vegetation process models to 
provide more accurate description of canopy functioning with 
emphasis on important environmental and economical outputs 
such as, carbon, water and nitrogen fluxes and stocks, canopy 
state and yield for crops (Chen et al. 2003; Matsushita and 
Tamura 2002). Remote sensing allows for detailed and frequent 
observations of the vegetation necessary to monitor the spatial 
and temporal variations of canopy characteristics (Koetz et al. 
2005; Myneni et al. 1997). 
At the top of the canopy, the interaction of radiation within the 
vegetation depends on the contribution of several components 
such as leaves, stems, soil background as well as the 
illumination and view geometries (Goel and Thompson 2000; 
Verhoef and Bunnik 1981). Radiative transfer models (RTM) 
provide an explicit connection between the canopy biophysical 
variables, the view and illumination geometry and the resulting 
canopy reflectance by exploiting our knowledge of the involved 
physical processes (Baret et al. 2000). The RTM have to be 
inverted to retrieve the biophysical variables from the measured 
canopy reflectance (Bacour et al. 2002; Kimes et al. 2000; 
Weiss et al. 2000). However measurement and model 
uncertainties are often leading to a large range of possible 
solutions, which prohibits the inversion to be properly solved 
(Combal et al. 2002). The regularization of such an ill-posed 
problem requires input of additional information to obtain more 
reliable and stable solutions (Combal et al. 2002; Combal et al. 
2003). 
Knowledge of the canopy structure dynamics is highly desirable 
as ancillary information to constrain the RTM inversion for the 

estimation of canopy characteristics. The dynamics of the 
canopy structure are strongly depending on crop growth 
processes, which result in a relatively smooth and typical 
temporal profile of LAI. Simple semi-mechanistic models have 
been proposed to describe the LAI time course (Baret 1986; 
Werker and Jaggard 1997). Such models could consequently be 
used to exploit the information on canopy structure dynamics 
and get more robust and reliable estimates of LAI. The use of a 
canopy structure dynamics model (CSDM) allows also to derive 
a continuous estimation of LAI which is required in some 
applications, particularly those based on the forcing of 
agricultural growth or land surface models (Delecolle et al. 
1992; Moulin et al. 1998). The coupling of radiative transfer 
and canopy structure dynamics models offers consequently a 
great potential for the interpretation of remote sensing data 
since it integrates several sources of information (Baret et al. 
2000): 
• the knowledge of radiative transfer processes within RTM 
• the knowledge on some biological processes within CSDM  
• the temporal and spectral dimension of radiometric 

information 
• ancillary information such as the climatic variables partly 

governing the CSDM including temperature, and the prior 
knowledge on the canopy type. 

The CHRIS instrument operated on the spacborne platform 
PROBA observes the canopy reflected radiance in the spectral, 
directional, spatial and temporal dimensions, thus describing the 
canopy reflectance based on independent but complementary 
information sources (Barnsley et al. 2004). We propose to 
exploit synergistically two of these information dimensions, 
namely the spectral and temporal, based on multi-temporal 
CHRIS observations. A RTM coupled to a CSDM is used to 
improve the estimation of biophysical canopy characteristics 
relevant for dynamic land surface processes. 
 



2. DATA 

CHRIS multi-angular data sets were acquired over a test site in 
central Switzerland on eight different dates between 26 May 
2005 and 22 September 2005 in Mode 5 (see Tab. 1). Out of 
this data sets, four dates that represent major steps in 
phenology of the selected agricultural fields were selected for 
further processing and data exploitation. The selected dates 
are 26 May 2005 (DOY 171), 20 June 2005 (DOY 196), 17 
August 2005 (DOY 229) and 22 September 2005 (DOY 
265). Within this study the multi-temporal aspect of nominal 
nadir acquisitions has been further exploited. The full 
directional information content of the data set is described in 
the a separate study (Kneubühler et al. 2006).  
 

