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ABSTRACT:  
 
Since the introduction of Airborne Laser Scanning (ALS) know as an alternative aerial-based data acquisition tool, the requirement 
of the 3D model reconstruction in both urban and power-line scenes has dramatically increased. Especially, electric utilities 
including power-line and tower are crucial infrastructures that require considerable resources to be monitored and managed 
effectively. For the establishment of the power-line scene inventory, its geospatial information such as positions and attributes of 
power-line networks should be accurately recorded. This paper presents a 3D classification method to classify power-line scene 
where a few structures including trees, transmission lines and pylons would be vertically overlapped. The research proposes two 
different scales of feature extractions from a volumetric space and its embedded points for taking advantages of full 3D analysis 
against conventional 2D pixel-based analysis. With targeted object instances including ground, vegetation, power-line, pylon and 
building, 21 features to characterize each class are extracted from different segment scale. The Random Forest is investigated as an 
ensemble decision classifier to classify power-line scenes with extracted features. An ultimate goal of the research is to apply a 
knowledge-based classifier trained with small training sample to large-scale unlabelled power-line corridors. In order to achieve this 
goal, this paper conducts a sensitivity analysis in terms of feature extraction scale, feature importance and class distribution over test 
datasets with or without the separation from training data. Experiments suggest that an optimized classification performance of 96% 
success rate by Random Forest can be achieved with point-based feature extraction and data sets with relatively equal distribution of 
the training data. 
 
 

1. INTRODUCTION 

3D object reconstruction in urban, suburban, and power-line 
scenes has become an interesting issue independently on 
specific data: aerial images, ALS (Airborne Laser Scanning), 
and TLS (Terrestrial Laser Scanning). Currently, the frequency 
of the use of ALS data has dramatically increased compared to 
other sensory data due to its advantageous ability of direct 3D 
measurement with high density, accuracy and foliage 
penetration. Recently, a summary of advanced photogrammetry 
and remote sensing technologies using ALS for scientific and 
engineering applications was addressed in Shan and Toth (2008) 
and Vosselman and Mass (2010). However, most of ALS-based 
researches for 3D object reconstruction mainly focused on few 
numbers of urban (i.e., building, terrain and road) and natural 
(trees, canopy and forest) features. Not many research works 
has been reported in the automation of corridor objects such as 
power-line networks. Power-line network is considered as one 
of the most important infrastructures in North America which 
requires reliable monitoring of its safety. Recently, Jwa et al. 
(2009) introduced an automatic algorithm to reconstruct 3D 
transmission models from ALS point of clouds using non-linear 
least square regression method. Most of the proposed methods 
for reconstructing 3D urban and natural objects require a 
reliable classification of ALS data based which 3D modelling 
algorithm can be applied. The accuracy of 3D modelling is 
primarily subjective to the classification errors. In addition to 
the importance of achieving high quality of classification results, 
its cost-effectiveness should be concerned, in particular as the 
algorithm deals with massive scale of modelling coverage and 
spatial-temporal applications. This is the case for power-line 
risk management using ALS data. This research addresses the 

problem of knowledge-based classification when it is trained 
with relatively small training samples, but tends to be applied to 
large-scale unlabelled data for power-line scene classification. 
 
 

2. RELATED RESEARCH 

Classification approaches can be divided into two categories: 
binary classification and multi-class classification. The binary 
classifier aims to classify given scene into pre-dominant two 
features which is often used for solving the fore-to-background 
problem. For instance, Sohn and Dowman (2002) separated 
ground features from non-ground ones which stand above the 
ground by developing RTF (Recursive Terrain Filter). This 
terrain filter progressively finds terrain points through 
evaluating candidate points identified from the iterative TIN 
defragmentation in downward step and upward step. Baillard 
and Maître (1999) represented an objective function of the 
binary classification to separate ground features from above-
ground ones based on the MRF (Markov Random Field) using 
3D information. Rutzinger et al. (2008) developed an object-
based point cloud analysis for classifying ALS data into 
vegetation and non-vegetation features using the ALS Full-
waveform-driven information. Multi-class classification aims to 
classify ALS data into multiple object classes rather than two 
instances at one simultaneous process or by a hierarchical multi-
segmentation. In this category, Axelsson (1999) proposed an 
algorithm which enable to segment ALS data per scan line into 
ground, building, or power-line by applying the MDL 
(Minimum Description Length). Not only using ALS data, 
Lalonde et al. (2006) classified the objects on the terrain into 
three classes: rough surface objects such as grass and tree 
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canopy, linear-like features including wires and tree branches, 
and smooth surface such as ground surface, rocks or large 
trunks using range data collected by laser mounted mobile 
mapping system. They demonstrated three object classes can be 
separable by Bayesian classifier which investigates geometric 
salient features captured from laser point distribution in a local 
neighbourhood. The limitation of deterministic classification 
methods mentioned above is the use of user-specified thresholds. 
 
