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ABSTRACT:

Sub-pixel accuracy image registration is needed for many applications. In order to achieve this accuracy, one uses image re-sampling.
Since the image interpolation step is performed a high number of times, approximate interpolations are performed in order to reduce
computation cost. In this paper we study the artifacts introduced in the disparity map estimation by the approximate interpolation and
propose stategies in order to reduce them.

1. INTRODUCTION

SUB-PIXEL accuracy image registration is needed for applica-
tions such as change detection, Pan-Sharpening, and data fusion.
In order to achieve this accuracy, the deformation between the
two images to be registered is usually modeled by a displace-
ment vector field which can be estimated by measuring rigid local
shifts for each pixel in the image.

In order to measure subpixel shifts, image resampling is used.
Sampling theory says that, if a continuous signal has been sam-
pled according to the Nyquist criterion, a perfect continuous re-
construction can be obtained from the sampled version. There-
fore, a shifted version of a sampled signal can be obtained by
interpolation and resampling with a shifted origin.

Since only a sampled version of the shifted signal is needed, the
reconstruction needs only to be performed for the new positions
of the samples, so the whole procedure comes to computing the
value of the signal for the new sample positions.

In the case of image registration, the similarity between the refer-
ence image and the shifted versions of the image to be registered
is measured assuming that the maximum of similarity determines
the most likely shift. The image interpolation step is thus per-
formed a high number of times during the similarity optimiza-
tion procedure. In order to reduce computation cost, approximate
interpolations are performed. Indeed, the ideal interpolator is a
sinus cardinal function, and therefore, an infinite number of sam-
ples is needed for the computation of any new sample. Several
approaches exist for reducing the computation time. For instance,
a truncated Sinc interpolator needs only a few samples. Other in-
terpolators like the linear one can also be used.

Approximate interpolators will introduce errors in the resampled
image which may induce errors in the similarity measure and
therefore produce errors in the estimated shifts.

This paper addresses the following points:

1. The characterization of the artifacts for different similarity
measures and interpolators.

2. The theoretical explanation of the origin of the artifacts.

3. Some guidelines and recommendations in order to attenuate
these artifacts.
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Figure 1. Estimation of the similarity surface.

2. DISPARITY MAP ESTIMATION

In this section, we recall the principle of disparity map estimation
used in order to achieve subpixel accuracy.

The geometric deformation is modeled by local rigid displace-
ments (Inglada and Giros, 2004). One wants to estimate the
coordinates of each pixel of the reference image inside the sec-
ondary image. This can be represented by a displacement vector
associated to every pixel of the reference image. Each of the two
components (lines and columns) of this vector field will be called
deformation grid.

We use a small window taken in the reference image and we test
the similarity for every possible shift within an exploration area
inside the secondary image (fig. 1). That means that for each
position we compute the similarity measure. The result is a sim-
ilarity surface whose maximum gives the most likely local shift
between both images.

Quality criteria can be applied to the estimated maximum in order
to give a confidence factor to the estimated shift: width of the
peak, maximum value, etc. Sub-pixel shifts can be measured by
applying fractional shifts to the sliding window. This is done by
image interpolation. The interesting parameters of the procedure
are:

• The size of the exploration area: it determines the computa-
tional load of the algorithm (we want to reduce it), but it has
to be large enough in order to cope with large deformations.

• The size of the sliding window: the robustness of the sim-
ilarity measure estimation increases with the window size,
but the hypothesis of local rigid shifts may not be valid for
large windows.



3. ASSESSMENT OF THE ARTIFACTS

In this section, we introduce the problem of subpixel shift arti-
facts by analysing the results obtained in a real case. Our data set
consists in the following pair (a region of a size of 2000 × 2000
pixels is used for our tests):

• the B3 channel of a Spot 4 image (20 m pixel resolution)
acquired on June 24, 2001 over the East of the Bucharest
area (figure 2(a));

• a ERS-2 SAR 3-looks intensity image (12.5 m pixel size and
approximately 20 m pixel resolution) acquired on May 10,
2001 over the same area (figure 2(b)).

