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ABSTRACT:

In alluvial areas of the Near East, the former locations of settlements are often represented by “tells”, small artificial mounds resulting
from millennia of human settlement activity, especially the continual construction and decay of mud brick architecture. To identify
such tells and other, smaller settlement sites in the modern landscape, we develop a classifier which screens wide areas for tell-specific
soil-changes, based a characteristic spectral signature in ASTER imagery. Using data from sites identified from CORONA imagery and
field survey on a north Syrian plain, a Random Forest classifier was trained, using the raw reflectances, vegetational features, correlation
with prototype-spectra of the JPL ASTER SpecLib, and time flags as input features. A spatio-temporal sampling strategy allowed us to
classify and fuse results from any ASTER images available for a certain region. The classifier was tested in an independent test area,
centered around Tell Hamoukar, with close ground control from an archaeological survey. In this test area it was possible to identify
32 out of the 49 site bigger than 2ha. Overall we found that multi-spectral ASTER imagery can be used to provide highly specific
information on character and composition of the ground, a tool which can be used in survey planning or the screening of wide regions
for conservational issues or studies in landscape archaeology.

1 INTRODUCTION

Archaeologists recognize the scale and spatial distribution of set-
tlement as critical variables in the study of the origins of urbanism
and social complexity, making their location and measurement an
important component of archaeological research. Tells, the ara-
bic name for the settlement mounds of the Near East, represent
places which were occupied over millennia, often since the be-
ginning of farming in the early Neolithic. Due to a predominantly
mud brick-based building technique many of them grew to con-
siderable heights (Rosen, 1986) and some even achieved urban
status (Wilkinson, 1994) during the Bronze Age. Today, thou-
sands of these settlement sites still can be found in Near Eastern
landscapes. Some of them are mounds of sizes which even allow
to spot them in global elevation models (Sherratt, 2004, Menze et
al., 2006), other sites are only visible from characteristic changes
of the soil, changed by the debris of millennia of settlement ac-
tivity (Wilkinson et al., 2006). In the present work, the use of
ASTER imagery for providing means of prospecting for these re-
mains of the earliest human settlement system will be evaluated
(Altaweel, 2005). So far, most archaeological applications use
(high resolution) satellite images as an replacement for standard
aerial photography. In these applications, the spectral informa-
tion only provides qualitative information, e.g. enabling the in-
terpretation of a scene in a false-colour coding (Lasaponara and
Masini, 2007, Masini and Lasaponara, 2006, for example), but
is not used explicitly to identify spectral signatures which are of
archaeological interest. In the following, we will illustrate how
the spectral information of multi-spectral satellite imagery can be
used for such an approach. While this machine-based search for
a specific ground cover is a well established tool in agricultural
or geological remote sensing, such an automated classification of
spectral imagery has not been pursued in archaeological remote
sensing, so far.

Operating since the year 2000, the Advanced Spaceborne Ther-
mal Emission and Reflection Radiometer (ASTER), provides spec-
tral imagery for any region worldwide and at many points in
time. Few applications, however, use the full information of

