

What is a Watershed?

A WATERSHED ...

➢Refers to a Particular Location and a Spatial Extent, Gravitationally Draining Through that Location.

➤A Topographically Delineated Area that is Drained by a Stream System

➤A Hydrological Unit used for Planning and Management of Natural Resources

Integrated Watershed Management

Real World > Dis-aggregated, Independent, Political Actions

The tendency or inclination > Implementation in an Independent Fashion with little or no regard to how they affect other areas.

However, Water Flows Down the Slopes and Ignores the Political or Administrative Boundaries

Therefore Upstream Activities by a Person or a Group of Persons Affect the Welfare of those in the Downstream

This Gives Rise to the Need of Bringing together THE PHYSICAL FACTORS of a watershed and

The SURROUNDING POLITICAL REALITIES

Watershed Management Concerns

PREVENTING deterioration of existing relationships between the use of natural resources within a watershed

<u>RESTORING</u> sustainable relationships which had been destroyed due to actions in the past

THERE BY ENSURE THE BEST USE OF RESOURCES IN A WATERSHED

Problems Associated with Watersheds

*****Flooding

*.Unstable Slopes / Land Slides

*.Erosion from Denuded Land

*.Deficient Water Supplies

*****.Energy Shortage

*.Food Shortage

*.Poor Quality Drinking Water

*.Polluted Streams / Reduced Fishing

*****.Sedimentation of Navigation Tracks.

Timber Shortage (for Dwelling Purposes)

Problems and Possible Interaction

Flooding	Flood Control Reservoirs, Construction of Levees Flood Plain Management Re-vegetation(Denuded Areas)
Unstable Slop	pes / Land Slides
-	Slope Protection &
	Drainage Structures
Erosion	Erosion Control Structures
	Contour Terracing
	Re-Vegetation
Deficient Wa	ter Supplies
-9	Storage Reservoirs
	Water Harvesting
	Vegetation Manipulation
	Pumping of Deep Groundwater

and Possible Interaction
Fuel Wood Harvesting Hydro-Power Development
Develop Agricultural Areas Develop Agricultural Practices Increase Livestock
<i>ing Water</i> Develop Wells and Springs Treat Water <i>Reduced Fishery</i> Control Pollutant Entry
Treat Wastewater <i>avigation Tracks</i> Erosion Control Structures Dredging and Mining Fimber Harvesting

Solution	Associated with \	Watershed Management
Flooding	Flood Control Reservoirs	Minimise sedimentation
		Manage Land Cover
	Construction of Levees	Minimise Sediments
	Flood Plain Management	Land use Zoning/Management
	Re-vegetation	Manage Land Cover
Unstable Slopes	s / Land Slides	
	Slope Protection	Structures for Stabilise Slopes
		Manage Land Cover
		Restructure Slopes (Terracing etc.)
		Drainage Management
Erosion from D	enuded Lands	
	Erosion Control	Structures
		Re-vegetation & Management
	Contour Terracing	Re-vegetate, Mulching
		Slope Stabilisation,
	Re-vegetate	Protect and Manage Vegetative Cover

Precipitation & Interception

 ✓ Affects the Amount, Timing and Spatial Distribution of Water Added to a Watershed from the Atmosphere
 ✓ Precipitation is Largely beyond Human Control Land Use and Associated Vegetation Alterations affect the Deposition of Water by Changing Interception
 (Type, Extent, and Condition of Vegetative Land Cover Influence the Pattern and the Amount Reaching the Soil Surface)

✓ Dense Coniferous Forests and Multi-Storied Canopies of Tropical Forests Intercept and Store Significant Quantities of Precipitation and a Substantial Quantity is Returned to Atmosphere as Evaporation (Approx 30%)

Evapotranspiration & Soil Moisture

 ✓ Evaporation from Soils, Plants Surfaces, and Water Bodies together with Water Transpired through Plant Leaves is called Evapotranspiration
 ✓ Larger Canopied Plants Transpire Larger Amounts compared to Bare Soil or Plants with Smaller Stature
 ✓ ET affects the Water Yield, and Largely Determines the Proportion of Precipitation input becoming Streamflow
 ✓ In Tropical Watersheds ET component Reaches upto 80%
 ✓ Annual ET computations are through Water Balance Computations

ompar	uson o	ot Ann	uai	C I	ana kr
	-	atior	ansp (mm	% 0	
try	tion	bits	n (j) al	5	
E	cat	m) scij	tio a	38	
ů	Lo	Pre (m	Evan	E R	
Thailand	N1	1337 (78-87)	725	54%	
1	P14	941 (78-87)	692	74%	
	P21	935 (78-87)	676	72%	
	X53	1799 (78-87)	534	30%	
	X67	1803 (78-87)	1228	68%	
	CT4	1219 (78-87)	943	77%	
	N40	1387 (78-87)	10221	74%	
	E54	1458 (78-87)	751	52%	
	E29	1367 (78-87)	1064	78%	
	M69	1591 (78-87)	950	_60%	
Malaysia	Lengkuas	2139 (61-67)	1643	77%	
17 International Sector	Victoria	2578 (61-67)	1689	66%	
	R.Panjang	2197 (72-79)	1412	64%	
Sri	Peradeniva	2726 (69-80)	826	30%	
Lanka	Putupaula	3480 (72-79)	795	23%	
	Bopagoda	3324 (up to 96)	1952	58%	
	Chilaw	1604 (up to 96)	536	33%	
	Katharagama	a 1522 (up to 96)	1240	82%	
	Dambulla	1278 (up to 96)	986	77%	