A new approach for classification of ALS data is to use machine 
learning techniques: Support Vector Machine (SVMs), decision 
tree, boosting, neural networks and so on. The Random forests 
(Breiman, 2001) is recently emerged as a state-of-the-art 
machine learning technique which considers ensembles of 
decision trees, rather than single tree generated by a base 
classifier. The advantage of Random Forest (RF) does not rely 
on use-specific thresholds for its decision. Furthermore, there 
nearly is no limitation with the number of feature variables 
required for decision node splitting. Compared with other 
classifiers, the accuracy of the RF is as good as Adaboost which 
is well known classifier with high success in machine learning. 
Additionally, the RF automatically sorts feature variables on the 
basis of variable importance for best splitting at each node. 
Narayanan et al. (2009) apply ensemble classifiers including the 
RF for generating under-water habitat maps using the Optech’s 
SHOALS system. They choose the best classifier through a 
quantitative comparative analysis of the ensemble classifiers 
and apply the selected classifier for benthic habitat classification. 
Carlberg et al. (2009) labelled the ALS data into a few of object 
classes including water, ground, roof, tree, and others. The 
method was developed based on a cascade of binary classifiers 
specifically trained for the individual class. The unlabelled 
lasers points were progressively classified by a set of the 
proposed binary classifiers using the RF. Chehata et al. (2009) 
produced a RF classifier using several important features among 
designed 17 features for the purpose of urban scene 
classification. The ensemble classification was accomplished 
using 2D rasterized data which might lead to an ambiguity 
between building and ground.  
 
In this paper we investigate the potential of the RF classification 
for power-line modelling application using the ALS point of 
clouds. An ultimate goal of the research is to apply a 
knowledge-based classifier trained with small training sample to 
large-scale unlabelled power-line corridors. In order to achieve 
this goal, this paper conducts a sensitivity analysis in terms of 
feature extraction scale, feature importance and feature 
distribution over test datasets with or without the separation 
from training data. In addition, the presented research focuses 
on the classification advantages gained by a 3D profile analysis 
which extract classification features computed from vertical 
segments. A vertical distribution of classified features and their 
topological and semantic relations can be used as additional 
reasoning cues for rectifying the RF classification results 
populated in a point-wise processing manner. As address in 
Chehata et al. (2009), an uncertainties where several objects are 
overlapped at one place (e.g., trees standing nearby buildings) 
can be resolved if a 3D analysis for its vertical superposition is 
investigated. This paper is outlined as follows: the next section 
describes a pre-processing procedure to detect terrain features 
for attributing the above-ground points in height and multiple- 
feature extraction for the RF decision. In section 4, we describe 
the Random Forest as a selected ensemble classifier which is 
trained using features computed from 3D volumes. Finally, we 
present experimental results and draw conclusions with respect 
to the sensitivity analysis of the RF in terms of feature 
extraction scale, feature importance and feature distribution 

over test datasets with or without the separation from training 
data. 
 
 

3. PREPROCESSING AND FEATURE EXTRACTION 

3.1 Terrain filtering 

The most of power-line networks are built in open spaces where 
ground feature are predominant compared to the occupancy of 
the other features. Under these circumstances, the ground points 
are typically recognized as a dominant feature. If any object (i.e., 
terrain feature for power-line scene) feature over-occupies a 
given scene, its biased feature distribution would cause errors in 
a fair training of the machine learning algorithms. Thus, for 
improving decision tree training, the contribution of the terrain 
feature should be excluded in advance. The efficiency of 
currently existing terrain filtering algorithms which have been 
developed over the past years has been already validated. In this 
study, we use a RTF (Recursive Terrain Filter) developed by 
Sohn and Dowman (2002) to identify the terrain feature. 
However, the classified terrain is taken into consideration while 
computing feature variables. 
 
