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ABSTRACT:

The long-term discharge evolution of branches eéns can potentially be derived from inactive andsil river meanders using
relations between discharge and channel width aeander dimensions. This evolution is relevant far tinderstanding of river
dynamics and avulsion, and the resulting changesiafnstream flooding risks and shipping conveyandefortunately,
digitalisation of infilled and overgrown meandersri images or maps is laborious and inaccurate.

We developed and demonstrated an automated praxzéaiuthe recognition of river meanders from s@gelimagery of the river
Ganges. For this automated recognition we usedcbbpsed image analysis, which allows includingpghand neighbourhood
information besides spectral information in thessléication procedure.

We needed information on both present, i.e. waaelying meanders, and fossil, i.e. partly vegetatednders. This implies a wide
range of spectral behaviour and hence the seleofieneanders should be primarily based on shapereftre, we used an image
showing the low-flow situation.

Results demonstrate that the object-oriented inzagdysis approach offers detailed meandering nsetiibe Gorai channel belt,
once the main courses of the Ganges, has a faiifprm meander size distribution and only a smaiiber of old meanders,
indicating a sudden emergence of the channel wititeld dynamic meandering and a short period af/éagt The Hooghly channel
belt, another previous main course, has many mbéendoned meanders and cut-off meanders includingy nsanall ones,
suggesting a more gradual rise of discharge ammhgel period of activity. The lack of small mearder the present residual
channels indicates that both were abandoned seslydithat meander geometry could not adjust toatheing discharge.

Given the importance of shape to recognize the dezan this study was possible only thanks to theglatvility of object based

image analysis.

1. INTRODUCTION
1.1 Gangesdedta

The course of the Ganges river shifted to the east the past
centuries by avulsion: sudden shifts of the chamedre a new
course is found through former floodplains. The Isians of

the Ganges are attested by the presence of residaahels, by
historical and geological records, e.g. the faett tthe major
historical harbour city, Calcutta, is located omiaor channel :
the Hooghly river (cf. Coleman 1969).

The Ganges River emerges near the Tibet-India boatel

flows southeast across India into Bangladesh, atwlthe Bay
of Bengal. Prior to the 16th century the Hooghlericonveyed
most of the discharge of the Ganges. A later coisrgee Gorai
river, which even today suffers from decreasingliésge and
fairway depth because a disproportionally large am@f sand
enters the Gorai at its offtake from the Gangesprisent the
Ganges confluences with the Brahmaputra to formMeghna
river and the nearly abandoned channels of the &arge
expected to silt up further.

* Corresponding author.

1.2 River Morphometry

For prediction of future flooding risks and shipgirfairway
depth, understanding is required on the evolutibchannels
that are being abandoned in the avulsion process.rate of
evolution is largely controlled by the detailed dymcs of the
river bifurcation (Kleinhans et al. in press), libis cannot be
recovered accurately for historical cases. Insteesl,study a
proxy for the discharge in (nearly) abandoned ce&nthe
geometry of meanders.

Empirically, the length of meanders is related igcdarge. The
underlying relation is that channel width is retht¢o a
representative discharge; bar pattern is relatethéochannel
width/depth ratio and meander bend erosion isedl&b the bar
pattern. The exact relations between dischargethwahd
meander geometry vary with discharge regime, theraaf the
channel sediment and of the floodplains, but teguires much
further study so at present the empirical relationsst suffice
for a semi-quantitative comparison between fornmmurses of
the same river. Furthermore, these empirical reteti are
supported by recent meander simulation modelliran{@oreale
et al. 2005). We use the following approximate tiefes
inversely to infer discharge from meander geomstatistics:
A=10W and W=10&* so that A=1003? where



A=meander wavelength, W=channel
discharge. In the process of meander
displacement, neck cutoffs take place so that medmehds are
abandoned. By comparing older meander bends witldé

the present channel, the change of discharge awer dan be
inferred. Given that time is needed for a riveatjust meander
wavelength to a changing discharge regime, theagathange
relative to the minimum time needed for adaptat@am be

inferred.

1.3 Channel metrics and remote sensing

Satellite images show river channels, both actind #ossil,
very well. Images taken at low discharge momengssaperior
to images recorded at high discharge moments.

Meanders may still be active and carry water, eytmay have
been abandoned and be in some revegetating sfzetraly,
they can show a wide range of values, thus limithegviability
of spectral analysis to delineate meanders. Howevieatever
land cover they might have, the shape of both adiwd fossil
meanders is so characteristic that it is easilyogazed in
images by human eye.

