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ABSTRACT:  
We present an application of 3D canopy modelling for assessing the structural accuracy of complex 3D structural models of 
Sitka spruce. Such models can be used to simulate canopy reflectance at the landscape-scale with a minimum number of 
assumptions. Typically, however, the underlying canopy structural models require a large number of parameters, many of 
which are hard to measure and so must be estimated. How then can the resulting canopy structure be validated? We compare 
estimates of canopy gap fraction of modelled Sitka spruce from simulating hemispherical canopy reflectance from within the 
canopy, with those derived from upward-looking hemispherical photography from Harwood Forest, Northumberland, UK. 
Results show that gap fraction estimated from the 3D model canopies compares well with estimates derived from 
hemispherical photography. Where estimates disagree, such comparisons can be used to inform improvement of the structural 
models. We also use the detailed structural models to explore the sensitivity of hemispherical photography methods to error 
in estimating gap fraction in the field.  
 
 
 

1. INTRODUCTION 
 
Forest ecosystems and their interactions with the 
atmosphere, both as a sink and a source of carbon, are 
vital systems to study when estimating terrestrial carbon 
budgets (Dixon et al. 1994, Carrara et al. 2003) and 
ecosystem productivity (Schulze et al. 1999, Reich & 
Bolstad 2001). The structure of the forest canopy, 
especially the vertical and spatial distribution, orientation, 
and density of foliage and its supporting structures, plays 
a crucial role determining patterns of carbon exchange 
and nutrient cycling in the canopy, particularly via 
radiation interception (Ross 1981, Widlowski et al. 
2004).  
 
Canopy structure i.e. the size and distribution of canopy 
elements (and their optical properties), is complex, 
spatially heterogeneous, and temporally variable (Weiss 
et al. 2004). This makes accurate ground-based 
measurements of biophysical parameters such as the leaf 
area index (LAI) and the fraction of absorbed 
photosynthetically active radiation (fAPAR) over larger 
areas time-consuming and expensive. Thus, research has 
focussed on algorithms permitting the derivation of 
biophysically relevant parameters from remotely sensed 
data (Price 1993, Sellers et al. 1994, Myneni et al. 1997), 
thereby providing the potential for monitoring the 
photosynthetic activity of terrestrial ecosystems at 
regional and global scales at daily time intervals (Deng et 
al. 2006). Such algorithms can be based on 1D and 3D 
radiation transfer models (Knyazikhin et al. 1998, 
Myneni et al. 2002, Pinty et al. 2006), which are capable 
of simulating radiation scattering and absorption of 
vegetation stands. 
 
More recently, dynamic structural models for the growth 
of vegetation structure have been generated to improve 
the reliability of quantitative parameter estimation from 
satellite images (Saich et al. 2003, Disney et al. 2006). By 
simulating the reflectance and scattering of highly-

detailed 3D structural models of forest canopies, look-up-
tables (LUTs) can be generated describing the 
relationship between canopy architecture and measured 
reflectance using a minimum number of simplifying 
assumptions. However, the underlying 3D structural 
models require a large number of parameters, many of 
which are often unavailable or too time-intensive to be 
measured in practice, which must be estimated.  
 
Digital hemispherical photography may be a suitable tool 
to validate canopy structure in 3D models of vegetation 
structure. Hemispherical photography has been shown to 
be the ideal tool for studying plant canopy architecture 
and estimating the gap fraction in real forest stands 
providing information on size and density of gaps in the 
canopy rapidly and cheaply (reviewed in Jonckheere et 
al. 2004).  
 
We simulate hemispherical reflectance from within the 
canopy of 3D structural forest models, and compare 
estimates of gap fraction derived from such simulations 
with estimates of gap fraction derived from upward-
looking digital hemispherical photography acquired in 
Sitka spruce (Picea sitchensis (Bong.) Carr.) forest stands 
at Harwood Forest (Northumberland, UK). We ask the 
following questions: 
 
(1) Can we validate modelled 3D forest structure of 

Sitka spruce forest stands by comparing simulations 
of hemispherical reflectance of 3D models with 
hemispherical images required in-situ? 