3.2 Segmentation 

LIDAR is usually pre-processed in three ways depending on the 
segment scale for the purpose of reducing the complexity and 
simplifying a scene: point-based, 2D grid-based, and voxel-
based. The first method has an advantage of that each point 
possesses original values on features, but it has a drawback to 
the processing time due to handling individual points. A 
spherical volume is traditionally used to find neighbours of a 
certain point. The second might make a result much more 
quickly, but the height of each point could be neglected due to 
the dimensional reduction and the height interpolation. The last 
way has the benefit of maintaining three dimensional 
information of point and shortening its throughput at the same 
time. 
 
In the both voxel-based and sphere-based segmentation, the 
most important factor is the segment size. It is generally decided 
by the space which certain patterns can be extracted from the 
member points in. When it is too big, points corresponding to 
two or more different classes could be combined in a huge 
segment. On the other hand, it could be difficult to identify the 
part of a structure due to few points of a voxel if it is too small. 
In this study it is a minimum size to recognize that the member 
points of a segment are a part of a natural or a man-made 
structure, and it is determined by a sensitivity analysis on 
extensive segment sizes as performed in section 5.5. The 
optimal segment size dependent on the unit of 3D point cloud is 
chosen to 3 meter or 10 feet. In spite of the optimal size, 
however, the mixture of points belonging to two or more 
structures surely exists at the place where two structures are 
linked. For instance, all vegetations are always grown on the 
ground and vegetations under the clearance violation reach 
power-lines. The classification errors would frequently occur 
among these segments. The 3m of voxel and 1.5m radius of 
sphere are respectively used for voxel- and point-based feature 
extraction. 
 
3.3 Feature variables 

The feature variables are computed from the geometry of 
member points within the volumetric space segmented by voxel 
(voxel-based) and sphere (point-based). For point-based feature 
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extraction, features of a certain point are computed by using its 
neighbours within a spherical space with a fixed radius from the 
point. Thus, the following 21 features are extracted per each 
voxel and point. Figure 1 includes the colorized map of the 
ground truth and several important features derived by the 
point-based feature extraction approach. 
 

  
(a) Ground truth (b) Height 

  

  
(c) Vegetation echo (d) Sphericity 

  

  
(e) Terrain echo (f) Anisotropy 

  

  
(g) Homogeneity of surface 

normal 
(h) Density ratio 

  

  
(i) Hough Transformation 

(HT) 
(j) Point density 

  

Figure 1. Ground truth and 9 important features (blue: low and 
red: high) 

 
3.3.1 Height from ground level 
A digital terrain model (DTM) is formed by the recursive TIN 
fragmentation in every downward and upward stage (Sohn and 
Dowman, 2002). The height is the vertical distance from a 
certain point to the previously formed terrain surface in both 
approaches. If the terrain is one of the target classes whose 
classification is necessary, this would be the most important 
feature. 
 
3.3.2 Hough transformation (HT) 
The HT, which is a general method to extract linear objects such 
as roads from images, needs to be enhanced prior to being 
applied to the two dimensional points that are projected onto the 
base plane of each segment. This is because the projected power 
line points cannot be placed on an ideal straight line due to the 
system errors of ALS (the horizontal error with a laser scanner, 
the vibration of airplane, and GPS/IMU error) and 
environmental effects (ice and wind load). Additionally, 
multiple wires could exist within a segment. Therefore, for the 
HT value we consider a global maximum and several local 
maxima existing in the range near the θ corresponding to the 
global maximum bin in an accumulating matrix of the HT 

domain. In here it is supposed that the multiple wires are 
parallel each other. When the perpendicular angle to the 
orientation direction of the line with the global maximum is 
θgmax, the range of θgmax-1 to θgmax+1 is taken into account to 
find local maxima bins. The θ size of a bin is 2 degrees, so the 
range for local maxima search is θgmax ±2°. Conclusively, the 
HT value considering the votes of a global maximum and local 
maxima is defined by: 
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where, Vgmax = the vote of a global maximum bin 
Vithmax 

