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ABSTRACT: 
 
Estimating forest variables, such as photosynthetic light use efficiency, from satellite reflectance data requires understanding the 
contribution of photosynthetic vegetation (PV) and nonphotosynthetic vegetation (NPV). The fractions of PV and NPV present in 
vegetation reflectance data are typically controlled by the canopy structure and the respective viewing angle. The persistent but 
highly varying anisotropic behaviour of the forest canopy implies that there is canopy structural information to be exploited from 
multi-view angles measurements. In this work, a combination of radiative transfer modelling (FLIGHT) and linear unmixing 
techniques were used to isolate angular PV and NPV fractions from multi-angular CHRIS-PROBA (Compact High Resolution 
Imaging Spectrometer-Project for On-board Autonomy) data in order to assess their effects on a suite of vegetation indices. Angular 
variability in the NIR wavelengths contributed most to the angular change in PV and NPV fractions. In turn, for those pixels where 
the NPV fractions from near-nadir to backscatter were increasing, moderate correlations were found with the angular variability of 
the calculated vegetation indices. From these fractions, a Normalized Difference NPV Index (NDNPVI) was developed as a proxy 
for volumetric canopy composition.  
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1.  INTRODUCTION 

This study begins with the assumption that pixel level canopy 
reflectance of a terrestrial ecosystem typically consists of a 
proportion of Photosynthetic vegetation (PV) and a proportion 
of Non-Photosynthetic Vegetation (NPV: parts/ canopy 
components that lack chlorophyll, such as dry leaf matter, bark, 
wood, and stems) and eventually rock and bare soil. The 
fractional extent of vegetation into PV and NPV is important 
from biophysical and biogeochemical perspectives (Defries et 
al. 1999), as well as to understanding climate and land-use 
controls (Asner and Heidebrecht 2002).  Many approaches have 
been developed to analyze PV, NPV and bare soil. A problem 
hereby is that the typical spectral regions used to detect PV – 
the visible and the NIR wavelengths (0.4-1.3 µm) - do not 
easily separate the individual contribution of NPV and bare soil 
to the measurement (van Leeuwen and Huete 1996, Roberts et 
al. 1998). Alternatively, spectral mixture analysis was 
developed to decompose image pixels into its pure constituent 
(Settle and Drake 1993, Adams et al. 1995). As such, pixel level 
reflectance can be described by a spectral mixture model in 
which a mixed spectrum is represented as a linear combination 
of pure spectra, called endmembers (EMs): 
 

soilsoil )(f)(f)(f)( NPVNPVPVPV λλλλ RRRR pixel ++=    

 and  fPV + fNPV  + fsoil =1,        (1)       
 

where fPV, fNPV, fsoil are the fractions of PV, NPV and soil 
respectively, R(λ) is the reflectance of each land-cover 
endmember at wavelength λ. Regarding forested surfaces, it is 
commonly the case that bare soil or rocks are absent in a pixel 
but are replaced by understory (e.g. grass or herbaceous 

vegetation) or litter cover. Then, a further simplification can be 
made, namely,  
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 and   0≤ fPV ≤1.     (2)

      

Further, although often ignored in nadir remote sensing, 
sun/view geometry has a great influence on the observed 
reflectance of a surface, which is described by its bidirectional 
reflectance distribution function (BRDF). The magnitude and 
shape of the BRDF is governed by the composition, density, 
optical properties and geometric structure of the vegetation 
canopy.  It are these BRDF effects that triggered the current 
advances in multi-angular remote sensing. Recently numerous 
studies have demonstrated that measurements from multiple 
view-angles (e.g. CHRIS-PROBA, MISR) can provide 
additional surface properties at subpixel scale (e.g. Diner et al. 
1999, 2005 Widlowski et al. 2004).  
Being aware of multiple viewing angles, consider, for example, 
the following situation where the sensor remains pointed 
towards a forested ecosystem but gradually overpasses from 
nadir to more oblique views while taking consecutive 
snapshots. Then not only the observed PV and NPV proportions 
might change per image but also, depending on forward scatter 
or backscatter observations, the PV and NPV spectra are 
equally subject to change (e.g. predominantly shaded conditions 
vs. predominantly sunlit conditions).  
EMs are usually obtained from spectral libraries or from the 
images themselves (e.g. Ichoku and Karnieli 1996). Regarding 
the BRDF effects, extracting EMs from each angular scene 
would be the most adequate but it is impossible to encounter 
pure pixels in a forested scene (e.g. NPV). To bypass this 
limitation in this study, a radiative transfer model was used that 