Since meanders are to be recognized on their staipect-
based image analysis seems a promising method litvedte
them in satellite imagery. Once they have beemdated, their
metrics and spectral behaviour can be analysed.

For a larger project (in progress), we collectegtesescenes
from Landsat MSS and TM recorded in 1975, 1990 20@0.
By reconstructing the river dynamics for those geave will
gain insight in the discharge changes in the pserindetween.
The aim of this paper is the proof of concept thatinders can
be delineated in satellite imagery using segmenniati
techniques. We will demonstrate how the meanders lma
extracted from satellite images for a subset oftthléa.

width and Q=flow
formation ant

Figure 2. Landsat TM image, 14 November 1990. RGB 4

Bangladesh

Figure 1. Location of the study area outlined iadkl (source
ESRI)

2. DATA AND METHODS
2.1 Study area

The area that we selected to develop the methdacéded in
the western part of the Ganges delta. The largasdt l@s in
West Bengal, India, while the eastern part extemu®
Bangladesh (figure 1). It measures 70*90°kifhe landscape
has been shaped by fluvial processes and is avpatichof
fossil meanders cross cut by active channels. @he kover
stages of the fossil meanders range from open watdully
revegetated.

Land use comprises mainly agricultural and somamidreas.




2.2 Data

For the area we selected a Landsat TM image redomde
November 1990 during the dry season (figure 2).

We excluded the thermal band from further use, bseats
relatively high temporal variability and its lowespatial
resolution would reduce the applicability of theveeped
method to the larger area. The remaining six bamdse all
normalised to a mean value of 120 and a standari@tin of
20 in order to give them equal weight during thgnsentation
process.

2.3 Methods

We will develop an object-oriented classificatiorethrod of
satellite imagery. For comparison, we will perforanpixel-
based classification.

Pixel-based classification

We classified the image using a clustering approdoén

clusters were defined, two of which representednopeter.

One showed open water with a sediment load, i.¢iveac
channels; the second cluster represented (partsfasiil

meanders still carrying water. The remaining eighisters

represented different terrestrial land cover classe

Segmentation

The normalised Landsat TM images was segmenteiffertetht
heterogeneity levels using eCognition version DEfihiens,
2003). The segmentation process is region basealéos to
indicate a balance between spectral properties simape
characteristics, defined by smoothness and comgsst(Benz
et al., 2004). We set this balance such that sglegtoperties
steered the process for 60% and shape propertieg 0.
Shape properties were fully determined by smooth@esl not

at all by compactness, since meanders tend to lbetenand
elongated, i.e. not compact.

The maximum internal heterogeneity of the objestsét by the
scale parameter, the effect of which is data-setifip (Addink
et al., 2007). Since meanders of different sizeenofshow
different internal spectral variation when recordeith a 30m
pixel, we segmented the image several times wifferdnt
values for the scale parameter: 5, 7, 10, 15 andV2€ual
interpretation learned that larger values woulceftesult in
objects including a fossil, vegetated, meander paud of the
surrounding vegetated area.

Distinguishing meander s

Visual interpretation clearly allows for detectiohmeanders in
the image. However, the aim of this project is tboanate this.
Therefore training sets were created by selectidgn@anders
by hand in each of the different object sets. BesidB0 non-
meander objects were selected randomly. l.e., lFkkats got
assigned a random number and the first 30 thahdichave the
shape of a meander were selected. During thesetisele
processes only the outlines of the objects werébleis no
spectral information was displayed.

For the training sets a set of four variables dbswy the object
shape was creatediength/width, shape index, curvature,
length/width of skeleton.Length/width divides the longer side of
the bounding box by the shorter si@ape index s is defined
by

N

WA

wheree is the border length of the object aAdhe object area.

Curvature is based on the skeleton of an object and is an

indicator for the change in direction within an et and
length/width of skeleton is the length of the backbone of an
object divided by the largest distance perpendiciolé.
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Figure 3. Example of channel identification foraarple area. A shows the original image, b showpikel-based water
classification, ¢ —g show the channel objects @efiivom segmentations with scale parameters 5),719 and 20 respectively, h
shows the combination of object and pixel informati



Figure 4. Object-based channels. Colors followdbler scheme as in figure 3.

Figure 5. Pixel-based map of water



Classification trees were applied to each trairsegand to all
sets combined classification trees. Classificatiers are fitted
by recursively partitioning the data set into smaiiubdivisions
on the basis of rules on the independent variabiaisoptimize

the classification, i.e., the dependent variablesifBan et al.,

1984). Because each partitioning is made on thés ludsthe

independent variable that produces the most honemgen
subsets of the classes at each step (measured desitance),

the fitting algorithm results in the optimal disttron between
classes and yields an explicit and intuitive un@deding of

relationships (in the form of a decision tree) bemtw the

dependent variable (i.e., channel or non-channell the

independent variables (Friedl and Brodley, 199T)sprovides

good insight into the steps taken to distinguish thasses
(Hansen et al., 2000).