whole multi-temporal data sets. Often, the classification of sur-
face features is limited to the classification of one single image
and to data which were acquired at the same date and under sim-
ilar environmental conditions (Apan et al., 2002, for example).
Among the approaches which use images and spectral signals of
different points in time, most search for a characteristic change
pattern along the temporal dimension, e.g. in a change detection
between different scenes (Bruzzone et al., 2004, Im et al., 2007),
or in the classification of vegetational features according to their
trajectory along the seasonal cycle (Chattopadhyay and Dutta,
2006, Hayes and Cohen, 2007, Xiao et al., 2006). Characteris-
tic patterns found along the temporal dimension are used to iden-
tify the different types of ground cover and then serve as input
features in a subsequent classification. Unfortunately, the spec-
tral pattern of soils does not show such a characteristic seasonal
dependence. Variations of the spectral pattern are dominated by
short time changes due to precipitation and other meteorological
and environmental factors. Thus, approaches using the temporal
dimension as in (Chattopadhyay and Dutta, 2006, Hayes and Co-
hen, 2007, Xiao et al., 2006) are not easily applicable to identify
tell-specific soil changes. Instead of searching for characteristic
trajectories along the temporal axis in an ordered set of images,
we will propose a classifier in the following which can be ap-
plied individually to any single image, irrespectively of its time
of acquisition. Together with an appropriate fusion strategy, this
will allow all information of all ASTER scenes available for a
certain region to be used. To this end, we will employ a spatio-
temporal sampling strategy (sections 2 & 3), allowing to obtain a
classifier which can be trained on the maximal number of differ-
ent environmental situations in different ASTER scenes. We will
evaluate the use of different fusion strategies available from sen-
sor fusion when applying this classifier to a multi-temporal data
set (Benediktsson and Kanellopoulos, 1999, Jeon and Landgrebe,
1999, Bruzzone et al., 1999, and references therein) and finally
test the optimized classifier in a region with close archaeological
ground control (sections 4 & 5).



2 MULTI-TEMPORAL CLASSIFICATION STRATEGY

Designing a classifier for a specific problem on a certain type of
data typically follows a very standardized procedure. In a clas-
sification task on a single spectral image, for example, it is the
collection of a training data set in a first step, to be followed by
the definition of a feature representation and the classification al-
gorithm. Parameters of feature selection and classification are
then evaluated by an error measure which is appropriate to the
learning task and are finally optimized accordingly.

To obtain a classifier in the given application which is robust
against the variations of the data along the time-line, the normal
sampling of the training data in the spatial dimensions is extended
by an additional sampling in the temporal direction, in the com-
bined space of coordinate-space and time. As the resulting clas-
sifier is supposed be applied to any available ASTER image of a
certain region, the standard classifier design is also extended by
a subsequent fusion step, to pool the results map of all individ-
ual images. In our search for a tell-like surface or soil pattern we
used the following scheme, under particular consideration of the
multi-temporal extension of the classification:

1. Sampling. The detection task is transformed to a binary clas-
sification. In addition to the verified tell sites, a number of “non-
tell” locations are chosen randomly. For all locations of both
groups, spectra are sampled from all imagery available at these
locations. Relying on a non-parametric classification model in
the following, the sampling is of crucial importance in the design
of the classifier.

2. Features. In addition to the “raw” spectral reflectances, sec-
ondary features transport prior knowledge on: a) Invariants –
Vegetation indices represent established normalization strategies
on the reflectance of specific channels. b) Subclasses – Proto-
types of expected spectral patterns, i.e. rock, soil-types, water,
can be compared against the observed pattern, e.g. in a correla-
tion with the signal. c) Temporal features – Indicate the date of
acquisition.

3. Classifier. Due to the lack of information about the presence of
subgroups (such as high-, low-mounded tells, tells under modern
settlement in the tell class, but also like crop fields, bare soil,
rocks, modern settlements in the non-tell class) and due to the
inhomogeneity of the features (categorical, nominal), the non-
linear and non-parametric “Random Forest” classifier (Breiman,
2001) has been chosen. It is a tree based ensemble learner with
few, easily adjustable hyper-parameters.

4. Optimization. A cross-validation both over the spatial box-
grid (Lahiri, 2003) and the temporal dimension, i.e. the single
image covering the training area, is used to evaluate and adjust the
parameters of steps 1.-3., i.e. the sampling strategy, the optimal
choice of features, and the hyper-parameters of the classifier.

5. Fusion. As the classification procedure (steps 1.-4.) can be ap-
plied to any available image of the region under study, it allows
for a fifth step: Pooling the result maps of all available images.

The resulting classifier differs from hierarchical approaches in
multi-sensor fusion (Briem et al., 2002, Jeon and Landgrebe, 1999,
Zhu and Tateishi, 2006) as it avoids the training of a new classifier
for each sensor, or, in this application, for each image. It allows
for a robust, independent classification of single images, regard-
less of their time of acquisition, without the need to manually
select the data for specific time-points or specific environmental
conditions in training or in application.

