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ABSTRACT: 
 
Land Use/Land Cover (LULC) classifications have proven to be valuable assets for resource managers interested in landscape 
characteristics and the changes that occur over time.  This study made a comparison of an object-based classification with supervised 
and unsupervised pixel-based classification.  Two multi-temporal (leaf-on and leaf-off), medium-spatial resolution SPOT-5 satellite 
images and a high-spatial resolution color infrared digital orthophoto were used in the analysis.  Combinations of these three images 
were merged to evaluate the relative importance of multi-temporal and multi-spatial imagery to classification accuracy.  The object-
based classification using all three-image datasets produced the highest overall accuracy (82.0%), while the object-based 
classification using the high-spatial resolution image merged with the SPOT-5 leaf-off image had the second highest overall 
accuracy (78.2%).  While not significantly different from each other, these two object-based classifications were statistically 
significantly different from the other classifications.  The presence of the high-spatial resolution imagery had a greater impact on 
improving overall accuracy than the multi-temporal dataset, especially with the object-based classifications. 
 
 

1. INTRODUCTION 
 
Remotely sensed imagery, in the form of satellite and aerial 
photography, has become an indispensable tool in resource 
management and in numerous areas of scientific research.  A 
study by McRoberts and Tomppo (2007) of national forest 
inventories in Europe, reported that remotely sensed data not 
only increased the speed, cost efficiency, precision, and 
timeliness of forest inventories, but also contributed to the 
development of maps of forest attributes with spatial 
resolutions and accuracies not previously possible.  Methods 
have been developed for the mapping of large-scale forest 
cover change (Fraser et al., 2005) and estimating the extent of 
burned areas (Gitas et al., 2004).  Likewise, new analytical 
techniques have been developed for mapping of urbanization 
and urban sprawl (Xian and Crane, 2005). 
 
In the past, most LULC classifications have been created using 
a pixel-based analysis of remotely sensed imagery. They used 
either a supervised classification, unsupervised classification or 
some combination (Enderle and Weih, 2005). These pixel-
based procedures analyze the spectral properties of every pixel 
within the area of interest, without taking into account the 
spatial or contextual information related to the pixel of interest.  
With the growing availability of higher resolution imagery, this 
spatial information could be used to produce more accurate 
LULC classifications (De Jong et al., 2001; Dwivedi et al., 
2004). 
   
Researchers have generally found that when pixel-based 
methods are applied to high-resolution images a “salt and 
pepper” effect was produced that contributed to the inaccuracy 
of the classification (Campagnolo and Cerdeira, 2007; De Jong 
et al., 2001; Gao and Mas, 2008; Van de Voorde et al., 2004).  
For decades, GIS specialists have theorized about the 
possibility of developing a fully automated classification 
procedure that would be an improvement over pixel-based 

procedures (Blaschke et al., 2000; Csatho et al., 1999; Marpa et 
al., 2006).  Computer software packages such as eCognition® 
and Feature Analyst® have been developed utilizing object-
based classification procedures. These packages analyze both 
the spectral and spatial/contextual properties of pixels and use a 
segmentation process and iterative learning algorithm to 
achieve a semi-automatic classification procedure that promises 
to be more accurate than traditional pixel-based methods 
(Blundell and Opitz, 2006; Grenzdörffer, 2005; Hay and 
Castilla, 2006).   
 
The first objective of this study was to compare the three 
methodologies (object-based, supervised and unsupervised 
pixel-based classifications). This objective will determine if an 
object-based analysis of remotely sensed imagery will produce 
a LULC classification that is statistically more accurate than a 
pixel-based analysis when applied to the same imagery.  The 
second objective was to determine the relative importance of 
multi-resolution image datasets to classification accuracy for 
the above methods. 

