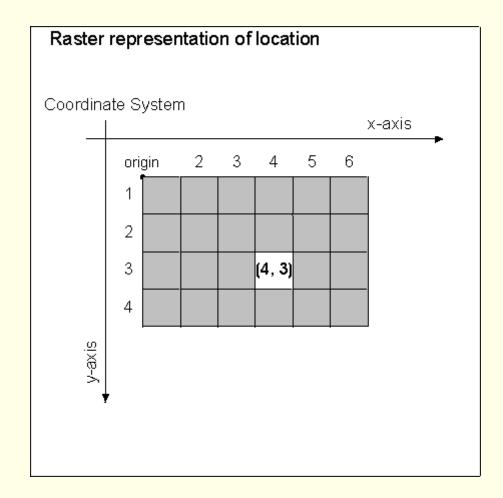
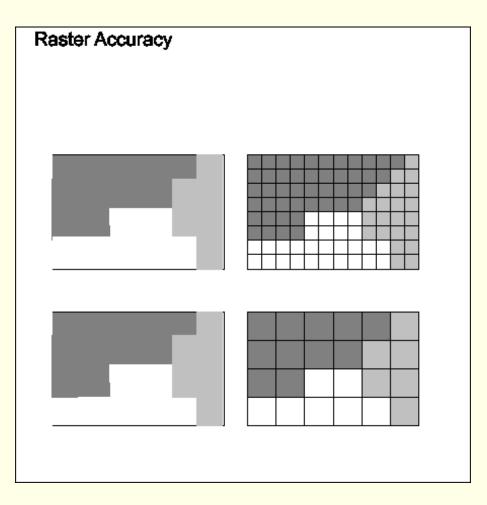

Geoinformatics Center Asian Institute of Technology

Raster GIS

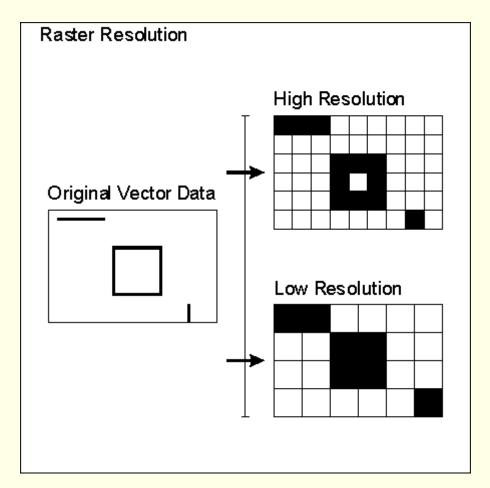
Raster GIS


- 1. Raster Data Models
- 2. Raster Data Structure
- 3. Advantages and Disadvantages
- 4. Other data model
- 5. GRID in ARCVIEW
- 6. Exercise

1. Raster Data Models



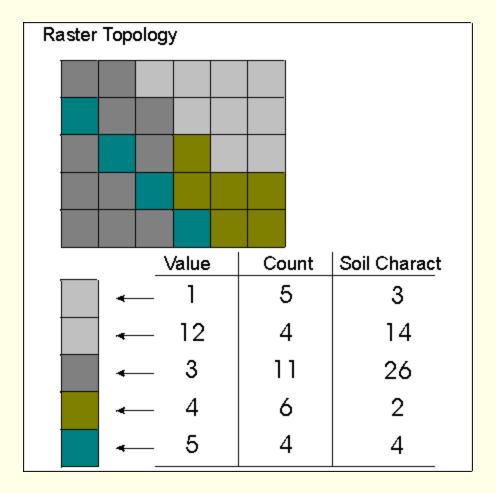
1.1 Raster representation of location



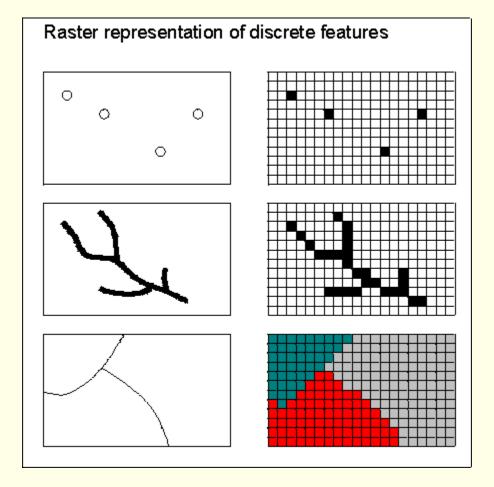
1.2 Raster Accuracy

1.3 Raster Resolution

1.4 Raster Resolution


Resolution is defined as content of geometric domain divided by number of observations, normalized by spatial domain.

Mean resolution element = sqroot(area/no of observation)


According to Tobler W.R., (1987)

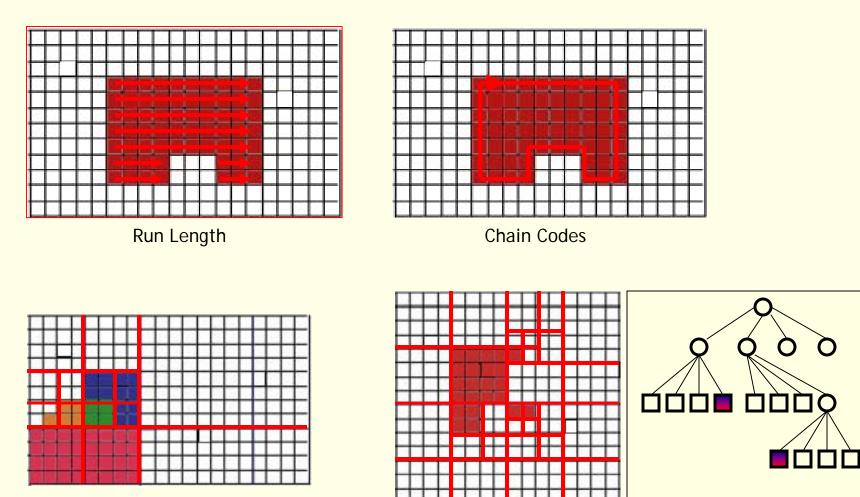
Example, for provincial level (76)mapping of Thailand (area, 514,000 km2), representative value for spatial resolution to portray the provinces is approximately 82km.

1.5 Raster Topology

1.6 Raster representation of discrete features

Prepared by Mona Lacoul, July 2004

Geoinformatics Center


2. Raster Data Structures

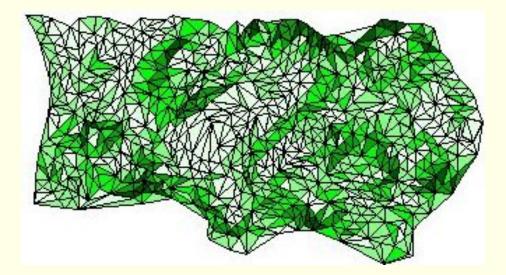
Run-length encoding Chain Codes Block Codes Quad-tree Model

 \mathbf{O}

2.1 Raster Data Structure Types

Block Codes

Quad-tree Model


3. Advantages and Disadvantages

Raster	
Data Collection	Rapid
Data Volume	Large
Data Structure	Simple
Geometric Accuracy	Poor
Area Analysis	Good
Continuous phenomenon	Average
Modeling	Easy
Compatibility with image	good
Spatial resolution	low

4. Other Data Model

• Triangular Irregular Network Data Model

- -Alternative to represent continuous surface.
- -Effective display terrain, other types of continuous data.

