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ABSTRACT: 
 
The long-term discharge evolution of branches of rivers can potentially be derived from inactive and fossil river meanders using 
relations between discharge and channel width and meander dimensions. This evolution is relevant for the understanding of river 
dynamics and avulsion, and the resulting changes of downstream flooding risks and shipping conveyance. Unfortunately, 
digitalisation of infilled and overgrown meanders from images or maps is laborious and inaccurate. 
We developed and demonstrated an automated procedure for the recognition of river meanders from satellite-imagery of the river 
Ganges. For this automated recognition we used object-based image analysis, which allows including shape and neighbourhood 
information besides spectral information in the classification procedure.  
We needed information on both present, i.e. water carrying meanders, and fossil, i.e. partly vegetated meanders. This implies a wide 
range of spectral behaviour and hence the selection of meanders should be primarily based on shape. Therefore, we used an image 
showing the low-flow situation. 
Results demonstrate that the object-oriented image analysis approach offers detailed meandering metrics. The Gorai channel belt, 
once the main courses of the Ganges, has a fairly uniform meander size distribution and only a small number of old meanders, 
indicating a sudden emergence of the channel with limited dynamic meandering and a short period of activity. The Hooghly channel 
belt, another previous main course, has many more abandoned meanders and cut-off meanders including many small ones, 
suggesting a more gradual rise of discharge and a longer period of activity. The lack of small meanders in the present residual 
channels indicates that both were abandoned so suddenly that meander geometry could not adjust to the waning discharge. 
Given the importance of shape to recognize the meanders, this study was possible only thanks to the availability of object based 
image analysis. 
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1. INTRODUCTION 

1.1 Ganges delta 

The course of the Ganges river shifted to the east over the past 
centuries by avulsion: sudden shifts of the channel where a new 
course is found through former floodplains. The avulsions of 
the Ganges are attested by the presence of residual channels, by 
historical and geological records, e.g. the fact that the major 
historical harbour city, Calcutta, is located on a minor channel : 
the Hooghly river (cf. Coleman 1969).  
The Ganges River emerges near the Tibet-India border and 
flows southeast across India into Bangladesh, and into the Bay 
of Bengal. Prior to the 16th century the Hooghly river conveyed 
most of the discharge of the Ganges. A later course is the Gorai 
river, which even today suffers from decreasing discharge and 
fairway depth because a disproportionally large amount of sand 
enters the Gorai at its offtake from the Ganges. At present the 
Ganges confluences with the Brahmaputra to form the Meghna 
river and the nearly abandoned channels of the Ganges are 
expected to silt up further. 
 
 
 
 

1.2 River Morphometry 

For prediction of future flooding risks and shipping fairway 
depth, understanding is required on the evolution of channels 
that are being abandoned in the avulsion process. The rate of 
evolution is largely controlled by the detailed dynamics of the 
river bifurcation (Kleinhans et al. in press), but this cannot be 
recovered accurately for historical cases. Instead, we study a 
proxy for the discharge in (nearly) abandoned channels: the 
geometry of meanders. 
Empirically, the length of meanders is related to discharge. The 
underlying relation is that channel width is related to a 
representative discharge; bar pattern is related to the channel 
width/depth ratio and meander bend erosion is related to the bar 
pattern. The exact relations between discharge, width and 
meander geometry vary with discharge regime, the nature of the 
channel sediment and of the floodplains, but this requires much 
further study so at present the empirical relations must suffice 
for a semi-quantitative comparison between former courses of 
the same river. Furthermore, these empirical relations are 
supported by recent meander simulation modelling (Camporeale 
et al. 2005). We use the following approximate relations 
inversely to infer discharge from meander geometry statistics: λ
=10W and W=10Q1/2 so that 

λ
=100Q1/2, where  



λ
=meander wavelength, W=channel width and Q=flow 

discharge. In the process of meander formation and 
displacement, neck cutoffs take place so that meander bends are 
abandoned. By comparing older meander bends with bends in 
the present channel, the change of discharge over time can be 
inferred. Given that time is needed for a river to adjust meander 
wavelength to a changing discharge regime, the rate of change 
relative to the minimum time needed for adaptation can be 
inferred. 
 
1.3 Channel metrics and remote sensing 

Satellite images show river channels, both active and fossil, 
very well. Images taken at low discharge moments are superior 
to images recorded at high discharge moments.  
Meanders may still be active and carry water, or they may have 
been abandoned and be in some revegetating state. Spectrally, 
they can show a wide range of values, thus limiting the viability 
of spectral analysis to delineate meanders. However, whatever 
land cover they might have, the shape of both active and fossil 
meanders is so characteristic that it is easily recognized in 
images by human eye.  
Since meanders are to be recognized on their shape, object-
based image analysis seems a promising method to delineate 
them in satellite imagery. Once they have been delineated, their 
metrics and spectral behaviour can be analysed.  
For a larger project (in progress), we collected seven scenes 
from Landsat MSS and TM recorded in 1975, 1990 and 2000. 
By reconstructing the river dynamics for those years, we will 
gain insight in the discharge changes in the periods in between. 
The aim of this paper is the proof of concept that meanders can 
be delineated in satellite imagery using segmentation 
techniques. We will demonstrate how the meanders can be 
extracted from satellite images for a subset of the delta. 