2. METHODS 
2.1 Study Area 
 
The study area was located in and around the city of Hot 
Springs, Garland County, Arkansas (Figure 1), and included 
Hot Springs National Park. Hot Springs National Park is 
approximately 2,250 hectares, while the study area was 
approximately 16,850 hectares.  The study area includes 
features such as the city reservoir, the city landfill, golf courses, 
county parks, and several rock quarries.  While having some 
urban areas, the study area was predominantly rural, consisting 
of fields and pastures, pine plantations, shortleaf (Pinus 
echinata) and loblolly (P. taeda), deciduous, oaks (Quercus 
spp.) and hickories (Carya spp.), mixed forests and some urban 
areas. Hot Springs is at the foothills of the Ouachita Mountains, 
with elevations in the study area ranging from 107 to 433 
meters. 
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Figure 1. Location of study area in Garland County, Arkansas, 
including Hot Springs National Park. 

2.2 Imagery 
 
Two SPOT-5 images were used to provide multi-temporal data 
(winter and spring), each with different foliage characteristics 
(leaf-off and leaf-on).  The SPOT-5 leaf-off image (LeafOff) 
was acquired on 3 February 2007 with an incident angle of 
3.384°.  The SPOT-5 leaf-on image (LeafOn) was acquired on 
27 April 2007 with an incident angle of 10.2366°.  Both images 
were processed as Level 1B imagery.  
 
A true color (RGB) digital aerial image at 1-foot resolution and 
a 1-meter color infrared (CIR) digital orthophoto quadrangle 
(DOQ) were captured using the Leica ADS40 camera system. 
The CIR image was acquired during leaf-off conditions.  Color 
infrared digital aerial imagery of the study area at 1-foot 
resolution was also acquired during leaf-off conditions and used 
for photo interpretation of urban areas to supplement the field 
data and for the development of the training datasets used in the 
classifications. 
 
The SPOT 5 satellite imagery was orthorectified using a 5-
meter digital elevation model.  The two SPOT-5 images were 
resampled to 1-meter when rectified to be coincident with the 
CIR DOQ pixel resolution. Since we were interested in the 
comparative value of additional image datasets to classification 
accuracy, three different combinations of imagery were created.  
The CIR DOQ, SPOT-5 Leaf-on, and SPOT-5 Leaf-Off image 
datasets were merged into an 11-band image (CIROnOff, 1-
meter).  Likewise, the CIR DOQ and SPOT-5 Leaf-off images 
were merged into a 7-band image (CIROff, 1-meter) and the 
SPOT-5 Leaf-on and SPOT-5 Leaf-off images were merged 
into an 8-band image (OnOff, 10-meter). An object-based 
classification was also produced from the SPOT-5 Leaf-on 
image (LeafOn, 10-meter). 
 
Because some of the bands of the merged images were 
correlated, Principal Component Analysis (PCA) versions of 
each of the merged images were created.  The first four PCA 
bands were used in the study. The first four bands of the subset 
PCA CIROnOff image accounted for 92.8% of the variance in 
the data.  The first four bands of the subset PCA CIROff image 
accounted for 97.1% of the variance in the data.  The first four 
bands of the subset PCA OnOff image accounted for 94.8% of 
the variance in the data.  These subset PCA images, as well as 
the unmerged LeafOn image, were used in the classifications. 

2.3 Datasets 
 
Field data, or ground-truth, was used in the study area to create 
a “test set” to access classification accuracy.  Two-person 

teams, using Trimble GeoXH handheld GPS units, located the 
positions of randomly selected points within the study area. 
This GPS data was later differentially corrected, with an error 
of less than 1-meter.  Along with the GPS coordinates, the 
following data were collected at each location: 1) tree basal 
area (BA); 2) major and minor tree/plant species based on BA; 
3) description of soil/ground cover conditions; and 4) the 
LULC classification code.  Photo interpretation of random 
points in urban areas, utilizing 1-foot digital aerial imagery, 
was used to supplement the field data.  Four-hundred and 
seventy-two ground control points were collected for the 
accuracy assessment. 
 
The LULC classification codes were determined in conjunction 
with National Park Service ecologists to produce a medium-
level classification of the study area as shown in Table 1. The 
LULC classification codes are similar to an Anderson Level 2 
classification system (Anderson et al., 1976).  
 