Triangular Irregular Network (TIN)

5. Grids in ArcView

Floating Point Grids

-no attribute table associated
 -can be converted to integer by classify

Integer Grids

Value Attribute Table (VAT)

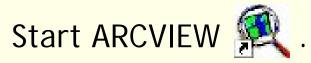
-contains value and its counts for each record.

No Data Value

-assigned to cells which are doesn't have data value.

6. Exercise

6.1 Working with grid themes


Activating spatial analysis Open existing data Delete grid theme Converting shape file to raster grid View Theme Properties Retrieve information of individual cell View Histogram

6.2 Available Functions

- Calculate density Reclassify Map query Map calculator Tabulate area Histogram by zones
- Summarize zones Find distance Assign proximity Neighborhood statistics Create contour Derive slope Derive aspect Interpolate Surface

1. Activating spatial analysis

Select *EXTENSION* from *FILE* dropdown menu.

Click SPATIAL ANALYSTS on EXTENSION window.

Analysis <u>Surface Graphics</u>	<u>Surface</u> <u>Graphics</u> <u>W</u> indow Interpolate Grid
Find <u>D</u> istance Assign Pro <u>v</u> imity Calculate Density	Create <u>Contours</u> Derive <u>Sl</u> ope Derive <u>A</u> spect
<u>C</u> ell Statistics Summarize Zones	Compute Hillshade Calculate <u>V</u> jewshed
Histogram By Zone Labulate Areas Map Query	
Map Calculator	Two drop menus w
Beclassify	

Two drop down selection menus will be available when view is active.

2.1 Open existing data

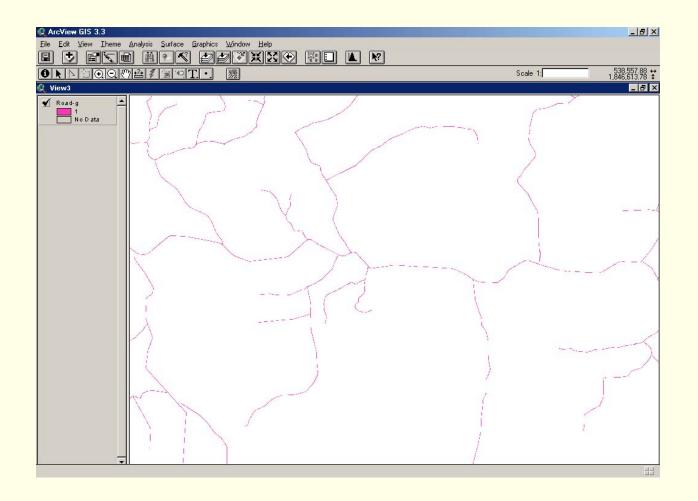
Open a view window by clicking on NEW on project window.

Click add theme button 🛃 .

Change the DATA SOURCE TYPES to GRID DATA SOURCE.

Select the data "road-g" to load.

Click OK.


🚾 road-g	▲ C d:\ C→ training C→ data C→ info	Cancel
		C Directories
ata Source Types:	Drives:	
ata Source Types: Grid Data Source	Drives:	¥

Prepared by Mona Lacoul, July 2004

Geoinformatics Center

Asian Institute of Technology

2.2 Open existing data

3. Delete grid theme

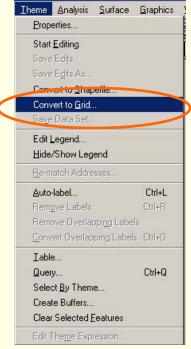
Select MANAGE DATA SOURCE from FILE menu.

Select "road_g" .

🞗 Source Manager		X	Close <u>All</u>
Grid Name	Directories: d:\training\data	Cancel	Set <u>W</u> orking Directory <u>S</u> ave Project Ctrl+S Save Project As
🔽 road-g	▲ (\		Extensions
	🗁 training 📂 data	Copy Rename	Erint Print Setup Export
		Delete	Manage Data Sources
I Source Types: Grid	Drives:		Import Data Source Export <u>D</u> ata Source
T ding			Exit

Press *DELETE* to delete the grid data.

Geoinformatics Center Asian Institute of Technology


View Theme Ar

Edit

Close

4.1Converting shape file to raster grid Load shape file " roads.shp" to view window 🔽 . Select CONVERT TO GRID from THEME menu. Specify the output grid name "road-g".

🖉 Convert Roads.shp		2
Grid Name Iroad-g	Directories: d:\training\data d:\ d:\ training data	OK Cancel
	Drives:	I I

Geoinformatics Center

Asian Institute of Technology

4.2 Converting shape file to raster grid

Specify CELL SIZE and OUTPUT GRID EXTENT.

Output Grid Extent	Same As Roads.shp 💌
Output Grid Cell Size	[2¢ m
Number of Rows	6337
Number of Columns	10363

Note, The View property should be defined before specifying cell size and extent.

4.3 Converting shape file to raster grid

Specify conversion field "road_network".

Conversion Field : Roads.shp		2
Pick field for cell values:	10	
Fnode_	▲ Can	cel
Tnode_		
Lpoly_		
Rpoly_		
Length		
Road_netwo		
Pro_code		
Road_n	-	

Click *OK* to join remaining database. Click *OK* to view it on screen.

5. View Theme Properties

Make the theme active.

Select PROPERTIES from THEME menu.

🍭 Theme Proper	ties			×
Theme Name:	Road-gd			
Definition	Left: 104.7413 Bottom: 15.961 Type: Integer	s 5694 Right: Top: Status:	Cols [106.6779 17.0998 Permanent	9683
<u>_</u>	Comments:	OK		Cancel

Geoinformatics Center Asian Institute of Technology

6. Retrieve information of individual cell

Make the theme road-g active.

Pick IDENTIFY tool 🧕 .

Click on the cell of interest.

Lidentify Results		>
1: Road-gJ - X : 105.2	48 • Value 2482 Count 285	· · · · · · · · · · · · · · · · · · ·
Clear Clear		

7. View Histogram

Make the theme road-g active.

Click the histogram button 🔟 .

🍭 Histogram of Road-gd	_ 🗆 🗵
Histogram of Road-g_:Value	
¹⁸⁰⁰⁰⁰ T	306 - 837
160000 -	838 - 1368
140000 -	
120000 -	1900 - 2430
100000 -	2431 - 2962
80000 -	2963 - 3493
60000 -	1000 C
40000 -	3494 - 4024
20000	4025 - 4555

Geoinformatics Center Asian Institute of Technology

1.1 Calculate Density

-calculate Density

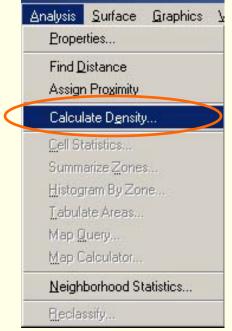
-distributes to produce a continuous surface.

-two types of density methods are

Simple (simple average method)

Kernel (quadratic kernel function)

-the occurrences of the measured quantity per specified Area Unit.


-finding density of houses, population, wildlife observations, or crime reports

1.2 Calculate Density

Click add theme button **v** to display "pop95_p".