(2) What is the impact on estimates of gap fraction / 
structure derived from hemispherical photography 
of: camera location (sampling frequency, proximity 
to trees), camera attitude, and focus. What are the 
implications of violating assumptions of leaf angle 
variability, clumping, etc on estimates of LAI 
derived from hemispherical photography? 

 

 1

mailto:mdisney@geog.ucl.ac.uk
mailto:plewis@geog.ucl.ac.uk


2. MATERIAL AND METHODS 
 
2.1 3D modelling of Sitka spruce canopies 
 
We developed realistic detailed 3D structural models of 
Sitka spruce forest canopies in order to simulate 
reflectance values measured remotely (following the 
method of Disney et al. 2006). The mechanistic Treegrow 
model (developed from the PINOGRAM model of 
Leersnijder 1992, Oevelen van & Woodhouse IH 1996), 
an existing structural growth model of Pinus sylvestris L., 
was modified and used to generate trees for six age 
classes (5, 9, 12, 20, 30, and 40 years) of Sitka spruce. 
Treegrow is an empirical growth model which is 
parameterised by species- and site-specific empirical 
height and branching functions. By varying the seed for 
the pseudo-random number generator, five individual 
trees were generated per age class. These were then used 
for modelling forest stands permitting some tree level 
variability within each age class (Saich et al. 2003). Tree 
height was modified outside Treegrow to mimic observed 
height variation. The light extinction function 
implemented in Treegrow describes the variation with 
age of the percentage of light reaching the ground from 
the top of the canopy, and thereby determines the shape 
of the tree crown. The site-specific light extinction 
function was iteratively validated by simulating the light 
reduction through tree crowns, comparing resultant 
modelled and in-situ observed tree crown shape, and 
ground- to – crown heights, updating the function and 
when re-simulating (Disney et al. 2006). The modelled 
trees were validated by visual estimation (crown shape) 
and by comparing tree traits modelled with tree traits 
measured (e.g. height, diameter-at-breast height dbh, Fig. 
1). 
 
 

 
 
Figure 1. Tree height dbh modelled and measured at 
Harwood forest as a function of tree age.  
 
Modelled trees were planted in age-specific forest stands 
according to measurements of tree spacing made at 
Harwood Forest. The observed forest stands are planted 
at high density and in a regular pattern causing deep 
shade in older forest stands and larger height-to-crown 
values (Fig. 2). Management at the site includes thinning 
to optimise growth conditions for all trees in the forest 
stand. 
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Figure 2. Left: Picture of a 30 years old forest stand of 
Sitka spruce taken at the Harwood Forest field site. Right: 
Model of a 30 years old Sitka spruce tree created with 
Treegrow. 
 
 
The modelled forest stands were generated to be 300m on 
a side, and only the central 50 m x 50 m region was 
viewed in simulations to avoid edge effects (Saich et al. 
2003). Because leaves are not included in the Treegrow 
model, they have been added here to the branches of the 
modelled trees using species- and site-specific 
measurements on needle size and density, and needle 
distribution (based on literature, Chandler & Dale 1990). 
The total length of green branches was obtained from the 
Treegrow derived tree model (Woodhouse & Hoekman 
2000). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Model of a 9 yrs old Sitka spruce tree with
needles. Needles were added to the “green” branches

 and mean needle length were derived from fiel
according to a Fibonacci distribution. Mean needle
density d
measurements. 
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2.2 Analysis of hemispherical images via CanEye 
 
Hemispherical photographs were recorded in 5, 9, 12, 20, 
30, and 40 years old forest stands of Sitka spruce in 
Harwood Forest in 2003 using a Nikon Coolpix 5000 
with 180° fisheye adaptor. Hemispherical reflectance was 
simulated from within the forest models using a Monte 
Carlo ray tracing model (based on the drat model of 
Lewis, 1999) mimicking the properties of upward-
looking hemispherical photography. Images were created 
for subsequent analysis using the CanEye software 
(version 4.1, Baret F. 2007: 
http://www.avignon.inra.fr/can_eye/). Image generation 
was only carried out as part of the “Transect” experiment 
(see below). In the other experimental cases (where gap 
fraction was sampled from multiple locations rather than 
from a single point) image generation was not 
appropriate. 
 