To define classification trees training sets aredeel. Once they
have been defined they can be applied to any dattahat

contains the relevant variables. All data entriethie set are led
through the tree and get assigned the class ot#pective end
member.

Combining different scales

All object sets were classified using the clasatfun trees. All
objects that were recognized as a meander weretseleThey
were all merged into one layer, showing the meandetected
in the image by object-oriented analysis.

I ntegrating pixel-based classification with objects
To further improve the results, information fronethixel-based
classification was combined with the object-basedmders. As
became clear during the analysis, some parts ofrthenders
show too much internal contrast to be delineatec asngle
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object. The comprising objects will not show theetteristic
elongated, curved shape and will hence not be ifiabsas
meander. For all objects that belong to open waterknow
that they are part of a meander, either activeossif. Therefore
we selected all objects that contained at least 8&#&r and
classified them as channel.

3. RESULTS

The number of objects decreased exponentially imitheasing
values for the scale parameter: 442600 to 28600 wale
parameters of 5 and 20 respectively. Accordingig, size of the
objects increased with higher scale parameter galue

The classification trees revealed that the besiabkr to
distinguish channel objects from non-channel oljechs the
shape index, and
significantly improve the accuracy. For the difiere
segmentation sets, the channel objects would bedfon the
higher range of the shape index values. The thidshm
distinguish between the two categories increasigghtll with

increasing scale parameters; from 2.49 with scatameter 5 to
3.3 with scale parameter 20. Accuracy values fer different
trees ranged from 80 to 90%.

The object sets were subjected to the corresponding

classification trees to label the channel objebtsfigure 3 a
sample area is shown with results from all sca@sviously,
some objects would remain unchanged over the diffescales
and would pop-up as a meander at different sc@les.channel
objects were combined into one layer to combinecth@nnels
created at different discharge levels and henddiffefrent sizes
(figure 4).

Figure 6. Object-based channels combined with waitels. Color scheme follows figure 3.

that adding more variables did not



Object sets resulting from the higher scale paramealues
sometimes suffered from pollution by non-channgkots with

an elongated shape.

The pixel-based classification clearly shows tharctels that
are currently still active (figure 5). Comparingydires 4 and 5
reveals that the object approach and the pixel cgmbr partly
yield the same results, but that particularly tagér channels
are not detected by the object approach. The twwoaghes
yield partly complementary information. As not tooke the
information held in the pixel-based map, we decittedombine
the two resulting maps (figure 6).

4. DISCUSSION AND CONCLUSIONS

The method presented here allows delineation afiréla, both
active and inactive. Besides, it allows charac&tign of their
metrics, thus allowing the reconstruction of diggeavolumes
during their formation.

The object-
complementary information. At higher scale paramsgtéhe
object-based channel maps are polluted by non-etafjects
with an elongated shape. This was the major reasxnto
include higher scale parameter values in the aisalyhis issue
deserves further attention in order to delineate thrger
channel objects as well. It is anticipated thafibg-tuning the
threshold value, this pollution will be largely remed and that
the major channels then will be available from tbigect-
approach.

Currently no methods are available to delineatenobbs that
are not active anymore, from satellite imagery. Thethod
presented here is capable of selecting both aethe fossil
channels. However, visual comparison of the chamsg with
the image reveals that not all channels are detegtt. Even
though object-based image analysis comes much rclimse
human vision than pixel-based image analysis, argamins
between the two.

Refinements of the method in the near future wilhsist of
exploring the additional value of including scalargmeters
smaller than 5. Furthermore, the pixel-based diaasion
shows many small lakes, consisting of about 5 pixeith a
round shape. These will be removed from the chamagl.

In the somewhat further future we will look intcetpossibilities
to reconstruct the historic fluvial dynamics of tBanges delta
using the channel map. Therefore, it would be wetyable if
the relative age of meandering channels could herméeed
from the images as well, possibly based on vegetati
development.

We conclude by stating that we developed an emptingw
approach to image analysis for fluvial purposes Wethod as
we developed is well capable of delineating charoigkcts
from a Landsat TM image. Some refinements are reeéde
include the large channel objects as well. At trement this is
well solved by combining the object channel maphwlite pixel
water map.
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