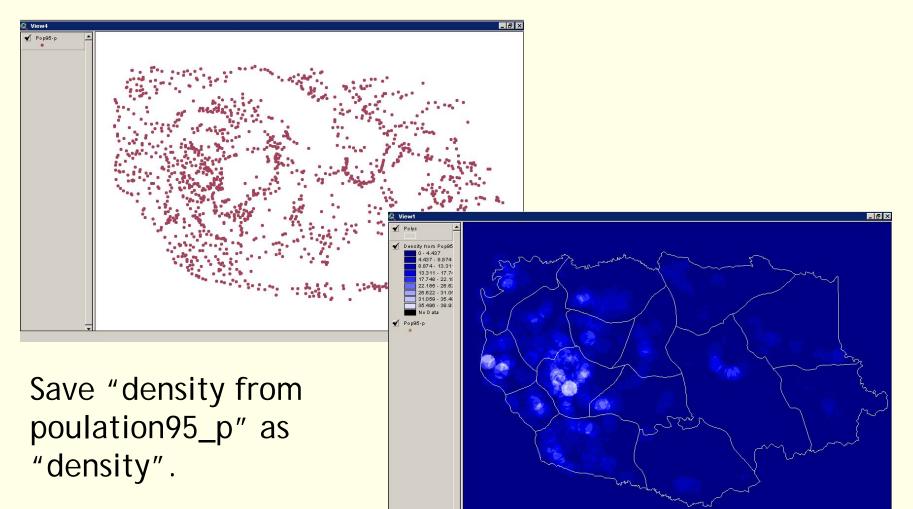
Make the theme "pop95_p" active.

Select CALCULATE DENSITY from ANALYSIS menu.

1.3 Calculate Density

Specify output cells size, output extent and press ok.

Output Grid Specification	
Output Grid Extent	Same As Display
Output Grid Cell Size	[2¢ m
Number of Rows	250
Number of Columns	355
	OK Cancel

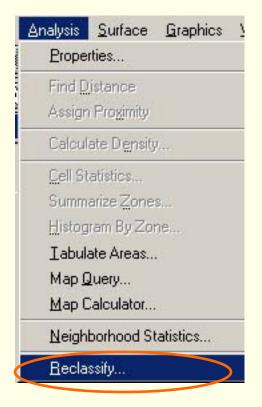

Specify population field, search radius, density type, area unit and press ok.

Calculate Density	
Population Field	Sumofhnumb
Search Radius	4233.1125 m
Density Type	Simple
Area Units	Square Kilometers
	OK Cancel

Geoinformatics Center Asian Institute of Technology

6.2 Available Function

1.4 Calculate Density

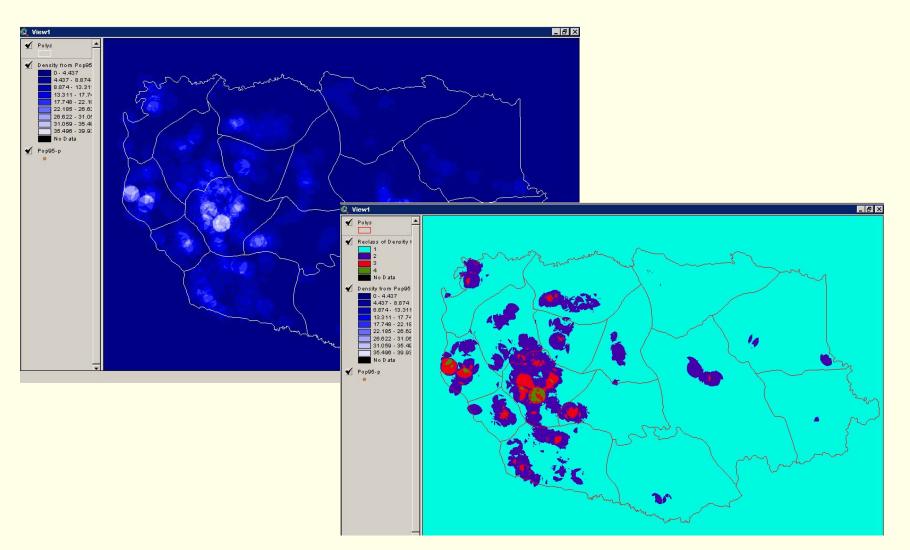

2.1 Reclassify

- -Allows set standard classification methods
- -Set the parameters for that classification
- -Equal Area, Equal Interval, Natural Breaks, Quantile, Standard Deviation
- -Classify gird to assign weight
- -perform suitability analysis

2.2 Reclassify

Make the theme "density from pop95_p" active.

Select *RECLASSIFY* from *ANALYSIS* menu.



2.3 Reclassify

Reclassify values window will popup. Click *CLASSIFY* button.

		Classification Field: Value	_
Specify type and	I number of classes	Classify Unique	Lookup
		Old Values	New Value
		0 - 4.437	1
		4.437 - 8.874	2
-		8.874 - 13.311	3
Press OK.		13.311 - 17.748	4
		17.748 - 22.185	5
	Classification	22.185 - 26.622	6
		26.622 - 31.059	7
	I ypet Equal Interval		
	Number of classes: 4	Load	
	Round values at: d.ddd	Save OK	Cancel
	OK Cancel		
	• • • •	Prepared by Mona La	acoul, July 20

2.4 Reclassify

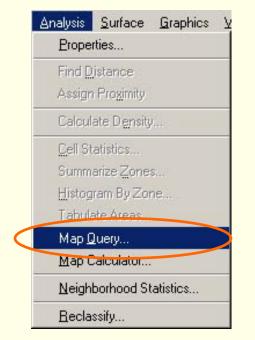
Geoinformatics Center Asian Institute of Technology

3.1 Map Query

allows to select areas spatially by defining a Boolean query based on the values of one or more grid themes.

The output- a grid theme with areas that 1 (TRUE) 0 (FALSE)

Geoinformatics Center Asian Institute of Technology

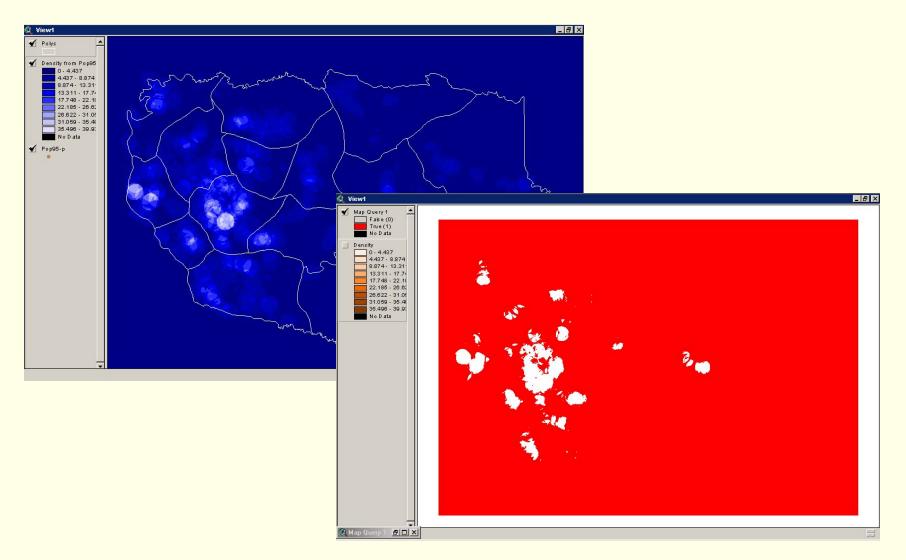

6.2 Available Function

3.2 Map Query

Add grid theme "density".

Make the theme "density" active.