Spatial 
Sampling 

Image area View angles Spectral 
bands 

Spectral 
range 

17m @ 556 
km altitude 

6.5x13 km 
(372x748 

pixels) 
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angles @ 

+55°, +36°, 
0°,  -36°, -

55° 

37 bands with 
 6-33 nm 

width 

447-1035 
nm 

Table 1. CHRIS Specifications for Mode 5 
 
2.1 Test Site and Field Data 

The test site for this study is located in the rural border region 
between the two Swiss Cantons of Lucerne and Aargau in 
central Switzerland near the villages of Vordemwald (7°53’ E, 
47°16’N), St. Urban and Pfaffnau. The hilly area is dominated 
by agricultural fields in the lower parts (450-500 m a.s.l.) and 
mixed forests mainly on the hilltops (elevations up to 700 m 
a.s.l.). Agriculture mainly concentrates on barley, wheat, maize, 
sugar beet and pasture land.  
Ground truth data were collected in a maize field parallel to 
the CHRIS data takes on most dates. Ground data collection 
included spectroradiometric measurements using a FieldSpec 
Pro FR, LAI measurements using a Licor LAI-2000 Plant 
Canopy Analyzer (Fig. 1) and hemispherical photographs, as 
well as determination of leaf water and chlorophyll content in 
the laboratory (Fig. 1). An operational meteorological station 
in the close vicinity of the study site provided basic 
meteorological observations such as air temperature (Fig. 2). 
The land use type was recorded for a large amount of 
agricultural fields. 

 
Figure 1. Biophysical (LAI) and biochemical (Cab: leaf 

chlorophyll content, Cw: leaf water content) field 
measurements 

 
Figure 2.  Daily (right: accumulated) air temperature over the 

maize growing season 

 
2.2 Geometric and Atmospheric Processing 

Geometric and atmospheric correction of the multi-angular 
CHRIS data sets under investigation was performed 
following an approach described in Kneubühler et al. ( 2005). 
Geocorrection is therefore based on a 3D physical model 
developed by Toutin (2004) which is implemented in the 
commercially available image processing software 
PCI/Geomatica. High locational accuracy of the respective 
multi-angular products after geometric correction is a 
prerequisite for reliable retrieval of HDRF information from 
the data set. The root mean square errors (RMSE) for the 
specific region of interest do generally not exceed one pixel. 
Figure 4 shows a subset of a geocorrected CHRIS nadir scene 
for the specific region of interest in this study. The accuracy of 
the geocorrection may be seen from the overlying pixelmap. 
Subsequent atmospheric correction of the CHRIS radiance 
data products is performed using ATCOR-3 (Richter 1998), 
which is based on MODTRAN-4. ATCOR-3 accounts for 
terrain effects by incorporating DEM data and their 
derivatives such as slope and aspect, sky view factor and cast 
shadow. ATCOR-3 is capable of processing data from tilted 
sensors by accounting for varying path lengths through the 
atmosphere and varying transmittance. Atmospheric 
correction results in the retrieval of HDRF (Hemispherical 
Directional Reflectance Factor) data sets for the various 
CHRIS view angles. 
 

 
Figure 4. Geocorrected subset  of the 26 May 2005 CHRIS 

nadir scene for the region of interest in this study 
with overlying pixelmap (1:25’000, © swisstopo). 
The investigated maize field is indicated with  A , 
further fields with ground data B: winter barley and 
C: sugar beet 

 
3. METHODS 

A coupling scheme (Fig. 4) to combine two models, the RTM 
and CSDM, is implemented to estimate LAI based on the multi- 
temporal remote sensing observations (Koetz et al. 2005). The 



models are first separately introduced. The coupling and LAI 
retrieval are subsequently presented. 
 

 
Figure 4. Concept of coupled LAI retrieval scheme (RTM & 

CSDM) exploiting multi-temporal CHRIS and 
ground meteorological observations 

 
3.1 Canopy Structure Dynamics Model 

The LAI temporal profile is governed by the net effect of 
growth and senescence, which are genetically programmed. 
However, the expression of this genetic potential is strongly 
influenced by environmental factors. The leaf area of an annual 
canopy typically shows first an exponential rise corresponding 
to dominant cell multiplication and elongation processes while 
the effects of competition for resources are limited. Then, this 
increasing absolute growth rate is rapidly modulated by 
senescence and competition for resources.  
A simple semi-mechanistic model that describes LAI dynamics 
was proposed by (Baret 1986):  
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The independent variable T is defined as the accumulated daily 
mean air temperature above 8 °C starting from sowing (Durand 
et al. 1982). This variable was chosen since both seedling 
emergence and leaf area expansion are temperature dependant 
(Hesketh and Warrington 1989). The CSDM describes LAI in 
two parts, growth and senescence (Eq. 1). The growth period is 
defined by a logistic equation with parameter b being the 
relative growth rate at the inflexion point Ti. The senescence is 
determined by an exponential equation with parameter a being 
the relative growth rate and Ts the time expressed in 
temperature when leaves have all senesced. The parameter 
LAIAmp describes the amplitude of maximal leaf area. The 
parameters b, Ti describe the dynamics before the time of 
maximum LAI, while a and Ts focus on the period after the 
maximum LAI. 
The distribution of the model parameters typical for the 
observed crop maize was derived from an extensive database 
acquired over 44 different sites spread over the world and 
spanning over different climatic and cultural practices 
conditions (Brisson et al. 2002; Duthil et al. 1999; Marloie et al. 
2001).  
 