= the vote of the ith local maximum bin existing 
between θgmax±1 

Nmax = the number of maxima bins 
Npt 

= the number of points within a segment 
 
3.3.3 Eigenvalue-based 
The eigenvalues are computed from the covariance matrix 
between x, y, and z of 3D points. Supposed that the extracted 
eigenvalues are λ1, λ2, and λ3 (λ1 > λ2 > λ3), three variables 
might have different values according to following three cases: 
λ1 ≈ λ2 ≈ λ3 for scattering points, λ1, λ2 >> λ3 for points on 
surfaces, and λ1 >> λ2, λ3 for linear structures. On the basis of 
this principle, the following features on eigenvalues are defined 
(Chehata et al., 2009): 
 
Anisotropy, which is opposed to isotropy, means the 
homogeneity of point distribution in three arbitrary 
perpendicular axes. This feature is useful to separate anisotropic 
structures except for vegetation. 
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(2) 

 
Linearity: This helps to detect linear structures similarly to the 
HT. However, the linearity on eigenvalues also shows high 
values at building edges as well as power-line. 
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Planarity: Planar structures such as ground and building roofs 
could be extracted by this feature. 
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Sphericity: This indicates the magnitude of equally distributing 
in all three directions for points. Vegetation could be strong. 
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3.3.4 Surface-based 
The plane-based features are measured by generating an 
estimated plane or TIN models from member points of a given 
segment. These are associated with surface slope, surface 
roughness and homogeneity of surface normal.  
 
Plane slope: This is the angle difference between normal vector 
of an estimated plane and the z direction. The neighbouring 
points are regressed by a plane. Building roofs and ground 
mostly have weak values compared that vegetation has random 
values. 
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Homogeneity of surface normal: TIN generation is first 
necessity to create a surface model. This feature is the variance 
between the normal vectors of TINs. Vegetation has very high 
value in the variable. 
 
Surface roughness: This feature is the root mean square of the 
orthogonal distance from points to an estimated plane. 
Vegetation would stand out since its point dispersion. 
 
Distance to surface: This is closely similar to the surface 
roughness, but is the vertical distance between individual point 
and an estimated plane. 
 
3.3.5 Convex hull-based 
XY projection area: For this feature, the member points are 
projected on XY-plane, and then the convex hull of the 2 
dimensional points is run to derive their boundary. XY 
projection area is area of the region formed by the 2D convex 
hull. Ground and building roof could have high value of the area. 
On the contrary, power-line has almost zero value. 
 
Bounding volume: Through computing the 3D convex hull of 
member points, the bounding volume of the polyhedron shaped 
by the points can be estimated. Unlike the XY projection area, 
bounding volume might be strong in only case of vegetation. 
 
3.3.6 Echo-based 
Echo-based features are determined by combining the number 
of points corresponding to single (Ns), first (Nf), intermediate 
(Ni), and last return (Nl). Npt is the number of all member points. 
In here, the single return indicates a unique reflection without 
multiple returns, and the first return means the first reflection 
among multiple returns. 
 
Terrain echo: Although terrain points are not importantly dealt 
with in this study, this feature would be helpful to roughly 
classify raw data including terrain. Terrain is mainly recorded as 
single return or last return. Therefore, the two returns are 
considered for terrain echo. 
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Vegetation echo: The efficiency of this feature has been 
already validated by Rutzinger et al. (2008) for urban vegetation 
classification. Generally, vegetation has a considerable amount 
of intermediate returns due to multi-return from its leaves. In 
addition, the first return would be found on crown surface of 
vegetation. Consequently, vegetation mostly has the 
intermediate return and the first return in LIDAR. 
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Power-line echo: Power-line structure should be constructed on 
an open place which is not surrounded with any natural or 
artificial obstacles dangerous enough to break down it or where 
the obstacles have been removed by human. Accordingly, a 
laser pulse hitting a power-line has mainly a first return 
reflected from the power-line. Furthermore, the foot print size 
of the laser which approaches a power-line is bigger than the 
diameter of the power-line. That is, there would be another 
return from typically ground. Therefore, power-line is generally 
first return among the multiple returns, not single return. 
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Building echo: A laser cannot surely penetrate building roofs 
made of the concrete materials. In other words, there is no more 
return excluding a reflection from roofed top. Building echo 
considering only single return is defined as follow: 
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3.3.7 Density-based 
Point density: is the number of points within a given segment 
divided by its volume. Generally, these for ground and building 
roof are the largest and vegetation is stronger than power-line in 
the value. 
 