3 METHODS

Figure 1: The Khabur plain, region under study: location, with
the Upper Khabur basin indicated (left) and digital elevation
model (right). Indicated yellow are training sites (west, compare
Fig. 2) and test area centered around Tell Hamoukar (east, Fig. 6).

3.1 Satellite data and Region under study

The study is based on ground truth on a part of a north Mesopo-
tamian plain (the Upper Khabur basin), in the province of Has-
sake, Syria, close to the Turkish and the Iraqi borders (Fig. 1,
left). The training sites (128 sites) are situated in an area of ap-
prox. 90km ∗ 60km in the western part of that plain (Fig. 1,
right). These settlement sites were identified by analyzing de-
classified CORONA imagery in conjunction with several seasons
of survey fieldwork (Wilkinson, 1997, Ur, 2004). The training
sites include low- and high-mounded tells, as well as sites which
are (partially) situated beneath modern settlements. The training
area is partially covered by 16 cloud free ASTER swaths (Fig. 2),
acquired during different times of the year between 2003-2006,
most of them during the dry-season from May-October (Fig. 3).
A second region approx. 100km east to this area was subject to
an intensive ground survey (Ur, 2002b, Ur, 2002a) and used for
the evaluation of the ASTER classification (Fig. 1, right). It is
an circular area of approx. 125km2, and with a reported number
of 75 archaeologically relevant sites, ranging from low mounded
areas with moderate densities of pot sherds or minor soil changes
to major mounds like Tell Hamoukar in its center. This test area
is covered by 9 cloud-free ASTER swaths from 2003-2007, most
of them acquired during the dry-season as well. For both training
and test data, the 6 SWIR and 5 TIR channels were interpolated
to the maximal resolution of the 3 VNIR channels (15m ∗ 15m)
using a nearest-neighbor approach.

Figure 2: Number of ASTER images for a tell site (indicated red)
in the training area. Tell sites are covered by 2 to 15 ASTER
images (see scale bar).

3.2 Implementation of the classifier

The classifier was trained and optimized on the first training data
set and then applied to the second test set. It was implemented
and optimized on the training data according to the multi-temporal
classification strategy (section 2):



Figure 3: Pixels of tell sites in the training set, along time.

1. Sampling. The detection task was transformed to a binary
classification, discriminating between the class of spectra from
archaeologically relevant sites and a non-tell or “background”
class. All spectra available from tell sites (ts) were included in
the training data (N ts

site = 11215 pixels, 0.24% of the 4 702
671 pixels in the test region; N ts

spec = 40306). The locations
of the background class (bg) were randomly sampled from the
remaining regions (Nbg

site = 9961, 0.21%) and the spectra avail-
able from these pixels were subsampled to approximately match
N ts

spec, and included into the training set (Nbg
spec = 50000).