 

realistically describes the physics of canopy reflectance based 
on abstraction of the canopy. With such a model the reflectance 
of a purely vegetated canopy (PV) and a purely woody canopy 
(NPV) can be reasonably simulated. Modelled PV and NPV 
reflectance trends both in the spectral and angular domain, 
expressed by the bidirectional reflectance factor (BRF), were 
proposed to act as EMs. The hybrid 3-D radiative 
transfer/geometric Forest Light (FLIGHT) canopy model based 
on Monte Carlo simulation of photon transport (North 1996) 
was used for this purpose.  
 
The objective of this study is: (1) to assess how fractional 
coverage of PV or NPV responds to changing viewing angles 
by using linear unmixing, and: (2) how such effects are related 
to single reflectance bands and vegetation indices. In forest 
canopies, woody material plays a small but significant role in 
determining reflectance, especially those with leaf area index 
(LAI) <5.0 (Asner 1998). However, the author advocated that 
this is also dependent on the location of woody material within 
the canopy.  
This study is focused on coniferous forests where the woody 
material (stem) is well separated from the vegetated crown. We 
hypothesize therefore that at greater viewing angles a greater 
proportion of NPV in the reflectance signal will become 
apparent due to a greater contribution of woody stems. This is 
especially probable in sparse coniferous stands and when 
observed in backscatter direction where the influence of 
shadowing is reduced.  
 
 

2.  METHODOLOGY 
 
We address two approaches to test the above hypothesis: (1) a 
modelling exercise that mixes the pure BRFs into various 
canopy reflectances and (2), a linear unmixing exercise that 
uses five consecutive Compact Higher Resolution Imaging 
Spectrometry (CHRIS) images from five different viewing 
angles during a single overpass of an alpine forested ecosystem 
(hereafter, referred to as angular unmixing). In an earlier study 
using CHRIS (Verrelst et al. 2007) it appeared that vegetation 
indices shows a pronounced anisotropic behaviour, especially 
the light use efficiency indices. It was suggested that an 
eventual increased proportion of woody material could 
significantly affect those photosynthetic-sensitive VIs. The 
modelling exercise will validate this assumption by mimicking 
each VI with increasing NPV proportions at greater viewing 
angles, while the angular unmixing exercise will verify whether 
this assumption holds true when using the original CHRIS data.  
   
2.1 Data and study site 

CHRIS mounted onto Project for On-board Autonomy 
(PROBA) offers ideal opportunities to assess the effects of 
changing composite proportions over varying angles. Its 
specifications are shown in table 1. The used CHRIS image set, 
acquired on June 27 2004 10:41h AM local time under partly 
cloudy conditions (1/8th cloud cover) was geometrically and 
radiometrically corrected following an approach dedicated for 
rugged terrains (Kneubühler et al. 2005). The test site has a 
geometric accuracy for the five scenes of 1-2 pixels. The 
generated ‘surface reflectance’ represents hemispherical-
directional reflectance factor (HDRF) (Schaepman-Strub et al. 
2006). Due to the cloud contamination the +55° scene was 
discarded in further analysis. The +21° scene is the (near-) nadir 
scene while the -55° scene happened to be viewing 
predominantly back scattering (figure 1).   

Table 1.  CHRIS configurations for Land Mode 3 

Figure 1.  Polar plot of CHRIS acquisition and illumination 
geometry as of June 27, 2004. PP: principal plane 

 
The study site is located in the eastern Ofenpass valley, which 
is part of the Swiss National Park (SNP) in South East 
Switzerland (10°13′48″E/46°39′45″N). The Ofenpass represents 
a dry inner-alpine valley with rather limited precipitation (900-
1100 mm/a) on an average altitude of about 1900 m a.s.l.. The 
south-facing slope of the Ofenpass valley is considered as the 
core test site. The relatively flat part down-hill (slope < 10°), 
which consists of old-growth coniferous forest and an alpine 
meadow, were chosen as study site to assess angular PV and 
NPV proportions. 
The evergreen coniferous forest is dominated by mountain pine 
(Pinus Montana ssp. arborea). The forest is characterized by 
varying density and a relatively high woody fraction (ca. 30%) 
due to the advanced age of the pine forest and nature 
management practice that stopped 70 years ago. Average LAI is 
2.2 (1.0 SD). The forest ecosystem can be classified as 
woodland associations of Erico-Pinetum mugo. The understorey 
is characterized by low and dense vegetation composed mainly 
of Vaccinium, Ericaceae, and Seslaraia species 
 