 
 

Figure 1. Location of the study area outlined in black (source 
ESRI) 

 
2. DATA AND METHODS 

2.1 Study area 

The area that we selected to develop the method is located in 
the western part of the Ganges delta. The largest part lies in  
West Bengal, India, while the eastern part extends into 
Bangladesh (figure 1). It measures 70*90 km2. The landscape 
has been shaped by fluvial processes and is a patchwork of 
fossil meanders cross cut by active channels. The land cover 
stages of the fossil meanders range from open water to fully 
revegetated. 
Land use comprises mainly agricultural and some urban areas.  
 

 
Figure 2. Landsat TM image, 14 November 1990. RGB 453 

 



2.2 Data 

For the area we selected a Landsat TM image recorded in 
November 1990 during the dry season (figure 2). 
We excluded the thermal band from further use, because its 
relatively high temporal variability and its lower spatial 
resolution would reduce the applicability of the developed 
method to the larger area. The remaining six bands were all 
normalised to a mean value of 120 and a standard deviation of 
20 in order to give them equal weight during the segmentation 
process. 
 
2.3 Methods 

We will develop an object-oriented classification method of 
satellite imagery. For comparison, we will perform a pixel-
based classification. 
 
Pixel-based classification 
We classified the image using a clustering approach. Ten 
clusters were defined, two of which represented open water. 
One showed open water with a sediment load, i.e. active 
channels; the second cluster represented (parts of) fossil 
meanders still carrying water. The remaining eight clusters 
represented different terrestrial land cover classes.  
 
Segmentation 
The normalised Landsat TM images was segmented at different 
heterogeneity levels using eCognition version 3.1 (Definiens, 
2003). The segmentation process is region based and allows to 
indicate a balance between spectral properties and shape 
characteristics, defined by smoothness and compactness (Benz 
et al., 2004). We set this balance such that spectral properties 
steered the process for 60% and shape properties for 40%. 
Shape properties were fully determined by smoothness and not 

at all by compactness, since meanders tend to be smooth and 
elongated, i.e. not compact.  
The maximum internal heterogeneity of the objects is set by the 
scale parameter, the effect of which is data-set specific (Addink 
et al., 2007). Since meanders of different sizes often show 
different internal spectral variation when recorded with a 30m 
pixel, we segmented the image several times with different 
values for the scale parameter: 5, 7, 10, 15 and 20. Visual 
interpretation learned that larger values would often result in 
objects including a fossil, vegetated, meander and part of the 
surrounding vegetated area. 
 
Distinguishing meanders 
Visual interpretation clearly allows for detection of meanders in 
the image. However, the aim of this project is to automate this. 
Therefore training sets were created by selecting 30 meanders 
by hand in each of the different object sets. Besides, 30 non-
meander objects were selected randomly. I.e., all objects got 
assigned a random number and the first 30 that did not have the 
shape of a meander were selected. During these selection 
processes only the outlines of the objects were visible, no 
spectral information was displayed.  
For the training sets a set of four variables describing the object 
shape was created: length/width, shape index, curvature, 
length/width of skeleton.Length/width divides the longer side of 
the bounding box by the shorter side. Shape index s is defined 
by  

A

e
s

4
=  

where e is the border length of the object and A the object area. 
Curvature is based on the skeleton of an object and is an 
indicator for the change in direction within an object; and 
length/width of skeleton is the length of the backbone of an 
object divided by the largest distance perpendicular to it. 

 
 

Figure 3. Example of channel identification for a sample area. A shows the original image, b shows the pixel-based water 
classification, c –g show the channel objects derived from segmentations with scale parameters 5, 7, 10, 15 and 20 respectively, h 

shows the combination of object and pixel information 



 

 
 

Figure 4. Object-based channels. Colors follow the color scheme as in figure 3. 
 

