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ABSTRACT:

Accurate and reliable localization in extensive outdoor environments will be a key ability of future driver assistance systems and
autonomously driving vehicles. Relative localization, using sensors and a pre-mapped environment, will play a crucial role for such
systems, because standard global navigation satellite system (GNSS) solutions will not be able to provide the required reliability.
However, it is obvious that the environment maps will have to be quite detailed, making it a must to produce them fully automatically.
In this paper, a relative localization approach is evaluated for an environment of substantial extent. The pre-mapped environment is
obtained using a LIDAR mobile mapping van. From the raw data, landmarks are extracted fully automatically and inserted into a
landmark map. Then, in a second campaign, a robotic vehicle is used to traverse the same scene. Landmarks are extracted from the
sensor data of this vehicle as well. Using associated landmark pairs and an estimation approach, the positions of the robotic vehicle
are obtained. The number of matches and the matching errors are analyzed, and it is shown that localization based on landmarks
outperforms the vehicle’s standard GNSS solution.

1 INTRODUCTION

Mobile mapping systems using laser scanners combined with
GNSS and inertial sensors are well suited for the production of
large scale maps, since they reach a relative accuracy of down
to a few centimeters. With a rate of more than 100,000 points
per second, they capture the environment in great detail (Kukko
et al., 2007). The problem of building a representation of the
environment using laser scanners has also been investigated in
robotics. Iconic representations, such as occupancy grids, have
been used as well as symbolic representations consisting of line
maps or landmark based maps (Burgard and Hebert, 2008). One
of the major problems to solve is the simultaneous localization
and mapping (SLAM), which incrementally builds a map while
a robot drives (and measures) in unknown areas (Thrun et al.,
2005). Often, 2D laser scans (parallel to the ground) are used for
this, but it has also been extended to the 3D case (Borrmann et
al., 2008).

Similar developments take place in driver assistance research.
Active safety systems should completely prevent accidents, in-
stead of just reducing the consequences. Therefore, vehicles are
using more and more on-board sensors such as cameras, laser
scanners or radar to gather spatial information about their envi-
ronment. Compared to standard car navigation systems, these
so-called advanced driver assistance systems (ADAS) operate
at a very detailed scale, requiring large scale maps. The re-
quirements for future maps and the possible capturing methods
have been investigated in the NextMAP project (Pandazis, 2002).
Some investigations with regard to the required detail and accu-
racy have been made in the ‘Enhanced Digital Mapping’ project
(EDMap, 2004). ADAS applications have been classified, ac-
cording to their requirements, into ‘WhatRoad’,‘WhichLane’,
and ‘WhereInLane’, the latter requiring a mapping accuracy of
±0.2 m. It was concluded that contemporary mapping techniques
would be too expensive to provide such maps for the ’Which-
Lane’ and ’WhereInLane’ case.

A key observation is that these findings assume a ‘traditional’
map production, i.e. the map is a highly abstract representation
in terms of a vector description of the geometry, with additional
attributes. However, depending on the application, this is not al-
ways necessary. For example, the accurate positioning of vehi-
cles using relative measurements to existing map features does
not necessarily require a vector map in the usual sense. Rather,
any map representation is acceptable as long as it serves the pur-
pose of accurate positioning. This means that map production
to derive a highly abstract representation (which usually involves
manual interaction) is not required, but rather a more low-level
representation is suitable as well (which can be derived fully au-
tomatically and thus, inexpensively).

This approach is investigated in this paper. Since it would be
unreasonable to provide dense georeferenced point clouds for the
entire road network, a landmark based map is used instead, which
has very low storage requirements. Poles are extracted fully au-
tomatically from an extensive 22 km Lidar mobile mapping cam-
paign and stored in a reference data base. Then, a robotic vehicle
is used to drive two trajectories in the mapped area, of 4.6 and
12 km length, poles are extracted from the vehicle’s sensor data
as well, and the ability to derive the location correctly using pole
matching is assessed.