2.2 FLIGHT modelling 

With FLIGHT, evaluation of BRF is achieved by ray tracing the 
photon trajectory within the discontinuous environment of a 
simulated forest canopy. The model allows the representation of 
complex vegetation structures and a correct treatment of 
spectral mixing resulting from multiple scattering within the 
scene. FLIGHT simulates a 3D forest canopy by geometric 
primitives with defined shapes and positions of individual 
stands with associated shadow effects. Within each crown 
envelope foliage is approximated by volume-averaged 
parameters with optical properties of both leaf and woody 
scattering elements (North 1996).  
We simulated canopy reflectance of an exclusive PV and an 
exclusive NPV forest scene as a function of canopy variables 
and CHRIS acquisition geometries. The main difference 
between the PV and NPV simulations are that in the PV case 
each crown envelope (cone) represents 100% foliage, while in 
the NPV case each cone represents 100% bark. As input for 
FLIGHT averaged field measurements were used based on 
surveys in 4 core test sites within the forest (see table 2). The 
foliage optical properties were modelled by PROSPECT and 
coupled with FLIGHT (Kötz et al. 2004) while the spectral 
properties of the woody parts and background were 
characterized by spectrometric field measurements. Since 
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background is equally a mixture of PV and NPV signals (e.g. 
shrubs, litter) alternatively we also modelled an ‘extreme’ PV 
scene with background consisting of purely foliage reflectance 
and an ‘extreme’ NPV scene with background consisting of 
purely bark reflectance (see figure 2). The resultant BRF’s will 
act as synthetic endmembers. 
 
 
 
 
 
 

 
Figure 2: Visualization of a rendered purely PV canopy and a 

purely NPV canopy 
 
The generated BRF’s will also be used to realize the inverse of 
linear unmixing. By mixing both modelled spectra in various 
mixtures at varying viewing angles, more natural forest canopy 
reflectances can be simulated. Having then PV and NPV 
proportions controlled, finally the angular response of 
vegetation indices can be assessed.  
Prior to such mixing, we tested whether this straightforward 
approach does not conflict with the basic physical assumption 
of linear unmixing.  This assumption states that there is not a 
significant amount of photon multiple scattering between 
macroscopic materials,  in such a way that the flux received by 
the sensor  represents a summation of the fluxes from the cover 
types and the fraction of each one is proportional to its covered 
area (Camacho-De Coca 2004). However, when photons 
interact with vegetation components in vertical space 
reflectance has the potential of becoming nonlinear (Myneni et 
al. 1989, Borel and Gerstl 1994). The complex FLIGHT model 
is specifically designed to trace these scattering trajectories 
depending on how each macroscopic or foliage microstructure 
is defined. But with the PV-NPV approach, a second problem 
arose due to the different nature of both constituents. A crown 
of 100% PV foliage propagates photons and causes further 
within-crown multiple scattering whereas a crown built of 
100% opaque NPV foliage inhibits any further transmittance.  
We compared therefore for two wavelengths (R531  and R570) how 
(post-modelling) mixed BRF signals differed with the resulted 
BRFs of simulated likewise mixed (pre-modelling) PV-NPV 
crown envelopes, while keeping the other parameters constant. 
As outcome of this small exercise it appeared that the BRF 
mixtures were conform with the BRFs of the simulated mixed 
PV-NPV crown envelopes (RMSE: 0.022, no significant 
difference found with a student’s t-test). This justifies the 
approach of post-modelling PV-NPV mixtures without having 
to rerun the radiative transfer code. Nevertheless, it has to be 
tested whether this apparent linearity is also valid for other 
wavelengths. 
 