Select MAP QUERY from ANALYSIS menu.


3.3 Map Query (single grid)

Enter query in the map query window.

ayers.	S	ample Values
[Density]	= <> and	0
		1.997
		3.993
	< <= not	5.99
		7.987 9.983
		Update Values
([Density] <= 15)		

Selects cells that are having density less than 15 person/sq km and returns value 1in output grid.

3.4 Map Query (single grid)

Exercise I :

Find out low population density area in
1.Othuomphun district
2. Nong, Thapngthong and Songkhon districts.
The available dataset are
Population data (pop95_p)
District map (district-p)

Form your own criteria for the analysis.

4.1 Map Calculator

-Performs analysis on grid themes using mathematical expressions.
-Available operations

Arithmetic
Trigonometric
Boolean, and
relational operations.

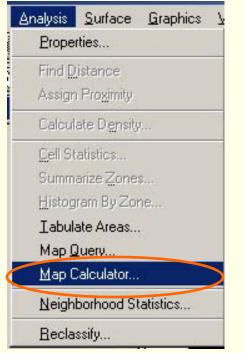
-Creates a grid theme as output.
(change the expression and re-evaluate the grid theme without having to create a new grid theme.)

Geoinformatics Center Asian Institute of Technology

4.2 Map Calculator (arithmetic operators)

The four basic arithmetic operators

Multiplication Division subtraction addition Other (float..)


Kap Calculation 1					<u>- 0 ×</u>
Layers [District-g] [Map Query 1] [Map Query 1 : Cou [Density]	*-+	789 456 123 0.	= <> and > >= or < <= ×or () not	Arithmetic Abs Ceil Floor	Int Float IsNull
		Eva	luate		*

4.3 Map Calculator(arithmetic operators)

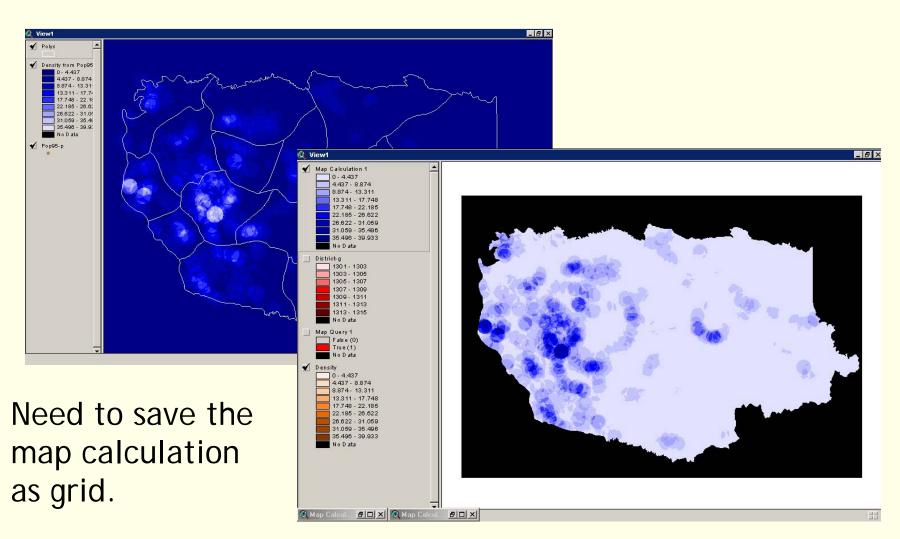
Make the theme "density" active.

Click add theme button 💽 to display "district-g".

Select MAP Calculator from ANALYSIS menu.

Geoinformatics Center Asian Institute of Technology

4.4 Map Calculator(arithmetic operators)


Type following expression.

Map Calculation 1			Logarithms	
ayers District-g Map Query 1 Map Query 1 Cou Density	7 8 3 4 5 6 1 2 3 0 • AsGrid	= <> and > >= or < <= xor () rut	Exp Exp2 Exp10	Log Log2 Log10
[Density] - [District-g] + [Distric	:-g])			•

Note, spatial extent of population density grid is larger than the actual study area. Above expression will create the population density map for the study area.

Geoinformatics Center Asian Institute of Technology

4.5 Map Calculator(arithmetic operators)

4.6 Map Calculator(relational operators)

-compare the values of two grid themes or numbers on a cell by cell basis.

🔍 Map Calculation 1					<u>_ ×</u>
Lauera	_		\frown	Arithmetic	•
Layers [District-g]	*	789	= <> and	Abs	Int
[Map Query 1] [Map Query 1 . Cou	H	456	> >= 0r	Ceil	Float
[Density]	$\left + \right $		() not	Floor	IsNull
-		AsGrid			
					-
1					•
		Eva	aluate		

4.7 Map Calculator (Boolean operators)

-compare the values of two grid themes or numbers on a cell by cell basis.

🔍 Map Calculation 1				
		\land	Arithmetic	•
Layers [District-g]		= <> and	Abs	Int
[Map Query 1] [Map Query 1 . Cou	456	> >= 0r	Ceil	Float
[Density]		< <= ×or		
		() not	Floor	IsNull
	AsGrid	~		
				-
				•
	Eva	aluate		

4.8 Map Calculator(Logarithmic operators)

-perform logarithm and exponential analysis on grid themes or numbers.

🔍 Map Calculation 1		_ 🗆 🗙
Layers	$789 = <> and Exp$ $456 >>= or Exp2$ $123 <<= \times or Exp2$ $0 \cdot () not Exp10$ AsGrid	Log Log2 Log10
	Evaluate	*

<u>4.9 Map Calculator(Trigonometric operators)</u>

- perform trigonometric analysis on a grid theme or number.
- input values should be in radians (rad=angle * pai/180deg).

🔍 Map Calculation 1					<u> ×</u>
Layers [District-g] [Map Query 1] [Map Query 1 . Cou [Density] [₩ (_ (+ (7 8 9 4 5 6 1 2 3 0 • AsGrid	= <> and > >= or < <= xor () not	Sin Cos Tan	ASin ACos ATan
		Eval	uate		*

4.10 Map Calculator(power operators)

-raise grid themes or numbers to certain powers.

🍳 Map Calculation 1			
Layers [District-g] [Map Query 1] [Map Query 1 . Cou [Density]]	 ₩ 7 8 9 ✓ 4 5 6 ─ 1 2 3 + 0 . AsGrid 	= <> and > >= or < <= xor () not	Powers Sqrt Sqr Pow
			•
	Eva	aluate	

5.1 Tabulate Area

-Performs a cross tabulation of the zones between two input themes.

-Creates an output table.

- values in the resulting table identify the area of each zone in one theme encompassed within each zone in another theme.

-Available at least two feature or two integer grid themes, or one of each.

-summarizing the area of each land use type within each county.

5.2 Tabulate Area

Make themes "density" and "district-g" active.

Reclassify the density grid into four classes.

Save output as "recla_density" by using "SAVE AS DATASET" button on theme menu.

Select TABULATE AREA from ANALYSIS menu.

5.3 Tabulate Area

Select row theme, row field, column theme and column field.

Row Theme	District-g	_
Row Field	Value	
Kolumn Theme	Recla_density	-
Column Field	Value	×

Press ok.