Both images were ortho-rectified: for the Spot 4 image a digital
elevation model (DEM) (figure 2(c)) with an altimetric precision
better than 10 m and a planimetric precision around 10 m has
been used, together with the acquisition model (orbits, attitude)
for the satellite; for the ERS-2 image no DEM was used, but a
constant altitude and homologous points manually taken on the
Spot 4 image were used in the ortho-rectification process. Glob-
ally, the images show a good superposition, but local errors ex-
ist, which can amount several pixels due to the simple geometric
modeling of the deformation of the radar image. If we analyze
the DEM, we see that a gentle slope descending from NW to SE
exists and that abrupt topography features appear in the NE and
the SW. The shape of the river can also be identified in the DEM.

Fig. 3 presents the horizontal and vertical components of the
displacement vector field obtained using the mutual information
similarity measure. One observes a good correlation between the
horizontal component and the topography shown in fig. 2(c). As
expected, the vertical (satellite along-track) direction does not
show any particular structure. When this displacement vector
field is used for the registration of the images, a good superpo-
sition is achieved. The detailed analysis of the procedure was
carried out in (Inglada and Giros, 2004). If we analyze the dis-
tribution of the estimated shifts by computing their histograms,
we observe the following behaviour (fig. 4): when the SPOT im-
age is used as the reference, a high number of estimated shifts are
multiples of 0.5 pixels; if the ERS image is used as the reference,
this effect is attenuated and the shifts present a more uniform dis-
tribution. Since the similarity measure is the same for both cases
and so is the optimization procedure, one can conclude that the
subpixel shifts artifacts appear when the ERS image is interpo-
lated during the similarity optimization. The following sections
will study this effect in detail and a theoretical model for the ori-
gin of the artifacts will be presented.

4. ORIGIN OF THE ARTIFACTS

The problem of interpolation artifacts in the similarity surfaces
has been studied for the case of mutual information-based medi-
cal image registration (Pluim, Maintz, and Viergever, 2000).

In this section we show that the origin of the observed artifacts
is the interpolation procedure used for the subpixel registration.
In this procedure, we resample the local image patches in order
to measure the similarities for different shifted positions. The re-
sampling is performed by image interpolation. In order to obtain
a shift of δ < 1 pixels, we have to estimate the image grey levels

at positions which lay between the samples of the image. The im-
age to be resampled x[n] is considered to be the sampled version
of an ideal continuous image x(t):

x[n] = x(nT ),

where T is the sampling step. The shifted image y[n] will be
obtained by sampling the same original image x(t) with a shifted
sampling grid. Assuming that x(t) was correctly sampled (with
respect to the Shannon criterion) we can retrieve x(t) from x[n]
by ideal interpolation, that is, by using a Sinc interpolator.

The Sinc interpolator has an infinite impulse response. There-
fore approximate interpolators will be used. In order to increase
computation speed, we want to use interpolation filters with a low
number of samples.

For a linear interpolator, the interpolated image y(t) for a shift δ
will take the following expression:

y(t) = (1− δ)x(t− δ) + δx(t + 1− δ), (1)

and its Fourier transform is:

Y (f) = X(f)
h
(1− δ)e−j2πδf + δe−j2π(δ−1)f

i
. (2)

We see that the interpolated signal y(t) is not exactly equal to the
original signal x(t) due to the fact that we are not using an ideal
interpolator. Instead, we obtain a low-pass filtered version of the
original signal. It is interesting to note that the blurring of the
image introduced by the interpolation depends on the shift. Fig.
5(a) shows that the blurring effect increases when the shift comes
close to half a pixel (δ = 1/2).

This means that in the case of noisy images, the interpolation
has a denoising effect and therefore, it increases the quality of
the similarity estimation. Since this blurring is not the same for
every shift, the similarity surface may show low values for a null
shift (no blurring) and higher values for shifts close to half a pixel
(strong blurring). It is important to note that the artifacts do not
come from the blurring effect itself, but rather from the difference
of blurring effect for different shift values.

Its is now interesting to analyze this effect for other interpolators.
For the case of an interpolator c(t) truncated to 4 samples, the
Fourier transform of the interpolated signal takes the following
expression:

Y (f) =X(f)
h
c(δ + 1)e−j2π(δ+1)f + c(δ)e−j2πδf

+ c(1− δ)e−j2π(1−δ)f + c(2− δ)e−j2π(2−δ)f
i (3)

For the case of a Sinc interpolator, c(t) = sin(πt)
πt

. The frequency
response of the interpolator as a function of the shift δ is shown in
fig. 5(b). We see that the blurring effect is still dependent on the
shift, but also that for such a short filter the continuous frequency
is also filtered. This can produce effects which are worse than the
linear interpolator. We will see this in the following sections.