A training dataset was created by digitizing polygons for each 
LULC feature class (Table 1).  It was necessary to sample 
pixels representing variation in forest types as a result of 
variations of light and shadow due to changes of topography 
(all images were cloud-free).  Similarly, deciduous and 
evergreen trees required a training set for urban settings.  These 
subset feature classes would later be merged into a single 
LULC type dataset.  This training dataset would be used in the 
object-based and supervised classifications. 
 

Land Use/Land 
Cover LULC Code Number of 

Training Polygons 

Urban 100 352 

Grass 350 267 

Deciduous Forest 410 149 

Deciduous -Shadow 410 64 

Deciduous-Urban 410 81 

Evergreen Forest 420 121 

Evergreen-Shadow 420 39 

Evergreen-Urban 420 78 

Clearcut-New 421 28 

Clearcut-Old 421 52 

Mixed Forest 430 87 

Water 530 244 

Barren Land 700 148 

 
Table 1. Land Use/Land Cover Training Dataset: LULC code 
and number of polygons for each Feature Class 

2.4 Classification Procedures 
 
An object-based classification was produced from the three-
subset PCA images: CIROnOff, CIROff, and OnOff, as well as 
the LeafOn image using Feature Analyst®.  This software 
utilizes inductive learning algorithms to analyze the spatial 
context and spectral signatures of pixel clusters or 
neighborhoods (Blundell and Opitz, 2006).  While pixel-based 
classifiers use only the spectral signature of a single pixel, 
object-based classifiers also make use of the spatial context 
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around a pixel to aid in its classification (Visual Learning 
System Inc., 2004).  Feature Analyst® has numerous options for 
the selection of window shape and size.  For this classification, 
a Manhattan (diamond) shape with a 13 pixel-width was 
selected.  A minimum mapping unit (MMU) of 352 pixels or 
approximately 0.04 hectares (0.1 acres) was used for all feature 
classes.  Utilizing the training set, each individual feature class 
was classified.  Then a “wall-to-wall” classification was created 
using all the individual feature classes. 
   
The road, railroad, and stream features were not classified using 
the imagery, but were later developed from GIS layers.  Roads, 
railroads, and streams were acquired as individual polyline 
shapefiles.  Buffers were created in ArcMap® to represent the 
approximate width of these features.  The buffer for streams 
was 2 meters.  The buffer for railroads was 10 meters.  The 
buffer for roads had two values: 12 meters for highways and 8 
meters for all other roads.  These buffers were then merged 
with the other LULC types to produce the final classifications.  
Since no field data points were collected for the stream feature, 
it was not used in the accuracy assessment. 
 
Pixel-based methodologies were performed using ERDAS 
Imagine® 9.3 and included both supervised and unsupervised 
classifications.  Supervised classifications were created from 
the PCA subsets (CIROnOff, CIROff, and OnOff images) 
utilizing the previously developed training datasets.  The 
resulting classifications all exhibited the “salt and pepper” 
appearance commonly associated with pixel-based 
classifications (Campagnolo and Cerdeira, 2007; De Jong et al., 
2001; Gao and Mas, 2008; Van de Voorde et al., 2004).  To 
reduce this effect and aggregate feature classes into patches 
approximating the minimum mapping unit (0.04 hectares), the 
“Clump” and “Eliminate” tools in ERDAS Imagine® were used. 
Unsupervised classifications of the same three subsets PCA 
images were done using ERDAS Imagine® software.   

2.5 Accuracy Assessment 
 
An accuracy assessment using an error matrix (Congalton and 
Green, 1999) was performed on each of the object-based and 
pixel-based classifications to determine which produced the 
most accurate identification of LULC.  The error matrix 
measures an overall accuracy for the classification, as well as a 
producer and user’s accuracy for each feature class.   
 