Density ratio: This feature was also invented by Rutzinger et al. 
(2008) to differentiate vegetation. According to his method as 
shown in figure 2(a), density ratio of a certain LIDAR point 
means a ratio between point densities of a projected circle from 
a cylinder of radius r and a sphere of radius r (Eq. 10). This 
method is applied for point-based approach. However, for 
voxel-based approach, this is rearranged by considering a cube 
and a rectangle instead of a sphere and a circle as the figure 2(b). 
It is defined as Eq. 11. 

 rN
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where, N3D and N2D are the number of points within a target 
segment (sphere or voxel) and the projected shape (circle or 
rectangle) respectively. The r and DV indicate radius of a sphere 
and the voxel size. The overhead and separated power-lines 
have low values because of plenty of ground points under it. It 
is very high in case of objects with dense points around such as 
ground and building. Vegetation would be between power-line 
and ground. 
 

  
(a) Point-based computation (b) Voxel-based computation 

Figure 2. 3D/2D density ratio 
 
3.3.8 Vertical Profile 
Vertical structures such as trees, streetlights and power-line 
towers show the vertical continuity of on-segment, in here on-
segment means the segment occupied with one or more points. 
In contrast, floating structures like power-line have a few of 
vacant segments called off-segment. For extraction of these 
features, a vertical profile (rectangular column for voxel-based 
or cylinder for point-based) is sliced by several bins of 75cm 
height (a quarter of segment size). 
 
On-segment: is the number of on-segments along to a vertical 
profile. 
 
Continuous on-segment: This feature value corresponds to the 
maximum count of on-segments stacked continuously. It is 
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investigated for detecting a vertically formed structure like 
electric pylon. Pylon and high vegetation have high values. 
 
Continuous off-segment: This is the opposite of continuous 
on-segment. Overhead power-line would have high count 
because of empty space between ground and power-line. 
 
 

4. 3D CLASSIFICATION WITH RANDOM FORESTS 

Every voxel and every point respectively posses the 21 features 
derived through the voxel- and point-based feature extraction 
when there are more than a given number of member points. For 
voxel-based feature extraction, the all feature values of each 
voxel are assigned to its member points. After that, the Random 
Forests (RF) is applied to points which a pair of the 21 features 
have been assigned to by the two feature extraction approaches 
in order to tag them into one of following classes: ground, 
building, vegetation, wire, and pylon. The RF is an ensemble 
classifier which is able to generate considerable number of 
decision trees learned by a partial or entire training data set and 
then derive an optimal tree which minimizes the generalization 
error among previously generated trees. For the RF we used a 
customized Weka 3.5.1 which includes some implemented 
functions - the evaluation of variable importance, interactions 
and proximities between individual decision trees, and so on. 
The variable importance of the customized Weka is perfectly 
same as Breiman’s algorithm (Breiman, 2001). For training, the 
RF fixed M = 4 and T = 60, which mean the randomly selected 
feature number at every node split and the number of populated 
trees, in order to lead a learned classifier to be independent on a 
training sample. 
 
 