2. Features. In total 25 features were included into the train-
ing set. Beside the raw reflectance of the 14 spectral channels,
two time flags were included (year, day of the year). To obtain
invariance against seasonal influences, three vegetation indices
were included, representing differently normalized spectral chan-
nels (NIR / R; NIR - R “VIDIFF”; (NIR-R) / (NIR+R) “NDVI”).
For six classes of the JPL ASTER SpecLib1 (manmade, minerals,
rocks, soil, vegetation, water), averaged spectra were subsampled
from full resolution to the 14 ASTER channels and used for corre-
lation with the raw spectra. The resulting correlation coefficients
were also used as input features.
3. Classifier. To classify the rather unstructured set of spectral
features, Random Forest (Breiman, 2001) was chosen, a non-
parametric and non-linear ensemble learner based on decision
trees, a class of classifiers allowing for scale invariant learning.
Prior comparisons of Random Forest, a RBF-kernel support vec-
tor machine (SVM) and a linear SVM on the raw spectral fea-
tures of a subset of the training data (approx. 7000 tell class and
8000 background class samples) had indicated the need for a non-
linear classifier (linear SVM 21.4% classification error in a ten-
fold cross validation), and a gave slight advantage of a Random
Forest (18.2%, using default parameters) against the non-linear
SVM (20.4%, optimizing the kernel-width in an internal five-fold
cross-validation). In the following, Random Forest was always
applied with the default parameters of (Liaw and Wiener, 2002)
(ntree = 300 trees, mtry = 4 variables).
4. Optimization. During training, feature subsets were evaluated
in a random, unblocked cross-validation (“full Xval”, table 1), in
a blocked cross-validation over a spatial grid (“spatial Xval”) and
over both a spatial grid and a flag of the ASTER image, i.e. a tem-
poral label (“spatial & temp Xval”). The spatial-box grid had a
side-length of 6km, an extension beyond the length of most struc-
tures on the ground. For comparison, classifiers solely trained on
single images were also applied to the remaining data (training
on one image, classifying all others, averaging prediction accu-
racies at the end). Using the posterior probability of the Ran-
dom Forests in prediction, the performance was measured by the
average image-wise area-under-the-curve (AUC) of the receiver-
operator characteristic (ROC), in order to compare binary ground
truth with the predicted probability of the presence of a tell-like
soil change. Thresholding the posterior probability at 0.5, the
classification accuracy was evaluated as well.
5. Fusion. Using the optimized classifier, all cross-validated re-
sults were pooled using different fusion strategies: Averaging

1ASTER Spectral Library. http://speclib.jpl.nasa.gov/

thresholded probability maps using thresholds of 0.5, 0.7, and
0.9, averaging the posterior probability, and a Naive-Bayes ap-
proach on the probabilities was tested. Finally, classification ac-
curacy and AUC of the ROC for the fused results were compared
against the labels of the originally sampled training locations to
find the best fusion strategy.

4 RESULTS

4.1 Training – “What do we learn from the learning algorithm?”

Evaluating the classification performance on the training set pri-
marily aims at a better understanding of the learning problem
and at an optimization of the design of the classification strategy.
Three different cross-validation approaches measured or “simu-
lated” different scenarios (table 1): The random cross-validation
approximates an upper limit to the bayes error of the training data
and is the most optimistic. The spatial cross-validation is an ap-
proximation to the optimal spatial generalization error, e.g. to re-
sults obtained when the same ASTER image is used in training
and testing (or just imagery acquired on the same date). The
spatio-temporal cross-validation is the most pessimistic of the
three scenarios. It tests the performance on data which is both dis-
tant in space and in time, for example, on an ASTER image with
a different date and from a different region than the training data.
Assuming that training and test region have certain similarities,
and that it might be possible to select images for their acquisition
time –which will be given in most tests or applications– the real
classification error will be somewhere in between the classifica-
tion results of a spatial and a spatio-temporal resampling scheme.

Accuracy all w/o w/o w/o w/o
Spec Envir SpecLib Time

full Xval 82. 79.3 (82.0) (83.2) (81.8)
spatial Xval 78.1 75.6 77.1 78.2 77.2
spatial&temp Xval 69.9 (70.2) 67.7 69.5 70.4

single classifier 61.2 61.4 61.3 61.4 –
AUC ROC all w/o w/o w/o w/o

Spec Envir SpecLib Time
full Xval 90.5 87.0 (89.8) (91.0) (89.7)
spatial Xval 85.6 83.0 84.7 85.9 84.9
spatial&temp Xval 76.2 (76.4) 73.9 75.9 76.4

single classifier 66.7 66.6 66.3 67.4 –

Table 1: Accuracies and area under the curve (AUC) of the ROC
on the differently cross-validated training data; on the full set of
features (all) and with single feature groups removed (w/o). Non-
significant differences to the results on the full set of features are
in brackets.