Infiltration, Runoff & Streamflow

✓ Soil Covered with Vegetation Encourages Higher Infiltration than Bare Soils (Detainment)
✓ Plants through Canopy Cover reduces the Rain Drop Impact which can seal the Surface by Displacing Tiny Particles into Soil Pores
✓ Rainwater which flows over the surface and which flows laterally through the Soil becomes Streamflow
✓ The Terrain Shape and Constituents determine the Time and Quantity of Streamflow Generated in a watershed
✓ Watershed Characteristics such as, Shape, Size,
Channel and Watershed Slope, Topography and Drainage Density, and the Presence of Wetlands and Reservoirs influence the Streamflow Response

Infiltration, Runoff & Streamflow Water Yield from a Catchments Usually Increases when, • Forests are Clear Cut or Thinned • Vegetation converted from Deep Rooted to Shallow Rooted • Change of Plant Species with High Interception Capacities to Low Interception Capacities

LARGEST WATER YIELD OCCURS FROM CLEAR CUTTING OF FORESTS

Vegeta	tion Co	nditions	(Morod
	Heavily Grazed Palm Vegetation	Moderately Grazed Brushland	Ungrazed Afforested Pine
Vegetative Cover (%)	12.5	41.3	99
Slope (%)	0-10	5-25	5-40
Initial Infiltration Rate (mm/hr)	179	194	439
Infiltration Rate after 2hrs (mm/hr)	43	65	226

Increa reduct	ise of W rion in Vo	ater Yiel egetation	d with Cover	
Vegetative	Increase in Water Yield per 10% Reduction in Cover			
Cover Type	Average (mm)	Maximum (mm)	Minimum (mm)	
Conifer & Eucalyptus	40	65	20	
Deciduous Hardwood	25	40	6	
Shrub	10	20	1	

Ground Water

 Groundwater is referred to as the water that is accumulated beneath the Soil Surface in Saturated Zones
 Groundwater is very important to maintain the Watershed Wetness but it Seldom Occurs where it is most needed

Groundwater is often used as a Source of Fresh Water and important for vegetation sustenance and /or vegetation revival

Groundwater that seeps into streams provides the Baseflow of Streams. Therefore any unmanaged use would create a heap of Environmental Problems.
In most watersheds the use of Groundwater is limited by the Rate of Natural Replenishment. There are many

places where Natural flood waters are used to replenish the Groundwater

Soil Erosion and Sedimentation

Soil Erosion

The Process of Dislodgement and Transport of Soil Particles by Wind and Water

> Factors affecting Soil Erosion are, Climate,

Topography, Soil Characteristics, Vegetative Cover, Land Use etc.

Concerns of Wind Erosion Significant only in Arid and Coastal Areas

>Major Concern throughout the World (Especially in the TROPICS) is the Soil Erosion by Water

Erosion Rates

In Undisturbed Forests - 0.04 tons/ha/year
Logging and Roads - in excess of 15 t/ha/yr
Road Construction Sites - excess of 95 t/ha/yr

GIS Data Manipulation and Analysis

Single Data Plane

 \checkmark Interpolation of Point Data (rainfall & groundwater levels are in from rain gauges and from wells).

 \checkmark Creation of distances around points and lines (Useful in studying yield of wells in hard rock etc).

 \checkmark Interpolation and filtering (interpolation from digitised contours to obtain the DEM and filtered to obtain the slope map or a flow path map).

 \checkmark Interpolation and filtering is used for 2-D flow net construction of groundwater surfaces

 \checkmark Cover classification from remotely sensed data (a single plane is created from several data planes with spectral data).

A Simple GIS Model to Compute Peak Runoff from Watershed

Watershed Management and Environmental Impact Assessment Exercises often require the estimation of Peak Flows at critical geographic locations

Example: For a Large Number of Catchments along a Planned Highway, it is necessary to estimate the adequacy of Drainage Structures Proposed by the Highway Developer

Watershed Management Potentials Lange Dike Failure Scenarios Change Land Use Scenarios Change Flood Event Calculate Flood Damage Establish Evacuation Routes Relief and Medical Supply Paths, Stores Land Use Zoning Reclamation Plans and Clearance Establish Cost Curves Incorporation of Mitigation Structures