5. EXPERIMENTAL RESULT 

5.1 Training set (TR) and test set (TE) 

The test data set was acquired along to east and west of Folsom, 
California, USA in August for the purpose of power-line 
management in order for violation clearance against vegetation. 
The coverage of the data is approximately 6870(EW)×1263(SN) 
m2 and it was collected using Riegl Q560 with 30/m2 of the 
point density on average. Two subsets are taken from regions 
2.5km away in the original data set: a training set (TR) and a 
test set (TE). The both data contain not only terrain, vegetation, 
power-line, power-line tower, and building which are 
interesting classes in this study, but also are manually or semi-
automatically classified by a worker with a plenty of experience. 
We regard the manual classification output as a ground truth. 
The scene similarity between TR and TE considerably affects 
the classification result of TE. This is because the classifier 
learned by TR depends on the extracted features and they 
computed from TE would be similar to TR’s. Table 1 
summarizes the data characteristics between TR and TE. The 
likeness would be expected to lead a good classification result 
of TE, but our experiments more focus on the comparison of 
two approaches with respect to the feature extraction depending 
on a segment scale (point or voxel) and sensitivity analysis 
regarding the class uniformity. Thus, the main experiments are 
categorized into two tests: voxel-wise versus point-wise feature 
extraction, and classification with and without ground points. 
Another experiment is to determine the best segment size 
through a sensitivity analysis. 
 
Setting TR TE 
Points 194,289 484,092 

Point density 38.75/m2 32.29/m2 
Surface slope 0.5° 0.05° 
Bldg. roof type Gable Gable 
Power-line voltage 115kV 115kV 
Pylon type #1 Lattice Lattice 
Pylon type #2 3-level 3-level 
Tree proximity close to building 

and pylon 
close to building  

Table 1. Data similarity of TR and TE 
 
5.2 Voxel-wise vs. Point-wise Feature Extraction 

General approaches for feature extraction which dealt with 3D 
point cloud average feature values with member points of a 
segment or interpolate them with neighbouring segments. That 
method is called segment-wise feature extraction. In the 
contrary, point-wise method handles the original values of 
points without any interpolation and simplification. We derived 
21 features for each voxel and each point based on two different 
volumetric approaches with respect to segment scale: voxel-
wise and point-wise. After that, the feature values extracted by 
voxel-based method are assigned to member points of each 
voxel. That is, each point has two values corresponding to a 
feature variable. The RF was applied for comparative analysis 
of the performance of the two extraction approaches. The TR 
was split into 1/10 for training and 9/10 for validating (leave-
one-out), which is similar to 10-fold cross validation typically 
used in machine learning.  
 
Class Grnd Veget Wire Pylon Bldg Accuracy(%) 
Grnd 79,215 49 0 0 14 99.92 
Veget 82 63,447 96 3 429 99.05 
Wire 2 95 5,803 78 22 96.72 
Pylon 2 55 105 912 4 84.60 
Bldg 23 404 30 0 23,848 98.12 
Table 2. Confusion matrix for TR using voxel-wise method 
(M=4 and T=60) 
 
Class Grnd Veget Wire Pylon Bldg Accuracy(%) 
Grnd 79,206 57 5 0 10 99.91 
Veget 111 63,449 26 4 467 99.05 
Wire 3 93 5,840 62 2 97.33 
Pylon 2 43 38 995 0 92.30 
Bldg 26 679 46 0 23,554 96.91 
Table 3. Confusion matrix for TR using point-wise method 
(M=4 and T=60) 
 
The confusion matrices corresponding to the validation result of 
the trained classifiers with respect to the two feature extraction 
approaches are given in table 2 and table 3. The point-wise 
method is more uniform than the voxel-wise method in the 
classification accuracy of each class. This happened because the 
spherical volume for neighbourhoods search is more valid than 
arbitrary segmented voxel in terms of a certain point. 
Nevertheless, the voxel-based approach led for a reasonable 
success rate. In addition to its good accuracy, it could be applied 
for quick classification of a large-scale corridor data thanks to 
its short computing time in feature extraction. However, we 
applied the point-wise approach for all next experiments. In 
both table 2 and table 3 the learned classifiers have a 
considerable uncertainty between vegetation and building 
compared to the others. It is because some of trees stand very 
closely to building and some of the trees’ branches were 
extended right on building roof top in the TR. 
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5.3 Classification with and without ground points 

The limitation of the classification algorithm of the machine 
learning including the RF is that a trained classifier strongly 
depends on the class with the highest frequency. That is, the 
classifier is not suitable for detecting minor classes. The ground 
is one of the dominant classes in power-line scene as well as 
sub-urban area. The RTF terrain filter described in section 3.1 
can remove ground points out of untagged LIDAR data. Once 
removing them, the frequency of the remaining classes might be 
almost equal. Figure 4 represents the variation of variable 
importance considering and not considering ground and 9 
features which seem to be critical without ground are only 
shown. According to the figure 4, the Height, contributing 
feature to terrain detection, appeared to be less important 
without ground, but it is still the most critical feature for the 
other classes. While, the importance of Anisotropy, Density 
Ratio, and HT increased. This means the trained classifier was 
changed to be sensitive to the others. Another way to resolve 
this limitation is to take out a training set in which all classes 
are uniformly distributed (Lodha, 2007). For this test the RF 
was run based on feature derived by point-wise approach using 
both ground removed TR and TE. 
 