 
 

Figure 5. Pixel-based map of water 



 
Classification trees were applied to each training set and to all 
sets combined classification trees. Classification trees are fitted 
by recursively partitioning the data set into smaller subdivisions 
on the basis of rules on the independent variables that optimize 
the classification, i.e., the dependent variable (Breiman et al., 
1984). Because each partitioning is made on the basis of the 
independent variable that produces the most homogeneous 
subsets of the classes at each step (measured using deviance), 
the fitting algorithm results in the optimal distinction between 
classes and yields an explicit and intuitive understanding of 
relationships (in the form of a decision tree) between the 
dependent variable (i.e., channel or non-channel) and the 
independent variables (Friedl and Brodley, 1997). This provides 
good insight into the steps taken to distinguish the classes 
(Hansen et al., 2000).  
To define classification trees training sets are needed. Once they 
have been defined they can be applied to any data set that 
contains the relevant variables. All data entries in the set are led 
through the tree and get assigned the class of the respective end 
member. 
 
Combining different scales 
All object sets were classified using the classification trees. All 
objects that were recognized as a meander were selected. They 
were all merged into one layer, showing the meanders detected 
in the image by object-oriented analysis. 
 

Integrating pixel-based classification with objects 
To further improve the results, information from the pixel-based 
classification was combined with the object-based meanders. As 
became clear during the analysis, some parts of the meanders 
show too much internal contrast to be delineated as a single 

object. The comprising objects will not show the characteristic 
elongated, curved shape and will hence not be classified as 
meander. For all objects that belong to open water, we know 
that they are part of a meander, either active or fossil. Therefore 
we selected all objects that contained at least 85% water and 
classified them as channel.  
 

3. RESULTS 

The number of objects decreased exponentially with increasing 
values for the scale parameter: 442600 to 28600 with scale 
parameters of 5 and 20 respectively. Accordingly, the size of the 
objects increased with higher scale parameter values. 
The classification trees revealed that the best variable to 
distinguish channel objects from non-channel objects was the 
shape index, and that adding more variables did not 
significantly improve the accuracy. For the different 
segmentation sets, the channel objects would be found in the 
higher range of the shape index values. The threshold to 
distinguish between the two categories increased slightly with 
increasing scale parameters; from 2.49 with scale parameter 5 to 
3.3 with scale parameter 20. Accuracy values for the different 
trees ranged from 80 to 90%. 
The object sets were subjected to the corresponding 
classification trees to label the channel objects. In figure 3 a 
sample area is shown with results from all scales. Obviously, 
some objects would remain unchanged over the different scales 
and would pop-up as a meander at different scales. The channel 
objects were combined into one layer to combine the channels 
created at different discharge levels and hence of different sizes 
(figure 4). 
 

 

 
 

Figure 6. Object-based channels combined with water pixels. Color scheme follows figure 3. 



 
Object sets resulting from the higher scale parameter values 
sometimes suffered from pollution by non-channel objects with 
an elongated shape. 
The pixel-based classification clearly shows the channels that 
are currently still active (figure 5). Comparing figures 4 and 5 
reveals that the object approach and the pixel approach partly 
yield the same results, but that particularly the larger channels 
are not detected by the object approach. The two approaches 
yield partly complementary information. As not to loose the 
information held in the pixel-based map, we decided to combine 
the two resulting maps (figure 6). 
 

4. DISCUSSION AND CONCLUSIONS 

The method presented here allows delineation of channels, both 
active and inactive. Besides, it allows characterization of their 
metrics, thus allowing the reconstruction of discharge volumes 
during their formation. 
The object- and pixel-based maps currently provide 
complementary information. At higher scale parameters, the 
object-based channel maps are polluted by non-channel objects 
with an elongated shape. This was the major reason not to 
include higher scale parameter values in the analysis. This issue 
deserves further attention in order to delineate the larger 
channel objects as well. It is anticipated that by fine-tuning the 
threshold value, this pollution will be largely reduced and that 
the major channels then will be available from the object-
approach. 
Currently no methods are available to delineate channels that 
are not active anymore, from satellite imagery. The method 
presented here is capable of selecting both active and fossil 
channels. However, visual comparison of the channel map with 
the image reveals that not all channels are detected, yet. Even 
though object-based image analysis comes much closer to 
human vision than pixel-based image analysis, a gap remains 
between the two. 
Refinements of the method in the near future will consist of 
exploring the additional value of including scale parameters 
smaller than 5. Furthermore, the pixel-based classification 
shows many small lakes, consisting of about 5 pixels with a 
round shape. These will be removed from the channel map. 
In the somewhat further future we will look into the possibilities 
to reconstruct the historic fluvial dynamics of the Ganges delta 
using the channel map. Therefore, it would be very valuable if 
the relative age of meandering channels could be determined 
from the images as well, possibly based on vegetation 
development.  
 
We conclude by stating that we developed an entirely new 
approach to image analysis for fluvial purposes. The method as 
we developed is well capable of delineating channel objects 
from a Landsat TM image. Some refinements are needed to 
include the large channel objects as well. At the moment this is 
well solved by combining the object channel map with the pixel 
water map. 
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