In-situ hemispherical photographs (Fig. 4) were 
“thresholded” classifying pixels into vegetation / non-
vegetation via an iterative algorithm that searches for the 
optimal threshold value (Ridler & Calvard  1978, Magid 
et al. 1990).  
 
 
 

 
 
 
 
 

 
 
Figure 4. Hemispherical photograph of the 9 years old 
Sitka spruce forest stands before (left) and after (right) 
the “thresholding” procedure. 
 
The leaf area index (LAI), defined as one half the total 
leaf area per unit ground surface area to account for 
irregular and non-flat forms of leaves (Chen & Black 
1991, Fassnacht et al. 1994, Stenberg et al. 1994), is a 
critical parameter in studies of atmosphere-vegetation 
interaction and in models of vegetation canopy response 
to environmental changes (Deng et al. 2006). LAI 
estimates (LAI57, LAIeff, LAItrue) and gap fraction 
probability as a function of zenith angle were 
automatically derived from the “thresholded” images 
using CanEye. LAI 57 is derived at a view zenith angle of 
57.5°, which is suggested to be almost independent of 
foliage inclination angle (Warren-Wilson 1963). 
Effective LAI (LAIeff) is directly retrieved by model 
inversion in CanEye based on a Poisson model (Eq. 1), 
where the foliage is assumed randomly distributed, and 
assuming an ellipsoidal distribution of the leaf inclination 
using look-up-table techniques (Knyazikhin et al. 1998, 
described in more detail in the manual of CanEye 2006).  
 

 
The “true” LAI (LAItrue) is related to LAIeff through the 
clumping index λ0 (Chen & Black 1992), which depends 
both on plant structure (foliage distribution), canopy 
structure, and size and shape of leaves (Eq. 2). 
 
LAIeff  = λ0 LAItrue       (2) 
 
 
In CanEye, the clumping index is computed using the 
Lang & Yueqin (1986) logarithm gap fraction averaging 
method. 
 
2.3 Simulation of the impact of camera set-up on 
estimates of gap fraction 
 
5 experimental approaches were used to test the impact of 
observer variability during hemispherical photography on 
estimates of gap fraction and LAI. Images for further 
analysis in CanEye were created in the experiment 
“Transect” only. 
 
1. “Transect”: images were simulated using at 10 camera 
locations along a transect through the forest canopy. 
 
2. “Focus”: the aperture of the camera (infinitesimal 
pinhole) located at the image centre was enlarged to the 
following values (mm): 1, 5, 10, 50, 100 to simulate the 
impact of lack of focus in estimates of gap fraction from 
digital hemiphotos. 
 
3.  “Plane”: the plane of the camera located in the image 
centre was tilted away from the horizontal by the 
following angles (degrees): 5°, 10°, 15°, 20°, 25°. This is 
to simulate the impact of not having a totally level 
camera in estimating gap fraction from digital 
hemiphotos. 
 
4.  “Clone”: the “camera” was randomly located within 
the modelled forest stand for each ray cast and the 
average gap fraction was calculated. This allows 
calculation of the ‘forest-average’ gap fraction, which is 
the ‘true’ gap fraction from a photon transport point of 
view. That measured from hemispherical photography is 
a sample of the true value which will obviously be a 
function of the specific location from where the 
photograph was taken. 
 
5.  “Clone Threshold”: the same setup as in the previous 
case, but in this case a threshold distance away from the 
tree coordinates in the forest stand was specified. In 
reality, photographs are not taken with the camera 
immediately adjacent to a tree trunk, and this will act to 
bias the gap fraction estimates somewhat. Various 
thresholds distances of 100, 150 and 200 cm were used. 
 