When comparing to TEIG and TEEG in figure 5, the 
classification accuracy of vegetation, pylon, and building was 
somewhat improved since a fair classifier which is able to care 
minor classes. Additionally, the importance of features relevant 
to them was increased. However, power-line is nearly same as 
previous one in spite of increasing importance of HT. Perhaps 
there would be certain features substituting for HT in the sample 
with ground. 
 

 Figure 4. Variation of variable importance (with TR) 
 

 
Figure 5. Classification result of TR and TE with and without 

ground points 
 
5.4 Important feature selection 

We selected 9 important features for classifying samples 
without ground in section 5.3. The TE without ground was 
applied for comparing performance when the RF uses 9 features 

and entire features (Table 4). Most were classified similarly to 
the result of the method using entire features excluding electric 
pylon. There were not any features enabling to characterize 
pylon among the 9 features. Figure 6 depicts the classification 
map for TEEG using only 9 features. Most errors of pylon are 
appeared near ground and vegetation because they include 
nearby ground and vegetation as their neighbourhoods while 
computing the features. 
 
Class Veget Wire Pylon Bldg Accuracy(%) 
Veget 63,491 48 13 575 99.00 
Wire 97 5,831 50 23 97.17 
Pylon 103 106 856 2 80.23 
Bldg 656 27 0 23,528 97.18 
Table 4. Confusion matrix for TREG using 9 important features 
 

 
Figure 6. Classification map for TEEG using 9 features 

 
5.5 Sensitivity analysis on segment size 

The derived features from two applied volumetric approaches 
are very sensitive to the segment size. For determining the best 
segment size we perform a sensitivity analysis on it. The 9 
features of the TREG are tested for comparing classification 
performance with respect to 2m to 7m segment sizes (Figure 7). 
As expected, too large and small segment sizes show worse 
classifications due to the multi-class points and scarce points in 
a segment. Therefore, 3m is chosen as the best segment size. 
 

 
Figure 7. Comparison of classification performance on segment 

size (with TREG) 
 
 

6. CONCLUSIONS 

This research investigates 21 features which are able to 
respectively highlight five classes: ground, vegetation, power-
line, pylon, and building, which can be typically found in a 
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power-line scene from LIDAR data. The Hough Transformation 
(HT) and vertical profile analysis are newly attempted for 
detecting power-line and pylon which are major electric utilities 
in the power transmission system. The considered features are 
computed through voxel- and sphere-based volumetric approach. 
The RF then is applied based on the derived features. From the 
comparative analysis of them, we conclude the voxel-based 
feature extraction makes an acceptable classification result, but 
the point-based approach (sphere-based feature extraction) is 
more uniform in terms of all the classes. In addition to feature 
extraction, the effect on the class frequency is tested to create an 
unbiased classifier of each class by making samples to have 
uniform distribution as removing ground, which is typically the 
most dominant class in sub-urban and power-line scene. As the 
result, vegetation, pylon, and building classification are a little 
improved but, there is no enhancement of power-line despite an 
increasing importance of HT. We try to select several important 
features which are relevant to structures in power-line scene 
without ground. The selected 9 important features are applied to 
the test sample (TE) in order to compare with the case of using 
all features. In the test classification performance of 95.9% 
success rate is achieved compared to 96.4% of all feature used 
method. Major misclassification is mainly appeared in pylon 
parts near ground and vegetation due to close proximity. The 
3m of segment is chosen as the best size for feature extraction 
from a sensitivity analysis on it. For the validation of our 
approach, a comparison with other classification methods is 
necessarily required, but this study more focuses on the 
investigation of extractable features from LIDAR and the 
selection of important features closely related to power 
structures. Therefore, the comparison will be performed for 
future work. 
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