2 ACQUISITION OF THE REFERENCE MAP

To obtain the reference map, a dense laser scan of a number of
roads in Hannover, Germany, was acquired using the Steetmapper
mobile mapping system (Kremer and Hunter, 2007) with a con-
figuration of four scanners. Two scanners Riegl LMS-Q120 were
pointing up and down at an angle of 20◦, one was pointing to the
right at an angle of 45◦. Another Riegl LMS-Q140 was pointing
to the left at an angle of 45◦. The LMS-Q120 has a maximum
range of 150 m and a ranging accuracy of 25 mm. All scanners
were operated simultaneously at the maximum scanning angle

In: Paparoditis N., Pierrot-Deseilligny M., Mallet C., Tournaire O. (Eds), IAPRS, Vol. XXXVIII, Part 3A – Saint-Mandé, France, September 1-3, 2010

139



of 80◦ and scanning rate of about 10,000 points/s. Positioning
was accomplished using IGI’s TERRAcontrol GNSS/IMU sys-
tem which consists of a NovAtel GNSS receiver, IGI’s IMU-IId
fiber optic gyro IMU operating at 256 Hz, an odometer, and a
control computer. The scanned area contains streets in densely
built-up regions as well as highway like roads. The total length
of the scanning trajectory is 21.7 kilometers, 70.7 million points
were captured. On average, each road meter is covered by more
than 3,200 points.

From this point cloud, poles were extracted, such as traffic signs,
traffic lights, and trees, to be used as landmarks. Poles have the
property that they can be extracted quite reliably from the point
cloud and are usually present in larger numbers in typical street
corridors. The potential of poles for localization has been shown
earlier by (Weiss et al., 2005) in the context of positioning along
an intersection.

A relatively simple approach is used for finding and extracting
poles, which is described in (Brenner, 2009a). The basic prin-
ciple is to define poles as upright structures of a certain maxi-
mum diameter which do not contain other scanned points in their
vicinity. This is controlled by two thresholds, the inner and outer
(vicinity) radius. Due to attached structures such as signs or traf-
fic lights, many actual poles would not qualify for this definition,
as there would appear to be points in the vicinity. Therefore, anal-
ysis takes place in layers and a pole is accepted if the criterium is
fulfilled for a certain number of layers. After being accepted, all
points in the kernel are used for a least squares estimation of the
pole center and the 2D coordinates of this center are inserted into
the landmark map.

Using this algorithm, a total of 2,658 poles were found fully au-
tomatically, which is one pole every 8 meters on average. The
results have been analyzed manually in (Hofmann and Brenner,
2009). Regarding the error rate, about 6% false positives were
found on average, with higher rates of up to more than 30% in
densely built-up areas. False positives are mainly due to occlu-
sions, generating narrow bands of scan columns which have the
same appearance as scanned poles.

3 EXTRACTING LANDMARKS USING A ROBOTIC
VEHICLE

The second campaign was undertaken using ‘Hanna’, a robotic
vehicle developed by the Real Time Systems Group (RTS) at the
Institute for Systems Engineering at the Leibniz Universität Han-
nover, Germany. It was acquired along the trajectory of the first
scan, however excluding highway parts because of the limited
speed of the vehicle. Data were obtained in two runs, the first one
with a length of 4.6 km, the second one with a length of 12 km.

‘Hanna’ uses four laser scanners SICK LMS 291-S05, which are
mounted in pairs of two on rotary units so that full 3D scans are
obtained. The maximum range is 30 m at a ranging accuracy of
60 mm. The vertical field of view is 90◦, at 1◦ spacing. The
horizontal field of view for the left scanner is from −210◦ to
+50◦, and symmetric for the right scanner (taking 0◦ as the driv-
ing direction). It takes 2.4 s for a full rotation of the rotary unit.
Using two scanners per unit, the time for a full scan is reduced
to 1.2 s. However, for the experiments, only one scanner of one
(the left) rotary unit was used. Clearly, this sensor setup is much
less expensive and closer to a possible mass product, while be-
ing inferior to the Streetmapper scanner setup in terms of range,
accuracy, and density.

For positioning, ‘Hanna’ uses a Trimble AgGPS 114 without dif-
ferential corrections. A speed sensor at the gear and an angu-
lar encoder at the steering provide the odometer data. Both data
sources were used in the experiments. Using the GPS data, ‘stan-
dard’ vehicle positioning was obtained. This is compared to a
positioning based on odometer and steering angle data in con-
junction with landmark matching (i.e., not using GPS at all). All
data, including GPS positions and headings, odometer data and
scanned point clouds, were time stamped and recorded for later
processing.

Scan data is stored in terms of scan frames, where one frame
is a horizontal sweep of any of the four scanners. One exterior
orientation is given for each single frame. As the vehicle moves
during the scan, scanpoints are motion compensated in such a
way that the single, given orientation holds for all points of the
frame.

While for Streetmapper data, pole extraction was performed in
object space, this is much harder in case of the ‘Hanna’ datasets.
The reason for this is that the vertical scan columns are relatively
sparse. Therefore, in object space, it is almost impossible to tell
if a column of stacked points is due to an actual pole or just a
consequence of this low density. At the same time, combining
several scans along the trajectory to obtain a higher density is
also not trivial due to the relatively large positioning errors of the
vehicle.