Table 2.  Averaged input variables for FLIGHT based on 
surveys at 4 test sites. (Remaining input variables are described 

in Kötz et al. 2004) 

3. RESULTS AND DISCUSSION 

3.1 Comparison VIs: FLIGHT vs CHRIS 

Figures 3a and 3c show the angular shapes of the Structure 
Invariant Pigment Index [SIPI: (R800 - R455) /( R800 + R705) ] and 
the Anthocyanin Reflectance Index [ARI: (R550)

-1 - ( R700)
-1] that 

were calculated from CHRIS forest HDRFs. Figure 3b and 3d 
show the same indices calculated from the modelled BRFs 
according to the sun/view geometry of CHRIS. These graphs 
encompass various mixtures of PV and NPV proportions 
(%NPV= 100-%PV) with increasing NPV values at greater 
angles. The outer lines are the extremes: the VI response for the 
exclusively simulated PV forest (blue line), and the VI response 
for the exclusively simulated NPV forest (pink line). To 
facilitate comparison each index was normalized against its 
nadir value, or in case of the simulations, the nadir value of 
100% PV.  
The modelling examples confirmed earlier observations that 
while some indices are extremely sensitive to viewing angles, 
other indices respond rather invariant (Verrelst et al. 2007). In 
turn, it also confirmed the hypothesis that the magnitude of 
NPV proportion in the signal governs the VI response. By 
varying the proportions of NPV at greater viewing angles, a 
shape was attained which is likewise to that for the VIs 
calculated by CHRIS. Regarding other VIs the same trend was 
noted (not shown here), although some VIs matched better than 
others (for a list of the VIs and formulas see table 3). In 
conclusion, these examples provided a firm basis that increased 
NPV at greater viewing angles exert influence on the VI 
response.  

 

Figure 3.   Averaged angular VIs (SIPI, ARI) from forest 
acquired by CHRIS (a, c). VIs derived from combined 

FLIGHT-BRFs with varying proportions of PV and NPV along 
the CHRIS viewing geometry (b, d). (%NPV=100-%PV) 

 
3.2 Constrained angular unmixing of CHRIS data 

The second part of the study enclosed the angular spectral 
unmixing. Thereby, the unmixing was forced to be fully 
constrained (Eq. 2). This guaranteed a physical interpretation of 
the results since the fractions sum up to 100% and all the 
fractions are positive. Linear spectral unmixing provided two 
main outputs: the sub-pixel fractional land cover composition 
itself and the spectral root mean square error (RMSE) per pixel. 
The RMSE was used to analyze the performance of the spectral 
unmixing when removing bands (Zurita-Milla et al. 2007). 
CHRIS bands 1 and 2 (centered around 442 and 490 nm) were 

Name Value/ Range PV NPV 
Fractional cover (%) 0.64   
Leaf Area Index 2.4   
Fraction of green foliage (%)  100% 0% 
Fraction of bark (%)  0% 100% 
Soil  Vegetation bark 
Incident zenith (°),θi 24.0   

Reflected zenith (°),θr   -54.6, -37.8, 
+21.2 (nadir), 
+33.3, +51.1 
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omitted, as they are very susceptible to aerosol scattering.  
Bands 17 and the last band (centered around 905 and 1019 nm) 
were also excluded because these coincide with the absorption 
features of oxygen and water vapour; thus not adding relevant 
information to forest cover interpretation. The removal of these 
bands resulted in a RMSE of less than 5%.  

 

Figure 4.  Angular endmembers (BRFs), plus a signature of an 
average forest canopy at CHRIS acquisition geometries. 

 
Figure 4 shows a typical forest canopy reflectance of the 4 
angular scenes plus the retrieved EMs. In general, CHRIS 
reflectance appeared to be considerably lower than the EMs. 
This is especially notable for the ‘original’ (background from 
spectrometric field measurements) NPV-EM that appears to be 
similar to an average CHRIS forest signature. Here, the rather 
vegetated background spectra dominated the canopy reflectance 
of the simulated NPV scene. Consequently the NPV fractions 
were overestimated. To correct for this, alternative ‘extreme’ 
scenes were simulated to ensure that the background was pure 
in both cases. In spite of these adjustments, however, NPV 
overestimation remained.  
Apart from nonlinearity, the impression arose that endmember 
uncertainty is playing a crucial role when applying modelled 
EMs in satellite data unmixing. Reasons of EM uncertainty are: 
(1) variability in spectrometric field measurements, (2) 
variability in model parameters, (3) model simplifications, and 
(4) mismatch between BRF (FLIGHT) and HDRF (CHRIS).  
 