5.4 Tabulate Area

Value	Value-1	Value-2	Value-3	Vakie-4
1301	400904000.00	193198800.00	73634800.000	13846000.000
1302	782371200.00	294581600.00	4990000.000	0.000
1303	570018000.00	127002400.00	4033600.000	0.000
1304	3242338000.0	127012000.00	2585600.000	0.000
1305	2225020800.0	41643600.000	0.000	0.000
1306	1695648800.0	4884000.000	0.000	0.000
1307	2089960800.0	25833600.000	0.000	0.000
1308	1252700400.0	360196800.00	22835200.000	0.000
1309	385812000.00	472573600.00	154627600.00	36857200.000
1310	1090707600.0	89522000.000	25691200.000	0.000
1311	781847600.00	108759200.00	5401600.000	0.000
1312	1763554800.0	1547600.000	0.000	0.000
1313	1258482400.0	182536000.00	11321200.000	0.000
1314	300836800.00	138085600.00	15411600.000	430800.000
1315	915806800.00	82024000.000	22000.000	0.000

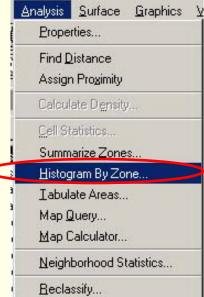
Table can be exported to other file formats (excel, dbase, text..) for further analysis of result.

6.1 Histogram by zones

-points, lines, or polygons in the active theme are used to define what cells are used to create the histogram.

-allows you to examine the number of cell values for each class in a grid theme in a localized area defined with another theme.

-An integer grid theme, polygon theme.


-examine the number of cells of each land use type that intersect roads that have a 45 or 65 mph speed limit

6.2 Histogram by zones

Add themes "recla_density" and "district-g" .

Make the theme "district-g" active.

Select HISTOGRAM BY ZONES from ANALYSIS menu.

6.3 Histogram by zones

Weight the state of the stat	OK Cancel	Select the fiel zones for dist Press OK.	
		m Within Zones defining the values to histogram: nsity	OK Cancel
Select the theme definin values to histogram. Press OK.	Ig		•

6.4 Histogram by zones

The chart displays proportion of population density in each district and can easily compared among the districts.

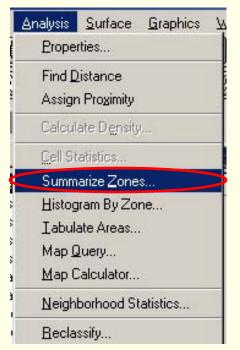
Different chart options are available.

7.1 Summarize Zones

-computes a chart and a table.

- output values are a function of the value of the cells in an input value grid theme found within each zone in the zone theme.

-zone theme:

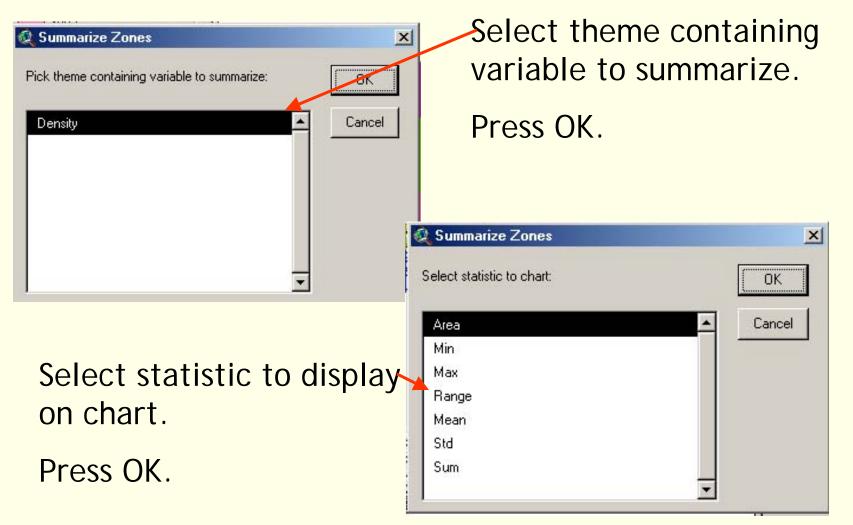

- an integer grid theme or a feature theme.
- parcels in a city, land use categories, forest types, or buffer zones.
- value theme:

-a grid theme

-value theme(input grid): endangered species, vaccinations, housing prices, and sales.

7.2 Summarize Zones

Add themes "density" and "district-g". Make the theme "district-g" active. Select *SUMMARIZE ZONES* from *ANALYSIS* menu.


Prepared by Mona Lacoul, July 2004

Geoinformatics Center

Asian Institute of Technology

7.3 Summarize Zones

7.4 Summarize Zones

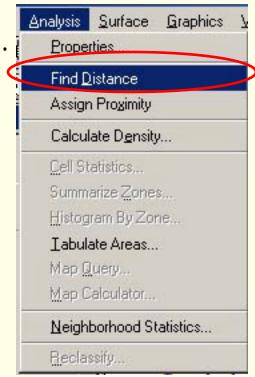
Stats of De	nsity Withi	n Zones of Distri	ct-i						_ 🗆
Value	Count	Area	Min	Max	Range	Mean	510	Sum	Label
1301	1703959	681583616.00	0.0000	38.6180	38.6180	10.4049	7.4554	17729552.000 1	301
1302	2704857	1081942784.0	0.0000	25.6684	25.6684	7.0954	4.9897	19192132.000 1	302
1303	1752635	701054016.00	0.0000	22.0624	22.0624	5.8558	5.0072	10263127.000 1	303
1304	8429839	3371935488.0	0.0000	21.4939	21.4939	1.6539	3.1541	13941857.000 1	304
1305	5666661	2266664448.0	0.0000	13.9799	13.9799	2.1072	2.3701	11940742.000 1	305
1306	4251332	1700532736.0	0.0000	11.1555	11.1555	1.5269	1.7901	6491492.0000 1	306
1307	5289486	2115794432.0	0.0000	13.7312	13.7312	1.5389	2.0708	8139871.0000 1	307
1308	4089331	1635732352.0	0.0000	25.6684	25.6684	6.8451	4.7797	27991896.000 1	308
1309	2624676	1049870400.0	0.0000	39 9325	39 9325	12 8432	8 2873	33709116.000 1	
1310	3014802	1205920768.0	0.0000	👰 Range	of Density W	Athin Zones (of District-		_ 0
1311	2240021	896008384.00	0.0000	Val	use of Dem	- it. : :	denie di Villionali	in the Zenes	of District i
1312	4412756	1765102336.0	0.0000	vai	ues of Den	sity Summai	rized vvitr	nin the Zones	of District-I
1313	3630849	1452339584.0	0.0000		41	Эт			
1314	1136912	454764800.00	0.0000						1301 🗖
1315	2494632	997852800.00	0.0000		-3	5 -			1302
					2				1303
			• • • • • • •		3				1304
ole lists	statist	ics of popu	ulation	Range of	Density 2	5 -			1305
nsity for	each d	listrict		, in the second se					
isity ioi	cuenta	istrict.			2				📃 🗖 1306
					×.				1307
					1:	5 -	-		1308
hart disp	olays ra	nge of dens	sity for						1 4000
					11				1309
ach distr	icts.						Zones		

8.1 Find Distance

-Finds the distance to the closest feature in the active theme.

-Creates a grid theme as output.

-Each cell in the output grid theme contains the distance from that location to the nearest feature.


- similar to generating buffer.

- find nearest hospital, define buffer zone, study hazard vulnerability to settlements...