Finally we analyze the case of a cubic B-Spline interpolator. In
this case, the filter coefficients take the following expression:

c(t) =

8><>:
2
3
− 1

2
|x|2(2− |x|) 0 ≤ |x| < 1;

1
6
(2− |x|)3 1 ≤ |x| < 2;

0 |x| > 2;

(4)



(a) Spot 4 B3 (b) ERS-2 SAR (c) DEM

Figure 2. Images and DEM for the test area.

(a) Horizontal (b) Vertical

Figure 3. Deformation grid. Mutual information, estimation window is 51× 51 pixels, sampling rate is 5 pixels.
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Figure 4. Histograms of the estimated subpixel shifts [(a) horizontal and (b) vertical] with inversion of the reference and the secondary
images
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Figure 5. Evolution of the blurring effect of the interpolators as
a function of the shift: (a) linear; (b) truncated Sinc; (c) cubic
B-Spline.

Fig. 5(c) shows the frequency response of the 4-sample cubic B-
Spline interpolator. We can see that the blurring effect remains
nearly the same for all shifts.

4.1 Sensitivity analysis

We analyze here the behaviour of the different interpolators and
their effects on the similarity functions. The similarity function is
defined as the value of the similarity measure as a function of the
shift. Without loss of generality, we will apply the shifts in only
one direction. In this case, the similarity function can be plotted
as a one-dimensional function. This analysis will be done for the
two similarity measures, the correlation coefficient and the mu-
tual information. The data used for these experiments is a SPOT 4
image which is compared to a noisy version of itself. This allows
us to ensure that the images are perfectly co-registered. Additive
white Gaussian noise has been added to the secondary image with
a SNR of 100dB. Fig. 6 shows the similarity functions for four
different interpolators, the three studied in the previous section,
plus a sinus cardinal of length equal to 10 samples, which is a
better approximation of the ideal one. For the case of the corre-
lation coefficient (fig. 6(a)) we obtain a behaviour which could

be predicted from the theory presented above. The linear and the
Sinc-4 interpolators have strong maxima close to the half-pixel
shifts. We can observe that these effects are much weaker for the
B-Spline interpolator and that they are nearly inexistent for the
Sinc-10 one. It is worth to notice that the erroneous maxima are
not exactly located on the half-pixel shifts and that they are not
symmetrical with respect to the null translation. This is caused
by the fact that we are measuring the similarity between an im-
age and its noisy-shifted-blurred version with a degree of blurring
which depends on the shift. The blurring is useful for denoising,
thus for increasing the similarity. On the other hand, the shift de-
creases the similarity, because the homologous pixels are further
away. Therefore, the combination of these two effects may pro-
duce a similarity maximum whose location depends on the local
content of the image.

This is the case for the mutual information plots shown on fig.
6(b). As discussed in (Inglada and Giros, 2004), mutual infor-
mation peaks have a higher slope that correlation coefficient ones.
That means that the effect of erroneous peaks will only appear for
interpolators whose behaviour is very sensitive to the shifts. Also,
one could expect that the erroneous maxima will appear near to
the null shift. This is what can be observed in the plots. For
the linear interpolator, the peaks appear for about one third of a
pixel. We can also observe that, since mutual information is able
to measure the dependence in the presence of noise, the global
maximum is located at 0, even if its value is not much higher
that the secondary maxima. For the case of interpolators with a
more stable smoothing, one can see that there is no clear peak,
meaning that the smoothing effect produces a high value of mu-
tual information even for shifts larger than half a pixel. Of course
the mutual information value is low for integer pixel shifts, since
no interpolation is applied in this case.