 

3 RESULTS 
 
3.1 CanEye Analyses of hemispherical images 
 
In the following we present results of the simulations and 
the hemispherical image analyses for the 5 years and 9 
years old forest stands only, because the simulations for 
older forest stands were still processing. Results of the 
analyses of the simulated images are presented in figures 
5 and 6. Estimates of LAI57, LAIeff and LAItrue are 
presented in table 1. 

The gap fraction P0 (θv, φv) in direction (θv, φv) is
related to the contact frequency by  
 
P0 (θv, φv) = e -N(θv, φv) = e –G(θv, φv)LAI/cos(θv)  (1) 
 
where N (θv, φv) is the mean number of contacts
between a light beam and a vegetation element in the
direction (θv, φv), and G (θv, φv) is the projection
function, i.e. the mean projection of a unit foliage area
in direction (θv, φv). 
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Figure 5. Gap probability as a function of view
zenith angle for 9 years canopy. CanEye
analyses was carried out for “thresholded” in-
situ hemispherical photographs (above) and for
“thresholded” simulated images (below).  

Figure 6. Gap probability as a function of view
zenith angle for 5 years canopy. CanEye analyses
was carried out for “thresholded” in-situ
hemispherical photographs (above) and for
“thresholded” simulated images (below).  

 
 

 
 
 
 
 
 
 
 

 
 

 
Table 1: Estimates of LAI57, LAIeff,, and LAItrue derived from 
simulations of hemispherical reflectance within forest stands and 
from in-situ photographs. Results are shown for 5 years and 9 
years old forest stands only. 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Table 2: Impact of choice of camera location, camera attitude 
and camera focus on estimates of gap fraction (mean values ± 1 
standard deviation) derived from hemispherical photography in 
five and nine years old modelled forest stands. The experiment 
“clone” calculates the average of randomly located 
measurements within the model forests. 
 
 

4. DISCUSSION 
 

Results from figures 5 and 6 show that gap fraction 
estimated from the 3D model canopies compares 
reasonably well with estimates derived from 
hemispherical photography in the 5 years and 9 years old 
modelled Sitka forest stands. However, it can be seen that 
gap probability did not decrease with increasing viewing 
angle for the simulated forest stands in the same way as 
seen in the real forest stands. This might be due to 
structural discrepancies between modelled and real forest 
stands. It may also be due to the fact that for angles 
beyond around 70° in the hemiphotos, the distortion in 
the projected field of view becomes large, whereas there 
is effectively no distortion in the simulated images. 
 
4.1 Impact of camera set-up on estimates of gap 
fraction 
 
Simulated variation in camera focus caused high 
variability in estimates of gap probability, while tilt angle 
had far less impact on estimates of gap probability (Table 
2). Sampling design had an additional impact on gap 
probability estimates. The assignment of the camera to 
randomly chosen points within the forest can result in 
camera locations immediately beside a tree trunk, 
resulting in much lower (mean) estimates of gap 
probability than would be encountered in practice, where 
one would avoid taking photographs from within a metre 
or so of a tree trunk. However, any such avoidance will 
act to bias the resulting estimates of gap probability to be 
lower than the true values. This problem will tend to 
increase as forest stands are older/denser and the stem 
area density increases. In very dense plantation stands 
(see figure 1) it can be difficult in practice to find suitable 
spaces in which to place the camera and operator.  
 