To determine if two classifications were significantly different 
(α = 0.05), a Kappa analysis and pair-wise Z-test were 
calculated (Congalton and Green, 1999; Dwivedi et al., 2004; 
Zar, 2007):   
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Where p0 represents actual agreement, pc represents “chance 
agreement”, and 1Κ̂ , 2Κ̂  represents the Kappa coefficients for 
the two classifications, respectively.  The Kappa coefficient is a 
measure of the agreement between observed and predicted 
values and whether that agreement is by chance (Congalton and 
Green, 1999).  Kappa values range from 0 to 1, with values 
closer to zero indicating higher chance agreement.  Pair-wise Z-

scores and probabilities (p-values) were calculated for every 
combination of two classifications.  Using a two-tailed Z-test (α 
= 0.05 and Zα/2 = 1.96), if the p-value ≥ 0.025, then the 
classifications were not considered statistically significantly 
different (Zar, 2007). 

3. RESULTS AND DISCUSSION 
 
In comparing the overall accuracies (Table 2) of the object-
based classifications of the four image datasets (CIROnOff = 
82.0%, CIROFF = 78.2%, OnOff = 66.1%, and LeafOn = 
58.9%), the multi-spatial/multi-temporal image dataset 
(CIROnOff) produced the best results.  However, a comparison 
of the Z-scores and p-values (Table 3) for the object-based 
classifications indicates that there was no statistically 
significant difference between CIROnOff and the CIROff 
image datasets (Z-score = 1.426 and p-value = 0.0769).  This 
indicates that the addition of the multi-temporal data does not 
significantly improve the classification accuracy.  Similarly, a 
comparison of the Z-score and p-value of the OnOff and 
LeafOn image datasets (Z-score = 1.854 and p-value = 0.0319) 
shows that these two are also not statistically significantly 
different.  However, the CIROnOff and CIROff image datasets 
were both statistically different from the OnOff and LeafOn 
image datasets (all p-values < 0.0001) (Table 3).  This 
emphasizes the importance of the 1-meter spatial resolution 
data when using the object-based method.  Of the object-based 
classifications, the LeafOn image dataset produced the poorest 
overall accuracy (58.9%) (Table 2). This was expected 
considering this dataset had the least amount of spectral 
 

Method Image Overall 
Accuracy Kappa Kappa 

Variance 

O
bj

ec
t-b

as
ed

 

 CIROnOff 82.0% 0.7842* 0.0004475 

CIROff 78.2% 0.7399* 0.0005164

 OnOff 66.1% 0.5922 0.0007013 

 LeafOn 58.9% 0.5219 0.0007358 

Su
pe

rv
is

ed
  CIROnOff 66.9% 0.6105* 0.0006426 

 CIROff 71.8% 0.6619* 0.0005911 

 OnOff 64.4% 0.5841 0.0006796 

U
ns

up
er

vi
se

d  CIROnOff 64.4% 0.5736 0.0006888 

 CIROff 41.5% 0.2955 0.0007769 

 OnOff 60.1% 0.5218 0.0007886 

* Substantial agreement, based on Landis and Koch (1977) 
benchmarks 

 
Table 2.  Overall Accuracy for each Classification Method and 
Combination of Imagery 
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 Classification Method and Image Combinations 
Object-based Supervised  Unsupervised 

CIROnOff  CIROff   OnOff LeafOn CIROnOff  CIROff OnOff CIROnOff CIROff OnOff 

O
bj

ec
t-b

as
ed

 

CIROnOff 0.0769* < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

CIROff 1.4262*  < 0.0001 < 0.0001 < 0.0001 0.0096 < 0.0001 < 0.0001 < 0.0001 < 0.0001

OnOff 5.6643 4.2328  0.0319* 0.3082* 0.0262* 0.4143* 0.3095* < 0.0001 0.0342* 

LeafOn 7.6244 6.1604 1.8539*  0.0085 < 0.0001 0.0490* 0.0852* < 0.0001 0.4992* 

Su
pe

rv
is

ed
 CIROnOff 5.2587 3.7994 0.5008* 2.3875  0.0718* 0.2339* 0.1559* < 0.0001 0.0095 