Therefore, the poles were extracted from single scans, using the
raw data rather than the 3D point cloud. Since the points were
recorded in succession, column by column, a neighborhood can
be defined on the row and column indices. That is, analysis is per-
formed on the depth image, indexed by the horizontal and vertical
scan angles. One has to keep in mind, though, that this image is
not an exact polar representation due to the forward movement
of the vehicle during the scan. Poles are extracted by searching
for vertical columns which have height jumps to both their left
and right neighboring columns. Alternatively, successive pairs of
columns are allowed with similar properties to account for poles
in the foreground. The resulting point subsets are checked for a
minimal height. A line is fitted to each point set and accepted
based on the point residuals and the line orientation (which must
be upright). Figure 1 shows the depth images and typical detec-
tion results.

In total, 2,250 poles were detected in 1,384 scans of the first run
and 3,598 poles in 3,237 scans for the second run. In 35% (first
run) to 40% (second run) of the scans, no poles were found at
all. Figure 2 shows the distribution of the number of scans in
which n (0 ≤ n ≤ 9) poles were found. As can be seen, the
scans in which no poles were found is the largest group, and the
percentage decreases quickly with increasing n. However, one
has to keep in mind that still, (by accumulation) one or more poles
were found in 60%-65% of the scans.

4 LANDMARK ASSOCIATION

Given the reference database of pole locations and the poles ex-
tracted from the ‘Hanna’ scans, the task is to associate and match
poles in order to find the absolute position of the vehicle for every
scan location. Of those two problems, association (of landmarks)
is known to be the more critical step. Two subproblems may be
differentiated, namely, finding the initial location and tracking
the location (given the location of the previous scan). The initial
location can be obtained using a match in the global pattern of
poles, which turns out to be a standard 2D point pattern match-
ing problem (Brenner, 2009b). This, however, requires to find a
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Figure 1: Typical pole detection results for ‘Hanna’ scans. Black
is near, white is far (or error), and detected poles are marked in
red. From left to right and top to bottom: typical inner city scene
with buildings and trees to the left and right, alley scene, complex
intersection along a road with several lanes, scene where possi-
ble poles are occluded by a large van. In all scenes (except the
second), other cars can be seen in the foreground.
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Figure 2: Histogram on the percentage of ‘Hanna’ scans (y axis)
in which 0 ≤ n ≤ 9 (x axis) poles were found. Left (blue)
colums are for the first run, right (red) columns for the second
run.

large enough subset of poles with sufficient accuracy, which is
not easy to obtain, since it requires a good local positioning ac-
curacy of the vehicle (remember that approximately 40% of the
scans have no detected poles at all). Alternatively, GPS data can
be used to find an approximate initial solution. Then, the second
problem consists of tracking the location. A number of experi-
ments were conducted regarding automatic tracking using poles
(Brenner and Hofmann, 2010) which worked well in some cases
but failed in others.

As it turned out, analysis of the errors is quite hard, since the
matching of such long trajectories involves a huge number of
automatically found associations, which cannot be judged eas-
ily from text protocols of the matcher. Therefore, it was decided
to implement an interactive editor which allows to set, delete and
visually explore the associations. This decouples the two tasks
of association and matching, making the association a manual
process. The interactive editor allows us to immediately see the
effect of setting or deleting an association on the recovered trajec-
tory. It allows to load different trajectories, such as a trajectory

based on (absolute) GPS measurements and another, based on
(relative) dead reckoning using odometry data only, and is able to
switch between these trajectories instantly. It also can switch be-
tween different matching modules instantly, so that the effects of
different matching strategies can be judged easily. Figure 3 shows
two example views. Typically, a user will switch back and forth
between different trajectores and matching modules while setting
and deleting assignments. There is a convenient ‘fence’ mode for
pole selection so that multiple scanned poles can be assigned to
one reference pole at once.