We find that approx. 70-80% of the observation (table 1) are clas-
sified correctly when using the spatio-temporal sampling, as op-
posed to a classification accuracy of approx. 60% from classi-
fiers trained on spectra sampled in coordinate-space only. Pre-
dicting full result maps of the training regions in a spatial cross-
validation, the majority of the pixels in 124 out of the 128 tell
sites were classified correctly. False negative pixels within the
area of the 124 sites typically occurred at the borders of the tell
sites. False positives pixels in the background region were pri-
marily due to modern settlements. Studying false positive sites in
high resolution imagery also revealed the presence of settlement
mounds within the training region which were unrecorded in our
training data (Fig. 7).

The contributions of the different feature classes (raw spectral
channels, vegetation indices, correlation with prototype-spectra,



time-flags) were also tested in the different cross-validation sce-
narios. Each of the classes was removed from the feature set and
the classification was repeated (table 1). These classification re-
sults were then compared against the results on the full set of
features and tested for significant differences using a paired Cox-
Wilcoxon test on the results of the single spatio-spectral blocks.
We observe that raw reflectance spectra are relevant features in
the random and the spatially blocked cross-validation, while sec-
ondary features like vegetation indices and prototype correlation
are relevant in the test of spatio-temporal generalization. Time
flags show an indifferent behavior. They improve the classifica-
tion performance in random and a spatially blocked cross-validation,
but decrease the spatio-temporal accuracy.

Figure 4: Fusion of single results at a location in a spatial and a
spatio-temporal cross-validation. Details see text.

Optimal fusion strategies were evaluated in a second step. For
each location the cross-validated observations available from the
training data set were fused to a single prediction (Fig. 4), which
was then compared to the label of the location. If more ob-
servations than necessary were available for a single location,
e.g. when assessing the performance of three combined observa-
tions while five were available for the location, observations were
subsampled accordingly. We observe that the classification accu-
racy increases from approx. 70% to >> 90% with a nearly com-
plete class separation both for the spatial and the spatio-temporal
cross-validation (AUC ROC >> .95). The direct average of the
class posterior probabilities performs best, together with the ap-
plication of the product rule on the probabilities (Naive-Bayes).
Averaging the classification error ranks third, while averages of
classification maps thresholded at other probability than 0.5 –
potentially allowing to trade sensitivity and specificity– perform
the worst.

4.2 Testing – “What do we learn from the learning problem?”

While the evaluation of classification performances on the train-
ing data set primarily serves technical purposes, the application of
the classifier to the test region allows us to assess the relevance of
the classification algorithm in the application it has been designed
for. Thus, all nine ASTER image covering the test area were
classified using the the Random Forest classifier on the full set of
features. In the fusion of the result maps, the two top performing
approaches (average posterior, Naive-Bayes) were tested, but for
reasons of comparison the classification performance at a 0.5 and
a 0.7 threshold was determined as well. Results were compared
qualitatively in a pixel-wise manner –using the precision-recall-
curve– and in a quantitative approach determining the number of
detected sites.

Figure 5: Pixel-wise precision and recall on the test data for the
different fusion strategies and for single images. Points indicate
classification results with a fixed threshold (e.g. 0.5 probability).

As the number of “background” pixels outnumber the pixels of
tell sites in the given detection problem significantly, precision
(true positive / (true positives + false positives)) and recall (true
positives / (true positives + false negatives)) were used to concen-
trate the evaluation on the smaller, but more important class of
tell-pixels (positives). We find that average posterior and Naive-
Bayes perform best (Fig. 4), with nearly identical classification
results when using the optimal threshold from the training (re-
call 0.54, precision 0.59). As the Naive-Bayes approach assigns
high probabilities to pixels which do not belong to the tell class,
its AUC is somewhat smaller than the one from the average pos-
terior. The average classification strategy (threshold 0.5) shows
acceptable results, still better than the best classification of a sin-
gle image. The average 0.7 classification –representing a robust
error measure on the posterior– has the highest precision among
all approaches (0.91), but at a very low recall (0.26). Overall
we observe again that the averaging improves the results signifi-
cantly and that average posterior and Naive-Bayes perform best,
although the latter has a somewhat smaller area under the convex
curve of precision and recall.