8.2 Find Distance

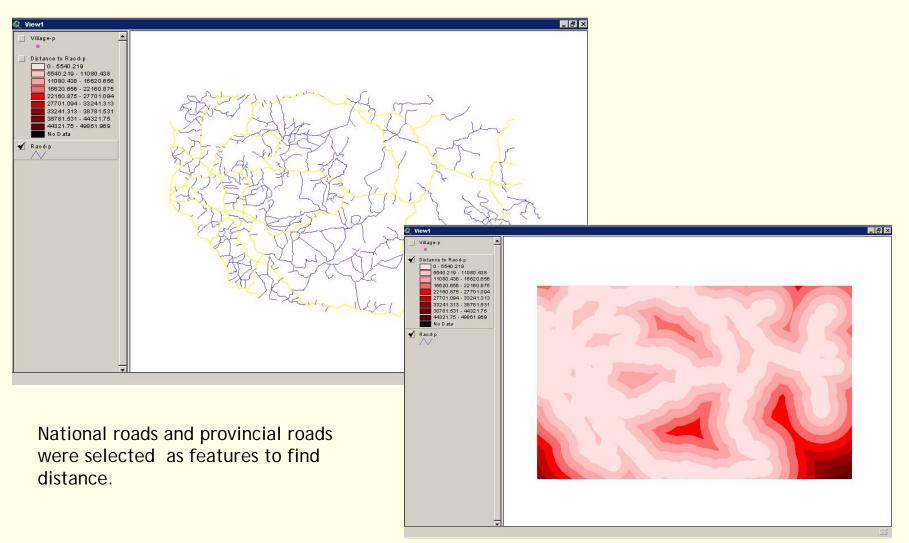
Add theme line feature "road-p". Click on the theme to activate.

Select FIND DISTANCE from ANALYSIS menu.

Geoinformatics Center

Asian Institute of Technology

8.3 Find Distance


Enter output grid specifications.

Grid Specification Output Grid Extent	Same As Raod-p	¥
Output Grid Cell Size	20 6336	m
Number of Columns	10364	
	<u> </u>	Cancel

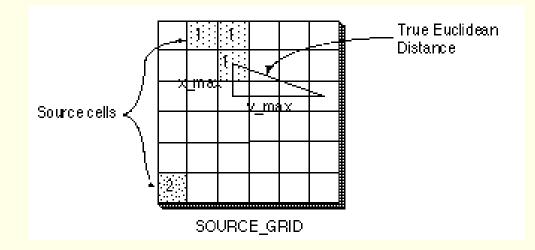
Press OK.

8.4 Find Distance

Geoinformatics Center Asian Institute of Technology

9.1 Assign Proximity

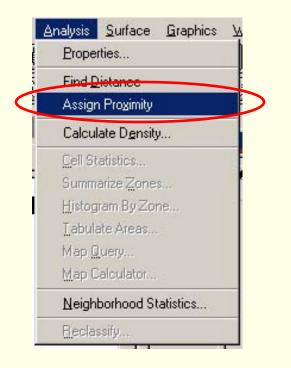
-Assigns areas of proximity to features found in the active theme.


-Creates a grid theme as output. Each cell location in the grid theme is allocated to the closest feature, determined by Euclidean distance.

- -To find the closest feature in another theme
- -To define the area of space allocated to each feature

9.2 Assign Proximity

for each cell, the distance to each source cell is determined by calculating the hypotenuse with the x_max and y_max as the other two legs of the triangle.

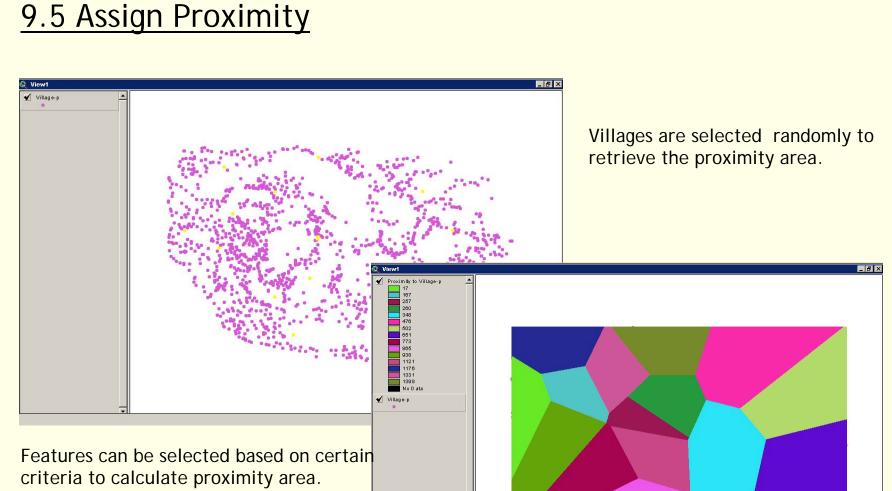


9.3 Assign Proximity

Add theme line feature "village-p".

Click on the theme to activate.

Select ASSIGN PROXIMITY from ANALYSIS menu.


Prepared by Mona Lacoul, July 2004

Geoinformatics Center

Asian Institute of Technology

Output Grid Specification				
Output Grid Extent	Same As Village-p		Enter the specification for output grid.	ation
Output Grid Cell Size	20	m	Press ok.	
Number of Rows	6350			
Number of Columns	10528	Q Proxi	mity Field	×
Number of Columns		Pick field	d for cell values:	ок
	ОК	Cance		
		Village		Cancel
		Village		
Select the fi	eld to	Vcode		
assign values	s to	Pcode		
proximity a		Vname		
		Vname	si	
		Vilding		

Geoinformatics Center Asian Institute of Technology

Prepared by Mona Lacoul, July 2004

Instead of feature theme, Grid theme can be used for proximity analysis.

Geoinformatics Center Asian Institute of Technology

10 Neighborhood Statistics

-Calculates a statistic for the values found in a specified neighborhood.

-assigns the desired statistic value for the neighborhood defined around each cell.

-Input theme: a point or grid theme

-Output: a grid theme

-Statistics include majority, maximum, mean, median, minimum, minority, range, standard deviation, sum, and variety.

Exercise II:

List the statistics for population density in for all the districts. Prepare a charts comparing statistics of the districts.

The available dataset are

Population data (pop95_p)

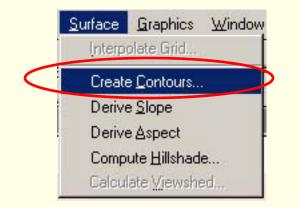
District map (district-p)

11.1 Create Contour

-Creates a line of constant value, a contour line, from a point selected on a grid or TIN theme.

-Input: a single grid or TIN theme is active.

-Use only on themes representing a continuous attribute, such as elevation or density.