3.2 Radiative Transfer Models 

The turbid medium radiative transfer model SAIL (Scattering 
from Arbitrarily Inclined Leaves (Verhoef 1984, 1985) was 
used, since it describes the canopy structure in a fairly simple 

way while producing nevertheless realistic results. The 
PROSPECT model (Jacquemoud and Baret 1990) was used to 
describe leaf optical properties. PROSPECT simulates leaf 
reflectance and transmittance spectra required by the SAIL 
model as a function of leaf biochemical contents and leaf 
structure.  
The soil reflectance was assumed to keep the same spectral 
pattern and to exhibit predominantly variations in magnitude 
due to changes in soil moisture and roughness, which was 
described by a soil brightness factor s. A reference soil 
reflectance spectrum retrieved from CHRIS observations over 
bare soil of the same field, was considered for the cases 
investigated. The soil was also assumed to be a Lambertian 
surface.  
 
3.3 LAI estimation based on Look up tables 

The estimation of LAI from RTM inversion was based on a 
LUT (Look Up Tables) approach. It is a conceptually very 
simple technique, that potentially overcomes limitations of 
iterative optimization algorithms associated to important 
computation time and the risk of converging to a local 
minimum that is not necessary close to the actual solution 
(Combal et al. 2002; Kimes et al. 2000).  
The generation of a look up table consists first of sampling the 
space of the p input variables V of the RTM (LUTV). A total of 
100000 canopy realizations have been generated following a 
uniform distribution and specific ranges for the respective 
canopy variable. Then, the RTM was used to simulate the 
corresponding reflectance table (LUTR) with m numbers of 
measurement configurations, corresponding to the bands and 
directions considered. The range of each variable was defined 
according to previous experiments performed over maize crops 
under a range of conditions (Baghdadi and Baret 1998; Espana 
et al. 1998; Jacquemoud and Baret 1990). Note that the 
generation of the LUTV allows already to define some prior 
information on the respective variable by restraining it to vary 
within a limited range. 
The measurement configuration used represented the actual 
conditions of observations of CHRIS (Table 1). The view zenith 
angle was adapted to the actual view angle of the respective 
CHRIS nominal nadir scene. Because the illumination geometry 
was varying from date to date, four LUTs were created, each 
corresponding to a specific date of observation and the 
associated sun zenith angle. For the sake of simplicity, the 
fraction of diffuse irradiance was assumed to be 15% 
independent of the wavelength.  
The selection of the solution within the LUT was achieved in 
two steps: the first one considered only the radiometric 
information. The second one used the CSDM fitted over the 
first estimates of LAI derived from the previous step to 
constrain the possible solutions based on the radiometric 
information. The later process could be iterated several times to 
reach convergence. The coupling of the RTM and CSDM 
models was based on the hypothesis that the remotely sensed 
observations of LAI (step 1) had to be consistent with the time 
profile of LAI generated by the CSDM. Consequently the 
remotely sensed LAI was recalibrated, when necessary, relative 
to the phenologically sound LAI provided by the CSDM (step 
2). These two steps will be briefly described here after. 
 
3.3.1 Step one: exploiting the radiometric information  
The LUT was sorted according to the cost function χ2

rad 
corresponding to the simple squared-sum of differences 
between the measured reflectance R and the simulated 
reflectance RLUT found in the LUTR (Eq. 2).  
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The possible solutions considered were those that were within 
20% of the best radiometric match. This ensemble of possible 
radiometric solutions was noted [Srad]. The 20% threshold was 
derived after test and error trials and is consistent with what 
(Combal et al. 2002) proposed in an earlier study. The initial 
solution value, LAI0 was then set to the median value of the 
ensemble [Srad] of best radiometric cases.  
 
3.3.2 Step two: exploiting the prior information on canopy 
variables  
The prior information was introduced here by refining the 
selection within the possible radiometric cases [Srad] according 
to the following cost function, χ2

var: 
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where n was the number of canopy characteristics on which 
prior information was exploited, Vi

P was the most probable 
value of the canopy variable i, and Δi

P the corresponding 
confidence level. The LAI value of the case ensuring the 
minimum of χ2

var over [Srad] was selected as the solution, LAI1. 
Because the LUT already incorporated some prior information 
on the range of variation of all the canopy variables, only the 
LAI and soil brightness, s, were considered in equation 3. For 
the soil brightness, no temporal constraint was used and Vs

P and 
Δs

P were set respectively to 0.9 and 0.2. Conversely, temporal 
constraints were used for LAI to get the most probable value 
VP