Although endmember uncertainty inhibits reliable measures, yet 
with BRDF-adapted EMs it is assumed that the degree of error 
will be the same for all angular scenes. Subsequently, the 
quantity of change from one unmixed angular scene towards 
another unmixed scene is considered as a more reliable 
measure. More appealing therefore is to compare the effect of 
NPV change (∆NPV) to change in a single waveband 
(∆HDRFλ) or a derived VI (∆VI). Change is defined as the 
normalized % difference of -55° value compared to the nadir 
value. E.g. for ∆NPV: 
 

%100*∆NPV 55

nadir

nadir

NPV

NPVNPV −
= °− .                   (4) 

 

Figure 5 shows two examples of scatter plots where the 
normalized ∆NPV is plotted against the normalized ∆HDRF (of 
the wavebands 570 nm and 748 nm). Pixels plotted along the 
positive x-axis represent an increase in observed NPV, while 
negative values along the x-axis represent a decrease of 
observed NPV and thus an increase in PV. The square Pearson 
correlation coefficients r2 are shown in the graphs. Following, 
for each waveband a linear regression and correlation 
coefficient with ∆NPV was calculated and then plotted (figure 
6). The unmixing with the ‘extreme’ EMs resulted in higher 
correlations. Particularly in the NIR wavelengths high r2’s were 
reached. In the NIR domain, scattering is very high and 
constitutes the main source of radiation flow with maximal 
interactions, such that an angular change in canopy composition 
will lead to a pronounced change in angular outflow.  
 

Figure 5. Scatter plots of % ∆NPV compared to % ∆HDRF for 
waveband 570 nm and 748 nm 

Figure 6.  The r2’s of the linear regression when correlating 
∆NPV with ∆HDRF 

 
Linear regression relationships were in table 3 in an analogous 
way calculated for scatter plots of ∆NPV against a suite of VIs 
(∆VI). Correlations were weak when considering the complete 
data set (r2

max=0.21). When splitting the data set into (i) pixels 
where a PV increase occurred (more vegetation observed at -
55°), and (ii) pixels where a NPV increase occurred (more 
woody parts observed at -55°), then better correlations revealed 
(table 3). Poor correlations were found in case of the increasing 
PV proportions (r2

max=0.10). Yet, in case of increasing NPV 
proportions remarkably higher correlations were yielded. In the 
latter, apart from PRI and RGRI, NPV differences captured 
about one third of the VI variance (r2’s between 0.24 and 0.47). 
 
NPV effects significantly affected the reflectance signal, though 
since validation data is absent, results ought to be interpreted 
with care. Nonlinearity and EM uncertainty are undermining 
the applied angular unmixing approach. Generating EMs by 
means of forward radiative transfer modeling is advantageous 
with respect to controlling BRDF variables, but it also has its 
limitations. For instance FLIGHT does not account for within-
shoot scattering, which causes the low NIR reflectance in 
coniferous areas (Rautiainen & Stenberg 2005). Also, 
understory vegetation, which can be very abundant and variable 
and can considerably influence the reflected signal of the stand 
(Rautiainen 2005), was simply generalized in this study.  
To reduce EM uncertainty, rather than relying on one 
generalized set of EMs, further research would be through the 
generation of EM sets that cover a range of spectral variability 
according to the satellite data (Asner & Lobell 2000). 
Embedding a set of PV and NPV endmembers in the unmixing 
procedure will lead to a set of PV and NPV fractions which can 
afterwards be aggregated again to single PV and NPV fractions. 
Another approach worthwhile to explore is to apply a so-called 
‘spatial unmixing’. In spatial unmixing the EMs are selected on 
a high resolution image while, by means of fusion, the spectral 
resolution is obtained from the original low resolution image 
(Zurita-Millla et al., 2006). This technique could solve the EM 
uncertainty for the image with the same geometry conditions 
(e.g. nadir), but does not apply to other viewing angles due to 
the aforementioned BRDF effects. Combining spatial unmixing 
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Table 3.  Definition of VIs evaluated and r2’s of selected VIs when separating the data pool in +%PV and +%NPV 
 
with a model-generated BRF variability to correct for the 
angular images will be tackled in a follow-up study. 
 