Using this editor, 1,898 (84% of 2,250) poles of the first run and
2,223 (62% of 3,598) poles of the second run were associated.
The manual assignment gave some insights into the situation. For
example, it was expected that finding correct associations will be
hard in an alley area, due to the high density of trees, leading
to ambiguous situations. However, this was not the case. Since
the editor allows to ‘walk’ along the trajectory, and making asso-
ciations immediately has an effect on the trajectory, it was quite
easy to incrementally find the associations along the alley. On the
other hand, some seemingly ‘easy’ situations proved to be quite
hard. There are a number of cases where trees, signposts, traffic-
and streetlights stand very close, causing them to be missed in
either the reference or the scan data. The editor also displays or-
thophotos with 0.4 m ground resolution, which help in some of
the cases to disambiguate the situation. A key problem is that
while dead reckoning gives a quite smooth trajectory, the head-
ing drifts severly. This causes the position to drift quickly in sit-
uations where there is only a low density of poles. This large
drift, combined with very close possible pole associations, causes
a matching ambiguity. Even though being subjective in a sense,
it is assumed that the manual assignments are correct in the vast
majority of cases.

5 LANDMARK MATCHING

The matching algorithm has the task to track the current position,
given previous positions and associated landmarks. It was not
the intention to compute the best trajectory, using all available
information (i.e., also future information), but rather, providing
a (possibly real-time) solution using only current and history in-
formation. Normally, one would use an (extended) Kalman Filter
or particle filter to obtain the estimate, using all available infor-
mation from the vehicle sensors and the pole matches (Simon,
2006). However, in order to gain insight into the problem and the
measurement and process noise, a least squares matching with a
fixed ‘history length’ was used.

The matching filter works as follows. Given trajectories are pro-
cessed, one exterior orientation (scan) after the other, in chrono-
logical order. If poles were found in a scan, they are added to
the current history. The history is maintained up to a given max-
imum length only, i.e., after a new scan is added, it is checked if
the maximum length is exceeded and poles from ‘old’ scans are
removed, if necessary. Whenever poles have been added or re-
moved, a 2D rigid transformation (3 parameters) is recomputed,
using all pole associations in the current history and a (closed
form) least squares estimation. This transformation yields the
current position of the vehicle in the global coordinate system
and also the residuals of the matched points.

Figure 4 shows the results for a small part of the trajectory of the
second run (starting at the parking lot in the upper right corner of
the image). In Fig. 4 (a), the GPS trajectory is shown, as deliv-
ered by ‘Hanna’ (without any pole matching involved). As can be
seen, while the trajectory looks good in general, it hits the side-
walk on the parking lot and also after turning right into the street.
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Figure 3: Example snapshots of the interactive association editor. Blue points are the current trajectory, yellow points are poles scanned
by ‘Hanna’ (placed using the blue trajectory), green points are the reference poles as extracted from the Streetmapper data, and white
lines mark associations between scanned and reference poles. Left: (raw) GPS trajectory with large residuals between associated poles.
Right: trajectory based on dead reckoning and pole matching, using the same associations. The residuals were removed largely, leading
to a much better trajectory.

Moving downwards from the upper left corner, it also leaves the
road, first to the right (as seen from the vehicle’s driving direc-
tion), later (in the lower half of the image) to the left. The de-
viation can also be seen from the difference vectors between the
green reference poles and the yellow scan poles.

When applying the described filter, using a history length of
100 m, Fig. 4 (b) is obtained. Only the dead reckoning trajec-
tory (and no GPS data) is used by the filter. Note that the tra-
jectory (see the parking lot) does not start at scan number 0, but
at scan 58, which is the first time the 2D rigid transformation
can be computed, fixing the (relative) dead reckoning trajectory.
While the trajectory looks better on the parking lot, it does not
improve very much on the street going upwards. There, a certain
‘sawtooth’ pattern can be discerned. The reason for this behavior
can be found in Fig. 4 (c), which shows the original dead reck-
oning trajectory without any matching applied. As can be seen,
after leaving the parking lot, the vehicle shows a strong right drift,
whereas later, after turning left into the second road, it shows a
left drift.

To compensate for this behavior, the matching filter was re-
designed to incorporate drift estimation. Instead of including drift
to the parameters to be estimated (which would render the prob-
lem nonlinear), a ‘multiple hypothesis’ filter was used, which
assumes a discrete set of possible heading drift values. For the
experiments, 13 different drift assumptions were used, ranging
from −0.34◦/m to +0.34◦/m in equal steps. This amounts to
maintaining 13 history buffers, which is, however, not computa-
tionally expensive. For each of the buffers, matching proceeds as
described above. Then, the result with the smallest RMS error
is taken. Figure 4 (d) shows the result of applying this filter to
the dead reckoning trajectory, which outperforms both the result
from the GPS as well as the result of the simple history filter. It
can be seen that the filter is mostly able to compensate the drift,
which leads to smaller RMS errors, being below 1 m except in
a few cases. The drift, as determined by the filter, is shown in
Fig. 5. The right and left turns in Fig. 4 (c) are properly reflected
by the blue and orange / yellow parts in Fig. 5.