- To create Iso-lines, precipitation, temperature, humidity, contour, population density

11.2 Create Contour

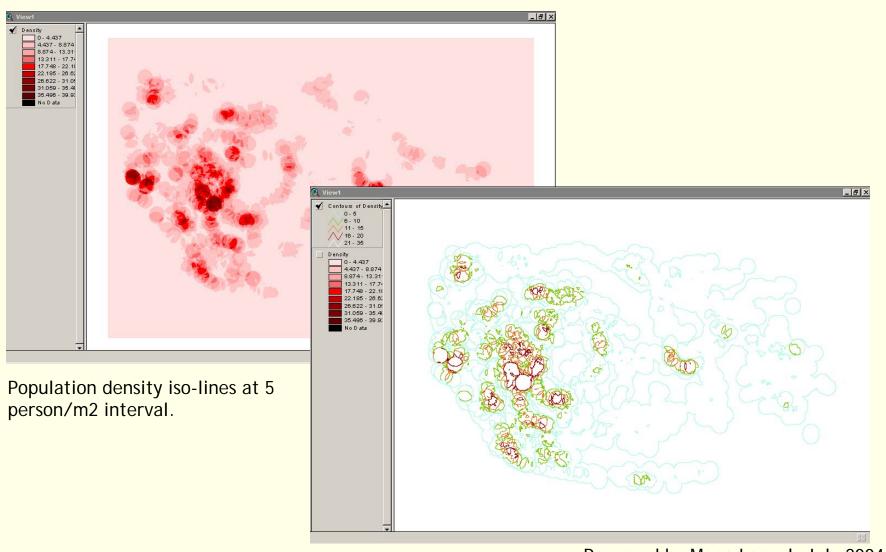
Add grid theme "density of pop95".

Click on the theme to activate.

Select CREATE CONTOUR from SURFACE menu.

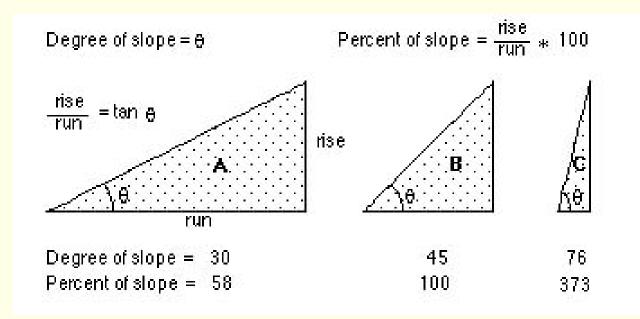
Geoinformatics Center Asian Institute of Technology

11.3 Create Contour


Enter parameters to create contour (isolines).

Contour Parameters	×
Enter parameters: Contour interval: 목	ОК
Base contour: 0	Cancel

Press OK.


11.4 Create Contour

Geoinformatics Center Asian Institute of Technology

12.1 Derive Slope

-maximum rate of change in value (each cell to its neighbors)-Output: Grid in percent slope or degree of slope

12.2 Derive Slope

The actual algorithm to calculate slope is:

rise_run = SQRT(SQR(dz/dx)+SQR(dz/dy))

```
degree_slope = ATAN(rise_run) * 57.29578
```

where the deltas are calculated using a 3x3 roving window, where a through i represent the values in the window:

abc

def

g h l

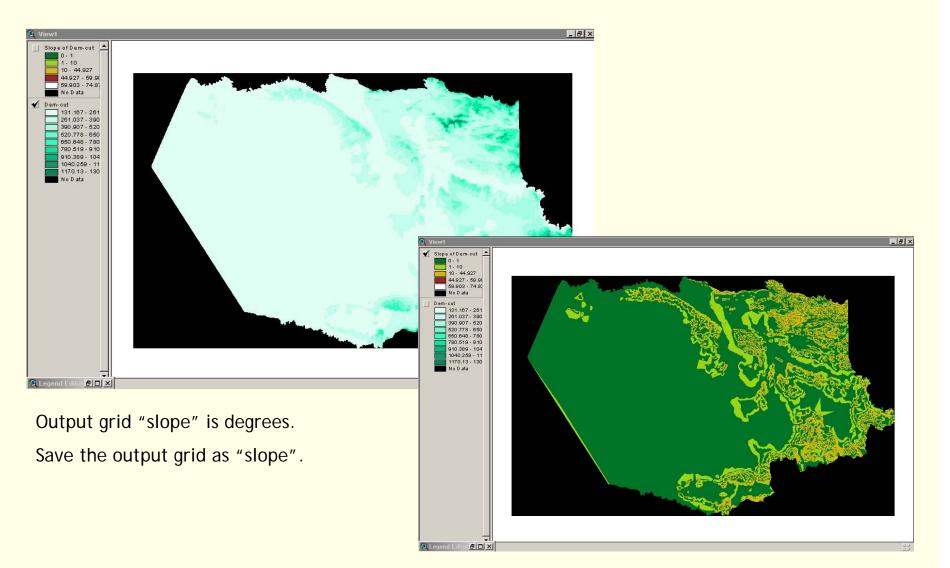
(dz/dx) = ((a + 2d + g) - (c + 2f + i)) / (8 * x_mesh_spacing) (dz/dy) = ((a + 2b + c) - (g + 2h + i)) / (8 * y_mesh_spacing)

12.3 Derive Slope

- -Calculates the rate of maximum change for locations
- -Input : grid or TIN themes
- -GRID : using a 3 by 3 window.
- -TIN: using the triangle the cell center falls in.
- -Output: a grid theme (value represented in degrees)
- -Use only on themes representing a continuous attribute, such as elevation or density.

Geoinformatics Center Asian Institute of Technology

12.4 Derive Slope


Add grid theme "DEM_cut". Click on the theme to activate.

Select DERIVE SLOPE from SURFACE menu.

12.5 Derive Slope

Geoinformatics Center Asian Institute of Technology

13.1 Derive Aspect

-the down-slope direction of the maximum rate of change in value from each cell to its neighbors.

- -the slope direction.
- -Output: Grid (compass directions)

13.2 Derive Aspect

-Calculates aspect for each cell

-represents the direction of maximum slope of the input grid or TIN theme.

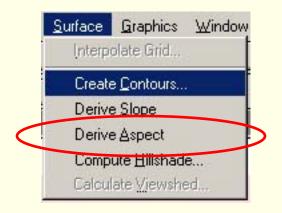
-starting at 0 degrees (north) and increasing clockwise until 360 degrees

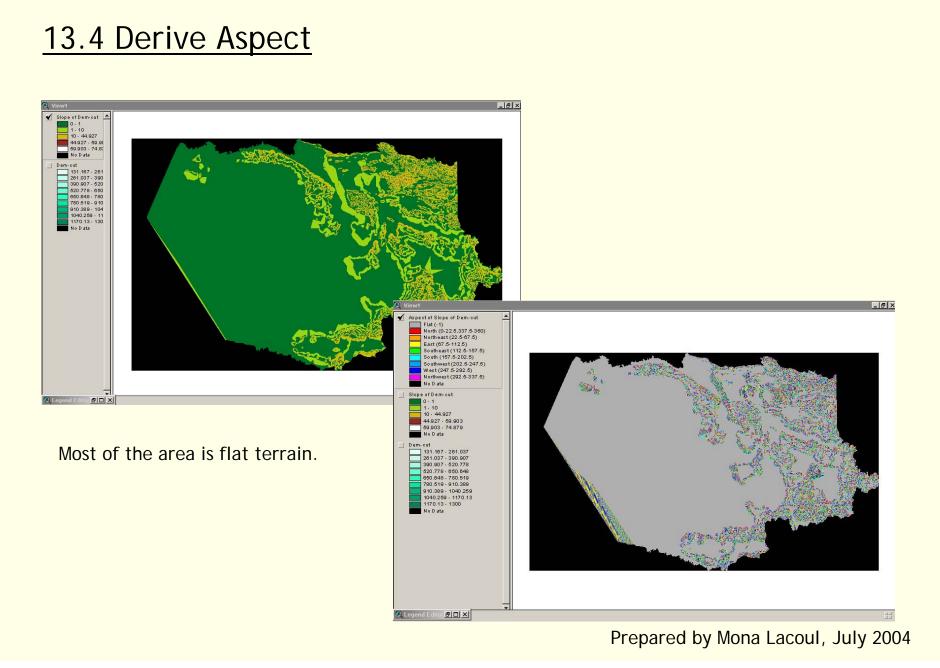
Input: a grid theme a TIN theme

Grid: calculates for each cell using a 3x3 window.