LAI at a given point in time. This was achieved by exploiting 
the CSDM adjusted over the set of first estimates LAI0(t). The 
adjustment of the CSDM was performed using the simplex 
minimization algorithm (Nelder and Mead 1965). The 
confidence value ΔP

LAI was assumed to be within 20% of the 
most probable value. This value was in agreement with the 
magnitude of the standard deviation observed when estimating 
LAI from radiometric measurements without using much prior 
information (Combal et al. 2002). This second step was iterated 
a number of times up to the convergence. Experience showed 
that the convergence was quickly reached and only three 
iterations were used in the following part of the study. At last 
the CSDM adjusted over the most phenologically sound cases 
of [Srad] was used to produce the final results. 
 

4. RESULTS AND DISCUSSION 

For the evaluation of the LAI retrieval performance estimated 
LAI were compared to the LAI field measurements (Fig. 5). The 
simple root mean square error (RMSE) was calculated to 
quantify the agreement between actual LAI in the field and 
estimated values. A linear regression was used to quantify the 
possible biases of the estimates. The results showed a robust 
performance of the LAI estimation with reasonable RMSE of 
0.73. Constraining the RTM inversion with dynamic prior 
information on the canopy structure lead to relative low 
inversion uncertainties. Nevertheless, when interpreting the best 
linear fit a consistent underestimation of the LAI estimates is 
evident. The LAI underestimation is probably due to the typical 
row structure of the maize canopy, which is not consistent with 
the RTM assumption of a homogenous canopy.  Simulations of 
a 3D-RTM comparing canopy gap fraction of heterogeneous 
maize canopies with turbid, homogeneous canopies support this 
observation.  The results showed that gap fractions of a 
heterogeneous canopy observed from nadir were generally 
higher than that of a corresponding homogeneous canopy 
(Lopez-Lozano et al. 2007 (accepted)). Consequently 

interpreting the nadir remote sensing signal of a maize canopy 
based on a turbid RTM would lead to an underestimation of 
LAI values. Forward simulation using SAIL parameterized with 
the field measurements lead to a significant overestimation of 
the near-infrared canopy reflectance relative to CHRIS 
observations, which further demonstrates the limitation of SAIL 
for the representation of maize canopy structure.  
The integration of the CSDM to the retrieval algorithm allowed 
a continuous description of the LAI time course over the 
growing season. As the CSDM is capable of representing 
realistically the growing and senescence phases of a maize 
canopy the LAI values follow a phenologically sound evolution 
(Fig. 6). The CSDM was able to fit very well to the estimated 
LAI values due to the low temporal resolution of CHRIS 
observations. 
  

 
Figure 5. Estimated LAI derived from CHRIS observations 
validated against field data 

 
Figure 5. Continuous LAI evolution over the season described 
by the CSDM fitted to CHRIS observations (*).  
 

5. CONCLUSIONS 

The presented analysis of the multi-temporal CHRIS data set 
focused on the interpretation of HDRF (Hemispherical 
Directional Reflectance Factor) changes contained in the 



various acquisitions over time. A radiative transfer model 
(RTM) coupled to a canopy structure dynamic model (CSDM) 
was used to exploit the complementary content in the spectral 
and temporal information dimensions for the LAI estimation 
over a maize canopy. The knowledge of the canopy structure 
dynamic provided by the CSDM is used as ancillary 
information to achieve an improved robustness of the RTM 
inversion. Further, the presented coupled models integrate 
spaceborne remote sensing data with ground meteorological 
observations providing a continuous LAI time course over the 
season. Crop growth as well as surface process models require 
such a continuous description of the vegetation evolution. The 
presented methodology could also filter effects of poor cloud 
screening or atmospheric correction affecting operational 
derived biophysical products. Finally the future exploitation of 
the off-nadir view angles of CHRIS/PROBA could help to 
improve the clumping issue affecting the LAI estimation, as row 
clumping effects are most sensitive to nadir view angles 
(Lopez-Lozano et al. 2007 (accepted)). The simultaneous 
exploitation of spectro-directional behaviour of agricultural 
crops over time, sampled by the CHRIS/PROBA mission, bears 
thus the potential to improve the estimation of biophysical 
canopy characteristics relevant for applications such as 
precision agriculture and ecological modelling. 
The proposed methodology prepares for the assimilation of 
remote sensing observations into land surface process models. 
Nevertheless the effectiveness of such an approach relies on 
remote sensing data in relatively high temporal frequency at a 
pertinent spatial resolution. The planned spaceborne missions 
Rapideye, ESA’s SENTINEL2 and Venµs will hopefully 
provide such observations. 
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