CIROff 3.7940 2.3435 1.9394* 3.8435 1.4622*  0.0146 0.0068 < 0.0001 < 0.0001

OnOff 5.9582 4.5037 0.2165* 1.6543* 0.7262* 2.1815  0.3883* < 0.0001 0.0520* 

U
ns

up
er

vi
se

d CIROnOff 6.2455 4.7889 0.4973* 1.3708* 1.0113* 2.4671 0.2838*  < 0.0001 0.0888* 

CIROff 13.9664 12.3580 7.7173 5.8220 8.3626 9.9074 7.5639 7.2660  < 0.0001

OnOff 7.4619 6.0365 1.8227* 0.0020* 2.3451 3.7712 1.6262* 1.3481* 5.7210   

   * Not statistically significant 

Table 3.  Comparisons of Kappa Coefficients of Classification Methods as applied to different Image Combinations using pair-wise Z-
test and probabilities (Zα/2 = 1.96; α = 0.05): Z-scores on lower left and p-values on upper right 
 
information (unmerged image with only 4 bands) and a spatial 
resolution of 10-meters.  The addition of the Spot-5 leaf-off data 
to the LeafOn image substantially improved the user’s accuracy 
for the Deciduous feature class (LeafOn = 59.2% vs. OnOff = 
70.5%) (Table 2). This supports the utility of multi-temporal 
datasets when attempting to distinguish between Evergreen and 
Deciduous feature classes. 
 
A comparison of the supervised classification accuracies indicates 
that the CIROff image had the highest overall accuracy (71.8%) 
(Table 2).  While it was significantly greater than the OnOff 
image (p-value = 0.0145) (Table 3), the addition of the leaf-on 
data (CIROnOff) did not statistically significantly improve the 
classification (p-value = 0.718).  This indicates that the supervised 
classification method can be improved with the addition of higher 
resolution imagery, but that it does not benefit from the inclusion 
of the multi-temporal (leaf-on and leaf-off) data.  This was an 
unexpected result, as the presence of multi-temporal data should 
improve classification accuracy, especially in distinguishing 
between forest feature classes such as Deciduous and Evergreen, 
as well as between Grassland and Barren areas. 
 
The overall accuracies of the unsupervised classifications show 
the CIROnOff image had the highest overall accuracy (66.9%) 
(Table 2) and was statistically significantly greater than the 
CIROff image (p-value < 0.0001) (Table 3), but not significantly 
greater than the OnOff image (p-value = 0.0888).   This indicates 
that for the unsupervised classification, the presence of the multi-
temporal data was more effective at improving accuracy than the 
addition of the high-resolution CIR dataset.  This may be because 

the CIROff image dataset consists of images that are both leaf-off.  
While spatial resolution improved, this image dataset lacks the 
spectral information necessary to distinguish between pixels that 
are spectrally similar, such as barren land and grassy areas during 
winter months.  The OnOff user’s accuracy for grass was 92.0%, 
while the CIROff user’s accuracy was 11.1%.  For barren land, 
the OnOff user’s accuracy was 52.9% compared to 23.1% for the 
CIROff user’s accuracy.  
 
A comparison of the three classification methods when applied to 
the CIROnOff image dataset indicates that the overall accuracy of 
the object-based method was significantly better than the two 
pixel-based methods (both p-values < 0.0001) (Table 3).  There 
was, however, no statistically significant difference between the 
overall classification accuracy of the supervised and unsupervised 
methods (p-value = 0.1559) (Table 3) for this image dataset.  In 
looking at the user’s accuracy for the individual feature classes 
(Table 2), the object-based method generally produced superior 
results.  The object-based method had higher user’s accuracy with 
the following six feature classes: Urban, Deciduous, Evergreen, 
Clearcut, Mixed, and Barren.  
 