To determine a “site detection rate”, the true positive site “hit”
and the false positive site “miss” has to be defined. Ground truth
allowed to assign each pixel of the survey area either or the tell
or to the background class (Fig. 6 c). As slight shifts occurred
frequently between the ground-truthed tell sites and regions with
a tell-like spectral signature (either due to registration or projec-
tion artifacts, or to real differences between these borders) areas
around tells were extended by a distance of 90m (approx. TIR
pixel-size, see dark blue region in Fig. 6 d). “Positive” pixels in
these regions were considered to be “true positive”. Remaining
areas of the survey region (bright blue in Fig.6 d) were consid-
ered to belong to the background class. Here, “positive” pixels
were “false positives”. A tell site of the ground truth data set was
“detected”, if more than 15 adjacent “true positive” pixels (four-
neighborhood) could be found in its vicinity and the center of the
connected pixels was within the confirmed tell region. Areas of
15 or more “false positive” pixels in the background region were
considered to be a false positive site. Fifteen pixel correspond
to a site of approx. 0.3ha, the smallest size of a tell site in the
training data.

Following this definition, we were able to identify a major sub-
group of 34 sites among the 75 confirmed sites of the test set, at
a number of approx. 20 false positives. Among the false positive



Figure 6: The test region. From top to bottom: a) average pos-
terior (left), b) binary classification (right), c) ground truth (left),
d) classification results (right). Tell Hamoukar is slightly north to
the center.

“hits”, most occurred in regions of known tells and coincide with
the outlines of selected modern agricultural fields. Most false
negative were minor sites; among the 49 sites with a size of more
than 2ha (approx. two TIR pixels), 32 were detected successfully.

5 DISCUSSION

In most applications of archaeological remote sensing, satellite
images are used primarily for visual interpretation and as a re-
placement for aerial imagery (Lasaponara and Masini, 2007, Masini
and Lasaponara, 2006). Instead of using spectral information
for a false-colouring of a scene and in a qualitative interpreta-
tion only, we explicitly used characteristic changes in the re-
flectance of the soil (Wilkinson et al., 2006) in a quantitative ap-
proach. Exploiting the spectral information of the satellite data
directly, we were able to identify a spectral signature of archaeo-
logically relevant soil marks and places of former settlement ac-
tivity (Fig. 7). The ability to determine the locations of archaeo-
logical sites greatly enhances the efficiency of ground survey, the
process by which the chronological range of occupation is deter-
mined. Ultimately, we will use these chronological patterns to
build up a history of settlement in the region over some eight mil-
lennia which will allow us to investigate the spatial dimensions of
the evolution of early urbanism and land use in one of the regions
of the earliest cities in the Near East.

The spatio-temporal sampling strategy allowed us to obtain a clas-
sifier which is robust against temporal variations of the spectral
signature of the ground. It can be applied to any ASTER image
available for a region of interest without being restricted to cer-
tain periods of the year, and thus provides means to analyze and
fuse all information which is available for that region. Fused re-
sult maps outperform any single observation both on training and
on test data, reducing “noise” in the spectral signal due to en-
vironmental influences. Averaging the posterior probability per-
forms better than a Naive-Bayes approach or the results from the
ensemble-vote of a classification, indicating that the result maps
of the ASTER images are indeed “noisy” realizations of an iid

Figure 7: Survey of wide regions. Top: High resolution imagery
of the Khabur plain. Bottom: Binary classification map provides
adjunct information. Tell-like regions are indicated by brighter
color. (Cross-validated and fused results for the western part of
the training region.)