Figure 6 (left) shows the RMS error for the entire trajectory of
run 2. It can be seen that there are several parts in the trajectory
where the RMS error is above 1 m. For comparison, the number
of assigned poles in the history is shown in Fig. 6 (right). It is es-
pecially low in the residential area in the upper part of the figure.

Figure 5: Drift correction applied by the multiple hypothesis filter
for a part of run 2. Temperature scale, ranging from −0.34◦/m
(red, correction of left drift) to 0.34◦/m (blue, correction of right
drift).

As can be noticed, a large RMS error often correlates with low
(assigned) point densities.

6 EVALUATION OF POSITIONING ACCURACY

The multiple history filter was applied to both runs. Note that,
even with the multiple history modification, the filter is quite
fast and processes each trajectory in approximately two seconds
on a standard desktop PC. Unfortunately, no ground truth was
available to assess the accuracy. Therefore, ortho images (0.4 m
ground pixel resolution) were used to label manually all positions
as being good or erroneous. For each single trajectory point, it
was decided if it is located on a drivable area of the road, and,
if it was a multiple lane road, if it is located on the correct lane.
This method is of course more subjective than a rigorous compar-
ison against a reference trajectory, and it also does not yield any
assessment of the longitudinal error. Nevertheless, it is suitable
to compare the matching results to the original GPS trajectory.

Figures 7 and 8 show the results of the manual assessment. It
can be seen immediately that the number of erroneous positions
is much larger in case of the GPS trajectory. Figure 8 shows
some details in a densely built up area. At (A), GPS position-
ing fails badly, while matching is able to recover the position on
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Figure 4: Example matching results for run 2. (a) Trajectory as obtained from the vehicle’s GPS. (b) Result of applying the history
based matching to the dead reckoning trajectory. Green marks RMS errors below 0.5 m, yellow between 0.5 m and 1 m, red above 1 m.
The GPS trajectory is shown in blue. (c) Dead reckoning trajectory without any matching applied. (d) Result of applying the multiple
history matching filter to the dead reckoning trajectory. Color coding identical to (b).

the road. (B) and (C) also show GPS problems, however, due to
the low density of poles, the matching solution also drifts off the
road. Finally, at (D), the ‘Hanna’ team missed the correct turn
and entered a road which was not mapped by the Streetmapper
van. With no matches at all, the trajectory follows the dead reck-
oning path (bottom image). However, also the GPS trajectory is
mostly wrong in area (D).

In terms of quantitative results, 51.7% of the GPS trajectory
points in run 2 were flagged as being erroneous, while this holds
for only 13.0% of the matched trajectory (mostly due to the upper
left part shown in Fig. 8). For run 1, the results are even better,
where 39.6% errors were flagged in the GPS trajectory, but only
1.9% in the matched trajectory. This shows that the matching is
able to largely improve localization whenever a sufficient number
of landmark correspondences is available.

7 CONCLUSIONS AND OUTLOOK

In this paper, it has been shown that a landmark based localization
is able to substantially outperform a GPS positioning solution in
an extensive outdoor environment. Association of landmarks was
done using an interactive tool, which provided insight into the
problem and matching process.

There is lots of room for improvement. First, as some situations
proved to be ambiguous, integrating the ground view into the ed-
itor would be valuable. Second, since the heading drift is severe,
the matching algorithm has no chance to succeed when the den-
sity of poles is too low. Also, as the drift often changes abruptly
at intersections, it is hard to estimate it (as compared to estimat-
ing the temperature drift of a gyro, which develops smoothly).
Therefore, other methods have to be incorporated, such as dead
reckoning based on matching successive scans (as done in stan-
dard SLAM approaches), which, however increases the computa-
tional requirements. Alternatively or additionally, other landmark
features may be incorporated, such as planar patches. Finally,
the matching algorithm itself has to be investigated in more de-
tail, especially the RMS variations, and weak point configurations
should be detected automatically. This should also yield tighter
error bounds which are required to design a reliable automatic
association procedure.
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Figure 6: Full trajectory of run 2. Left: RMS error, color coding
as in Fig. 4(b). Right: Number of assigned poles in the history
buffer. Red: 0-5, orange: 6-10, yellow: 11-15, light green: 15-20,
dark green: more than 20.

Figure 7: Results of the manual assesment for run 2 (12 km).
Bold trajectory points mark erroneous positions. Left: GPS tra-
jectory. Right: Result of matching.
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