We can also analyze the influence of the noise level on the simi-
larity functions. Since the registration functions of figure 6 show
only the behaviour for a selected pixel of the image, it is difficult
to infer the global quality of the registration from them. In or-
der to study the global quality, we will analyze the histograms of
the estimated shifts. We will study the different combinations
of interpolators (linear, cubic B-Spline and Sinc-10),similarity
measures (correlation coefficient, mutual information) and noise
level. The results (for correlation only) are shown in figure 7.
As for the previous simulations, only one one-dimensional shifts
have been applied. In terms of noise influence, one observes that,
the higher the SNR, the lower the number of shifts multiple of 0.5
pixels. We also observe that, when the SNR increases, the peaks
move close to the null shift. If we compare the interpolators for
a given SNR, say 15 dB, we see that, the better the interpolator
(linear is worst, then B-Spline, and Sinc-10 is best), the higher
the number of pixels for which the estimated shift is close to 0,
the expected value. This is true for both similarity measures.

5. ATTENUATION OF THE ARTIFACTS

As it has been stated above, we are interested in using short inter-
polating filters, since the interpolation is performed a high num-
ber of times during the similarity optimization procedure. As we
have shown above, the interpolation artifacts are produced by the
blurring effects of the interpolators. More precisely, the origin of
the artifacts is not the blurring effect itself, but rather the differ-
ence of blurring intensity as a function of the applied shift. We
have shown, for instance, that, even if the B-Spline interpolator
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Figure 6. Comparison of interpolators

has a stronger blurring effect than the linear interpolator, since
its blurring remains nearly constant for all shifts, it has better
performances for the disparity map estimation. The strategy pro-
posed here for reducing the interpolation artifacts is a very simple
one. Since, the interpolator is going to introduce a blurring effect,
we can smooth the secondary image with a filter whose transfer
function is identical (in modulus) to the maximum blurring effect
of the interpolator. This can be done in a pre-processing step.
However, when observing fig. 5, we see that the evolution of the
blurring effect may not be only related to the highest frequencies
of the signal, and, therefore, selecting the transfer function of the
pre-processing filter could be tricky. For instance, choosing a
simple boxcar filter for pre-processing, can produce artifacts in-
troduced by the secondary lobes of the filter. These lobes come
from the windowing used for the truncation of the filter’s impulse
response.

In order to study the improvement of the subpixel shift estimation
for the different interpolators, we choose to use the same smooth-
ing filter for all of them. In order to reduce the secondary lobes
of the smoothing filter and assuring a short impulse response, we
propose to use a prolate function (Slepian, 1978). The prolate
filter is one of the class of non recursive finite impulse response
filters. It is superior to other filters in this class in that it has max-
imum energy concentration in the frequency passband and mini-
mum ringing in the time domain. A prolate filter with 7 samples
is shown in figure 8 and compared to the maximum smoothing for
several interpolators. The frequency response of the 7×7 boxcar
filter, with its secondary lobes is also shown. Fig. 9 shows the
same kind of analysis as fig. 7, but with the use of the prolate
filter as a pre-processing step for the secondary image. The first
remark we can make is that the peaks at multiples of 0.5 pixels
have vanished for both similarity measures and for all interpola-
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Figure 7. Influence of noise level on the estimated shifts.
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Figure 9. Influence low-pass filtering on the estimated pixel shifts
for different noise levels
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Figure 8. Frequency response of the smoothing prolate filter com-
pared to different interpolators for δ = 1/2. The 7 × 7 boxcar
filter is also shown

tors. We also see that for the high SNR values, the best results
are obtained for the linear interpolator. However, for low SNR
values, the better the interpolator, the better the estimated shifts.

6. CONCLUSION

This paper has presented the problem of interpolation-induced
artifacts in the procedure of disparity map estimation used for
subpixel image registration. The problem has been introduced
with a real case, where the presence of wrongly estimated shifts
when a radar image is interpolated have been shown. A theoret-
ical explanation of the origin of the artifacts has been given and
it demonstrated that the blurring effect of the interpolator, which
is dependent on the applied shift, is the responsible for the errors
observed in the registration functions. Several interpolators have
been compared under different SNR conditions. Finally, it has
been shown that a pre-processing step which smoothes the sec-
ondary – interpolated – image can solve the problem. However,
attention has to be paid to the choice of the smoothing filter. In-
deed, simple filters as the boxcar one, have to be avoided since
they present secondary lobes for the frequencies where the inter-
polation artifacts occur.
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