(independent and identically distributed) process, rather than in-
dependent sources of information (independent distributed), of-
ten assumed in sensor-fusion (Benediktsson and Kanellopoulos,
1999, Jeon and Landgrebe, 1999, for example). From a practical
perspective, this relieves the operator from the deliberate choice
of selecting the “best” available ASTER image, when relying on
the standard approach of only using one single image for the clas-
sification. However, restricting the fusion process to a selection
of optimal result maps might enhance the performance of the fu-
sion step even further (either determined in a visual inspection of
the results or in an automated procedure (Petrakos et al., 2001)).
The fusion of all information itself has proven to be of major rel-
evance in the detection of a characteristic soil signature of former
settlement sites.

Comparing classification results in the Tell Hamoukar region with
ground truth from field survey (Ur, 2002a, Ur, 2002b), we observe
a high correspondence for major sites. Minor sites, a group not
represented overly well in the training data, could not be identi-
fied with the same reliability. Obviously, the spatial resolution of
the ASTER sensor sets lower limits to the identification of small
sites from satellite imagery, but it might be argued as well that
small sites do not show the same soil composition, erosion be-



havior, or response to precipitation as major ones do. Thus, using
a classifier which is explicitly trained to identify subgroups like
minor, low mounded sites, but also like high mounded tells or
mounds in vicinity or beneath modern settlement, might allevi-
ate this problem. In addition to reduce false negatives, such a
classifier might also allow to gain more insights in the charac-
ter of false positive sites. It remains open, for example, whether
in regions of recent agricultural earthworks, the leveling of for-
mer sites might have been the major source of these classification
errors. False positives in the area of modern settlements might
result from covariates in the (current) training data, or might re-
semble the spectral characteristic of ancient debris indeed, even-
tually indicating the presence of (unrecorded) former sites at the
same place. Studying false positives should be a major objective
in a more “prospective” ground study.

So far the classifier generalized well over the distance of around
100km, from our training area in the southwestern region of the
Upper Khabur basin to our testing area in the eastern end (Fig. 1).
Regions with with different soil or precipitation pattern, however,
might require a “local” retraining or recalibration of the classifier.
Here, a combined approach with other modalities, e.g. with re-
sults from the SRTM model (Menze et al., 2006), might be prefer-
able. In addition to the “extrapolation” of knowledge from one
region to another, as evaluated in this study, an “interpolation”
of information in regions already surveyed (Fig. 7) will always
be possible, providing a tool to classify the spectral signature of
site already known or even to identify sites which remained un-
detected on the ground.

Soil changes provide relevant adjunct information in the identifi-
cation of former settlement places. In the ground survey of the
test region, for example, a visible soil change was one of three
criteria out of which two had to be fulfilled to mark a former
settlement site, the others being topographic moundedness and
presence of surface artifacts above a certain density threshold (Ur,
2002a, p. 61). Being able to identify soil changes not only on the
ground, but also remotely from satellite data, a combined eval-
uation of CORONA data –or other high resolution imagery– to-
gether with the proposed ASTER classification, might now allow
to pursue a relevant part of such a survey in advance and “off-
site”. Potential sites as identified via the ASTER classification
could be used to guide ground control in a more efficient man-
ner, which would allow broader geographic coverage during the
limited time available for field survey.

6 CONCLUSIONS

In the identification of a spectral signature for ancient settlement
places in ASTER satellite imagery, we developed a novel spatio-
temporal sampling strategy. It yields a robust classifier which
can be applied to any data available for a certain region, enables
a fusion of all available images, and allows the identification of
the spectral signature of ancient settlement sites in ASTER im-
agery. As an adjunct source of information in addition to highly
resolved monochrome imagery (CORONA, QuickBird) the main
potential of this approach is in a fast screening of wide regions
and the mapping of whole settlement systems (Fig. 7), for sur-
vey planning and risk assessment in conservational issues. In re-
gions which are not accessible to ground survey at present –in the
Middle East, for example, wide areas of Iran, Iraq, Afghanistan
(Petrie, 2007)– spectral imagery will provide the only means to
access information on character and composition of the ground at
all.
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