3.3 Normalized Difference NPV Index 

Finally, having recognized that canopy structural variability can 
be assessed when combining multiple view angles, the next step 
is to develop a forest structure index. Several indices that 
combine multiple viewing angles already exist, such as the 
anisotropy index (ANIX), that is defined as the ratio of the 
maximum and minimum BRF (Sandmeier et al. 1998), or the 
normalized difference angular index (NDVAI), that uses a 
combination of forward and backward scattered radiation 
(Nolin et al. 2002). These indices are proxies for surface 
roughness; they indicate the degree of anisotropy but do not 
quantify angular land cover variability. Here, we intend to go 
one step further by developing a forest structural proxy that 
makes use of derived directional fractions rather than of 
directional reflectance. We define the Normalized Difference 
NPV Index (NDNPVI) as follows: 
 
         ,                                    (5)
      
 
where ‘back’ corresponds to the fractions at the -55° viewing 
angle. Note that using PV fractions in the equation would 
equally hold true, but since our interest was specifically to 
assess the angular variability of NPV we felt the above 
formulation being more appropriate. The NDNPVI is calculated 
for the study site (figure 7).  
 
 
 
 
 
 
 
 
 
 
Figure 7.  left: the NDNPVI; right ROSIS image (RGB) of the 

study site on top of the topographic map. 
 
The green-brownish colour indicates that at those areas no 
angular fractional change took place, which accounts for the 
largest part of the study site. Areas with a more greenish colour 
indicate a greater fraction of observed PV at -55°, whereas 
areas with a more reddish colour indicate a greater angular 
fraction of observed NPV at -55°. 

Where the boundary between forest and another land cover 
without NPV (e.g. meadow) occurs, however, the NDNPVI 
loses its sensitivity. The broad yellow strip north-west of the 
meadow is the result of no NPV fractions observed at nadir 
(exclusive meadow cover) while observing NPV fractions in 
backscatter direction. Having then zeros for NPVnadir in both the 
numerator and denominator will always result one, whatever the 
NPV fractions of NPVback are. Within the forest, the NDNPVI is 
well able to map angular fractional variability; in this way it 
distinguishes fully vegetated areas from woody areas. The 
NDNPVI can function as a suitable proxy to provide more 
insight in per-pixel structural canopy composition. This 
knowledge is crucial when attempting to interpret spectral-
derived products, especially in case of photosynthesis-sensitive 
indices where NPV is a serious confounding factor. 
 
 

4. CONCLUSION 

The objective of this study was to assess how fractional 
coverage of PV or NPV responds to changing viewing angles 
and thereby how such effects are related to single reflectance 
bands and VIs. With FLIGHT the reflectance of an exclusively 
PV and an exclusively NPV forest scene were simulated as a 
function of coniferous forest variables and CHRIS acquisition 
viewing geometries. We used two approaches (1) a modeling 
exercise where VIs were calculated from controlled PV and 
NPV canopy mixtures, and (2) a linear unmixing exercise 
where PV and NPV proportions were extracted from angular 
CHRIS images and then correlated with the derived VIs. The 
modeling exercise showed that varying the NPV proportions at 
greater zenith angles did indeed govern the angular shape of 
VIs. The unmixing approach, however, was facing limitations 
in extracting reliable absolute fractions from the images 
themselves. Therefore the relative measure of ∆NPV rather than 
the absolute measure was considered being more reliable. When 
restricting to only those pixels where the NPV proportions 
increased (from nadir to backscatter) then moderate correlations 
were obtained with the angular variability of VIs. Alternative 
canopy variables that were not, or not well, mimicked by the 
modeled EMs in combination with limitations of the explored 
approach made that only a small part of the VIs’ angular 
variability was explained by the EMs. Finally, a volumetric 
canopy composition proxy was developed that capitalizes on 
the derived angular fractions. In the context of canopy 
photosynthesis studies, information about the canopy 
composition is crucial, though the work is still in an initial 
stage. Further efforts should be devoted to the robustness of this 
proxy and to the operability of the unmixing procedure. 
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NDVI (RNIR - RRED)/( RNIR + RRED) 0.00 0.00 0.42 0.45 
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NDVI 705 (R750-R705)/( R750+R705) 0.00 0.00 0.27 0.24 
mSRI705 (R750 - R445) /( R705 + R445) 0.03 0.04 0.19 0.24 
mNDVI705 (R750 - R705) /( R750 + R705-R445) 0.03 0.04 0.20 0.25 
PRI (R531 - R570) /( R531 + R570) 0.01 0.00 0.00 0.01 
SIPI (R800 - R455) /( R800 + R705) 0.05 0.06 0.25 0.32 
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