 

Images LAI57 LAIeff LAItrue 
5yr, modelled 0.052 0.1 0.07 
5y, measured 0.21 0 0.03 
9yr, modelled 0.3 0.26 0.29 
9yr, measured 0.76 0.6 1.4 

Experiment GP mean ± sd 
“Transect” – 5 yrs 0.88 ± 0.05 
“Focus” – 5 yrs 0.49 ± 0.33 
“Plane” – 5 yrs 0.91 ± 0.01 
“Clone_thresh” – 5 yrs 0.88 ± 0.00 
“Clone” – 5 yrs 0.88 
“Transect” – 9 yrs 0.39 ± 0.02 
“Focus” – 9 yrs 0.09 ± 0.11 
“Plane” – 9 yrs 0.28 ± 0.00 
“Clone_thresh” – 9 yrs 0.39 ± 0.02 
“Clone” – 9 yrs 0.35 
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5. CONCLUSIONS 
 
Research on techniques and algorithms for accurately and 
efficiently monitoring and measuring photosynthetic 
activity and LAI especially of forest stands has a 
longstanding history (Jonckheere et al. 2004, Weiss et al. 
2004). While EO data have been used increasingly to 
derive biophysical parameters of land surfaces, dynamic 
structural models for forest growth have been used to 
improve the reliability of quantitative parameter 
estimation from such satellite images (Woodhouse & 
Hoekman 2000, Saich et al. 2003, Disney et al. 2006).  
 
Tree growth models have been introduced to provide 
statistical information about dimensions and angular 
distributions of scattering components of forest stands 
that, in turn, can be used as an input to a backscatter 
model to predict backscatter from forest stands exploring 
relationships between EO data, forest structure, and 
biophysical parameters. 3D models are the most detailed 
models of this type, as they are able to proscribe the size 
and location of all scattering elements in the canopy. This 
allows them to be used for making detailed simulations of 
the canopy radiation regime (Widlowski et al. 2006).  
 
Yet, a number of parameters underlying 3D structural 
models are unavailable or difficult to obtain. We show 
that digital hemispherical photography can be used to 
validate structural accuracy of 3D forest models 
generated via the tree growth model Treegrow. Estimates 
of gap probability derived from simulations of the 
detailed 3D structural models compared well with 
estimates derived from upward-looking digital 
hemispherical photography acquired in Sitka spruce 
canopies in England at least for 5 and 9 years old forest 
stands. However, we also found an increasing 
discrepancy between estimates of gap fraction (and 
percentage of vegetation / non-vegetation pixels in the 
image) for modelled and real forest stands with 
increasing forest age (results not shown, experiments still 
running). Such disagreements can be used to inform 
improvement of the structural models.  
 
Age related changes in leaf structure may affect 
productivity of the forest, which should be manifested in 
the reflectance signal (see Widlowski et al. 2004, citing 
Caylor 2004). In upcoming experiments, we will 
investigate the effect of leaf structure and leaf density as 
well as of other structural parameters of the forest (e.g. 
branching traits) on the reflectance signal.  
 
The results presented here are also relevant for generating 
field protocols necessary for accurate use of fisheye lens 
cameras to estimate LAI, as well as for testing the 
validity of theoretical assumptions underlying those 
measurements in the field. A quasi-random distribution of 
locations for acquiring photographs in a forest (camera 
locations certain distances from existing trees) is often 
applied in the field. This is introducing potential bias 
acting to reduce gap probability and LAI estimates from 
the resulting digital hemiphotos, especially when 
estimating gap probability as a function of increasing 
viewing zenith angle. Camera focus has the greatest 
impact on gap fraction probability estimates by impeding 
the correct classification of pixels to vegetation / non-
vegetation. However, in practice this is not likely to vary 
as much as we have simulated here. But clearly, pixel 
resolution (number of pixels), and focus can have a large 
impact on the resulting estimates of gap fraction. Many 

cameras will auto-focus on a point at infinity, but it is not 
clear in a dense forest canopy that this is ideal in that the 
lower branches of the canopy will be quite close to the 
camera, and as a result will be out of focus. It is these 
branches that will have the greatest impact on reducing 
gap probability, and so it is of greatest importance to get 
these branches into focus. 
 
In summary, we show that it is possible to compare 
measured and modelled tree structure through the 
analysis of simulated canopy images and derived gap 
fraction. We also show that 3D tree models can be used 
very effectively to explore the impact of errors and 
assumptions when deriving canopy structural parameters 
from digital hemiphotography. 
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