TIN: aspect of the triangle its center falls

Output : a grid theme


- themes representing a continuous attribute, such as elevation or density. Prepared by Mona Lacoul, July 2004


13.3 Derive Aspect

Add grid theme "Slope".

Click on the theme to activate.

Select DERIVE SLOPE from SURFACE menu.

Geoinformatics Center Asian Institute of Technology

14.1 Interpolate Surface

-Fills in the gaps by analyzing the points around each location

- -create a continuous surface.
- -Input: a point theme
- -output: a grid theme
- -Method of Interpolation
 - -IWD
 - -Spline

14.2 Interpolate Surface(Spline)

- Fits a curve through the points surrounding the cell being analyzed and gives the cell the value of the curve at that location.

-best for gently varying surfaces such as elevation, water table heights, or pollution concentrations.

14.3 Interpolate Surface(Spline)

Regularized method:

- yields a smooth surface.

- weight parameter: weight of the third derivatives of the surface in the curvature minimization expression

Tension method:

- tunes the stiffness of the surface
- weight parameter: defines the weight of tension.

number of points parameter:

-identifies the number of points per region used for local approximation.

14.4 Interpolate Surface(IWD)

- weighting the value of each point by the distance that point is from the cell being analyzed and then averaging the values.

- Power parameter :
 - controls the significance of the surrounding points upon the interpolated value.
 - a higher power » less influence from distant points
 - to interpolate a surface of consumer purchasing
 - more distant locations have less influence

Barrier :

input line theme

a break that limits the search for input sample points

Exercise III:

Given the following datasets: (i)road, (ii)Village,(iii) hospital location,(iv) population

Formulate your criteria for analyzing health facility in the province based on

accessibility (hint: use road)

population served (hint: population).

Propose locations of new hospitals if needed.

Prepare summary tables and and chart whenever possible.

1.Surface

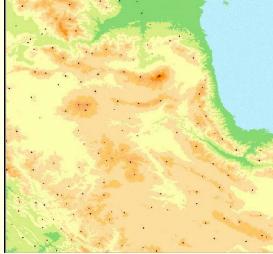
-to represent continuous spatial phenomena.
-a z-coordinate value for each planimetric location
- surface object represented by a single-valued function z = f(x, y),
Where, z can be an elevation value or any other kind of

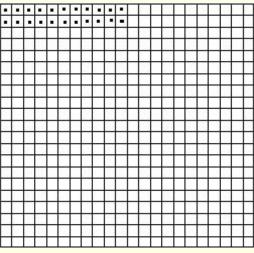
Where, z can be an elevation value or any other kind of measurement

2. Surface Sampling Method

-infinite number of point to measure -a sampling method to represent the surface model -a surface model should -Accurately represent the surface -Be suitable for efficient data collection -Minimize data volume -Maximize data handling -Suitable for surface analysis

3. Surface Sampling Method (Contour)

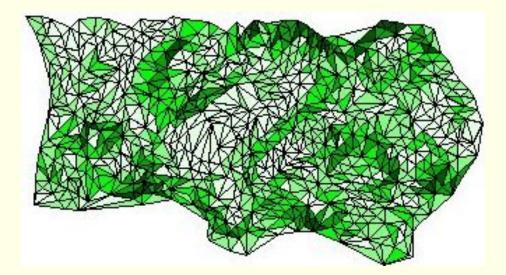

- -Isolines of constant elevation
- -most commonly used
- -poorly represented the variance between isolines
- Accuracy depends on data source



4. Digital Elevation Model

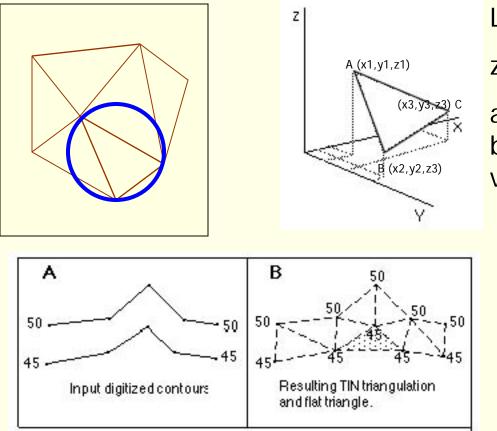
-represented by equally spaced sample points

- -two ways to determine surface values between points
 - -Interpolate between adjacent points : lattice
 - -Considers each point as a square cell with a constant value: surface grid



Surface Grid

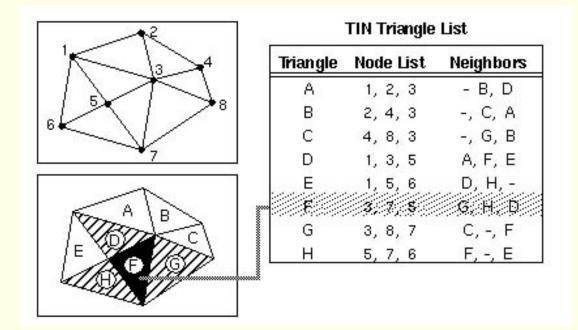
5. Triangular Irregular Network Data Model


- -Alternative to represent continuous surface.
- -Effective display terrain, other types of continuous data.

Triangular Irregular Network (TIN)

6. Triangular Irregular Network Data Model

-triangulation method satisfies the Delaunay criterion.



Linear Interpolation

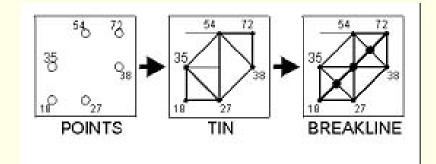
z=ax+by+c

a,b,c is determined by using co-ordinate values A,B,C.

7. Triangular Irregular Network Data Model

6.3 Surface Modeling with TIN and DEM Asian Institute of Technology

8. Triangular Irregular Network Data Model


A surface-feature type

influences the triangulation

definition of the resulting surface.

Supported surface-feature types :

Mass point Breakline Replace polygon Erase polygon Clip polygon Fill polygon

9. Triangular Irregular Network Data Model

Mass point

- entered as nodes to the triangulation

-Input: point data, lines and polygon boundaries

Breakline

- linear features maintained as a sequence of one or more triangle edges.

- Input: line data , polygon boundaries.

Replace polygon

- polygonal features maintained as a sequence of one or more triangle edges.

-boundary and all enclosed area assigned single value.

<u>10. Triangular Irregular Network Data Model</u>

Erase polygon

- polygonal features maintained as a sequence of edges.
- areas inside the polygon outside the zone of interpolation

Clip polygon

- polygonal features maintained as a sequence of edges.
- -areas outside polygon outside the zone of interpolation.

Fill polygon

- triangles falling inside the polygon are assigned an integer.
- -No height replacement, erasing, or clipping takes place.

Exercise IV:

Given the following dataset:

contour.shp

Boundary.shp

Create Tin and Digital Elevation Model for the area.

<u>Hints</u>

Use spatial analyst and 3D analyst.

Choose mass point and clip polygon options while creating TIN.