For the CIROff image, the object-based classification had the 
highest overall accuracy (78.2%), followed by the supervised 
classification (71.8%) and the unsupervised classification (41.5%) 
(Table 2).  The object-based method was again significantly more 
accurate than the supervised (p-value = 0.0096) and the 
unsupervised (p-value < 0.0001) pixel-based methods (Table 3).  
There was also a significant difference between the overall 
accuracies of the supervised and unsupervised classifications for 
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the CIROff image (p-value < 0.0001).  When comparing the 
user’s accuracies for the individual feature classes, the object-
based classification of the CIROff image generally outperformed 
the two pixel-based methods.  It had higher or equal percentages 
for every feature class with the exception of Urban (supervised = 
86.2% vs. object-based = 79.5%), Mixed Forest (supervised = 
33.3% vs. object-based = 28.4%) and Clearcut (unsupervised = 
100% vs. object-based = 73.7%). 
 
For the OnOff image dataset, there was no statistically significant 
difference (p-value = 0.4143) (Table 3) between the overall 
accuracy of the object-based method (66.1%) and the supervised 
method (64.4%).  Likewise, there was no statistically significant 
difference (p-value = 0.0520) (Table 3) between the overall 
accuracy of the supervised (64.4%) and the unsupervised method 
(60.1%) (Table 2).  Nor was there a statistically significant 
difference (p-value = 0.0342) between the object-based and 
unsupervised classifications of the OnOff image dataset.  This 
indicates that when only medium-spatial resolution (10-meter 
pixels), multi-temporal (leaf-on and leaf-off) imagery were used 
in an analysis, there was no advantage to using an object-based 
classification over a supervised or unsupervised pixel-based 
classification. 
 
There are many factors that can affect classification accuracy 
including: image data quality, the reliability of training data and 
reference/field data, and the accuracy assessment method used, 
just to name a few (Gao and Mas, 2008).  While the use of 
randomly selected field data points and error matrices has 
generally been accepted as a reliable means of conducting an 
accuracy assessment, this may not hold true with object-based 
classifications (Gao and Mas, 2008). Object-based classifications, 
that have clearly reduced or removed the “salt-and-pepper” effect 
present in pixel-based classifications, may appear more visually 
appealing to the analyst, yet be under-evaluated by the single 
point/pixel and kappa index (Carleer and Wolff, 2006; Gao and 
Mas, 2008).   Radoux et al. (2008) have suggested the use of a 
sampling probability that is weighted or proportional to object 
area, since the overall accuracy can be impacted to a greater 
degree by the misclassification of a large area than by 
misclassifying a small area. 

5. CONCLUSION 
 
This research has shown that when merging CIR high-spatial 
resolution aerial imagery with medium-spatial resolution satellite 
imagery, an object-based classification will outperform both 
supervised and unsupervised pixel-based methods.  This supports 
the findings of similar research that has been conducted in the last 
few years.  In general, the addition of the leaf-on data to the 
image dataset improved overall classification accuracy and it 
tended to improve the user’s accuracy for feature classes such as 
deciduous and grassland. 
   
While the range of values for user’s accuracy for the urban cover 
across all classification methods was relatively small.  The object-
based method produced an urban feature class that was much 
more homogeneous, while both supervised and unsupervised 
pixel-based methods produced a very fragmented urban feature 
class.  This is important when the classification is used to develop 
landscape metrics that are sensitive to fragmentation. 

From a visual examination of the object-based CIROnOff image 
classification, it seemed more accurate than the 82.0% stated by 
the accuracy assessment.  This contradiction between the 
improved visual interpretation and the lack of improvement in the 
accuracy assessment supports issues related to the use of standard 
error matrix analysis as applied to object-based classifications 
(Carleer and Wolff, 2006; Gao and Mas, 2008; Radoux et al., 
2008).  This is an area for further research that is beyond the 
scope of this paper.  
 
Technological advances and the growing availability of high-
spatial resolution imagery has focused attention on the limitations 
of traditional pixel-based classification methodologies and 
precipitated the need for more advanced methods.  Object-based 
classification methodologies, that take advantage of both the 
spectral and contextual information in remotely sensed imagery, 
may hold the answer. 
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