

ETH Supervised in Technologies and the second Second and the Second and Second

Automatic DSM Generation

- Manual, automatic, semi-automatic measurement modes. Last includes pre- and/or postediting and is the preferable way.
- Full automation is very difficult.
- For agile satellites, matching methods function better when occluded areas coincide as much as possible with shadow areas, e.g. when the orbit is to the East of the area imaged.
- With automatic mode only DSM can be measured, with the others both DSM and DTM. Reduction of DSM to DTM can rarely be performed fully automatically (e.g. in flat areas with scarce buildings and vegetation).

ETH Réperments faite estat totheir de cande faite faite de la faite est faite estat faite

Automatic DSM Generation

- Matching modules exist in various commercial RS and photogrammetric systems. Methods used are often based on cross-correlation, and match at a regular object or image grid.
- Much better methods exist in research labs. The example from 1991 on the next page, shows for two 1:25,000 scale map sheets, the Swiss national DTM (DHM25) derived from digitising contour lines, fully automated DSM results from SPOT-1 with ETHZ algorithms, and the same using the commercial system PCI. The two SPOT images had large radiometric differences.
- For good quality the breaklines must be well modeled which can be achieved better by using edge-based matching, in combination with other matching methods that provide denser results (see ETHZ method of Zhang Li below).

ETH Supervaside tude or to the back of the second for the back of the second are the second

Automatic DSM Generation

- Matching results, espec. with commercial systems, can vary a lot depending on the selection of the matching parameters (which have sometimes an unclear definition or at least effect).
- 3 automatically generated DSMs with DPW770, SocetSet. Left and right ATE, middle Adaptive ATE (effect of different matching strategies and matching parameters is clear)

ETH Information Inchroniterturdinde aanst Verse Reserve Indikale of New Keng Zantas

Automatic DSM Generation

- Multiple image matching
 - + Matching guided from object space
 - + Simultaneously multiple images (>= 2) with
 - Geometrically Constrained Cross-Correlation
- Matching with multiple primitives points + edges
- Self-tuning matching parameters
- High matching redundancy
- Efficient surface modeling
 - + TIN (from a constrained Delauney triangulation method)
- Coarse-to-fine hierarchical strategy

E. Baltsavias - ISPRS Tutorial, AfricaGIS 2005, Tshwane (Pretoria)

itomatio	C DSM Ge	eneration	(IKONO	S, Thur	i, Switzer	land)		
Study are	ea: Thun, S	witzerland				and the second	A CONTRACT	2
Aroa:	17 × 20 Km	2				A STATE	Jon Martin	-
T Alea.	17 × 20 Ki	S 0 17				ALC: NO		-
+ Heigh	t Range: 16	600 m					14.2 3 81	82
		1. 1. 1. 1.				Sint-		
IKONOS	Geo Produ	ct (O, N be	ow mean v	vith old,		and the local design		
new sens	sor calibration	on/interior c	rientation)			No. of Concession, Name	Cathorn and	4
Dataset	Image	Acquisition	Generation	Sensor-	Sensor	-		7
Dutustt	No.	Date	date	Azimuth	Elevation	an and	See Sector	5 A.
	135251_000	2003-12-25	2004-01-19	180.39°	62.95°		Barry Int.	1.2
T_DEC_O	135251_100	2003-12-25	2004-01-19	72.21°	82.15°	and had	1 - A & Car - A	
	135254_000	2003-12-25	2004-01-19	128.17°	82.62°		an and the second	
	163001_000	2003-12-25	2005-03-02	180.39°	62.95°	ASSAULT OF	ALC: N. LOWER	
T_DEC_N	163001_100	2003-12-25	2005-03-02	72.21°	82.15°	and the second	1 1000	22
	163003_000	2003-12-25	2005-03-02	128.17°	82.62°		A LI	1
	157928_000	2003-10-12	2004-02-11	10.74°	77.85°	Cir Wat	e let	92
T_OCT	157928_100	2003-10-12	2004-02-11	4.69°	85.26°	100	the state	1
	157928_200	2003-10-12	2004-02-11	197.09°	71.95°	- de	12-12-14	6
Reference	e					22	2200	
						120117	Section Providence	-
+ 2m sp	bacing LIDA	R DSM as	reference			ALC: NO DE CONTRACTOR	a state of the second	-
3501961	1. 6 17 2.					a constant	-	
accur	acy: 0.5 m ((1σ) for ope	n areas;			7.157	A States	
						Contraction of the		
								-

ETH Information Table and a Forderical a cards have Research indicate of two unings Tartin

Performance Evaluation: IKONOS, Thun, Switzerland

Lidar DSM - matching (in m) for the triplet T_DEC_O

Terrain type	No. of compared points	RMSE	Average	RMSE (95)	Average (95)
B1	7,037,578	1.27	0.82	0.93	0.89
B2	7,993,875	1.84	0.92	1.04	0.92
B3	9,763,257	2.11	0.80	1.20	0.80
С	2,794,389	3.34	0.30	2.36	0.30
V	8,689,642	8.16	1.68	Clear State	
W1	28,854,764	4.93	1.13	4.24	1.14
W2	18,022,149	2.74	0.70	1.45	0.69

B1 – Bare ground; B2 – Bare ground (including mountainous area); B3 – Bare ground (including mountainous and shadow areas)

C – City area only

V - Vegetation area only

W1 - Whole area; W2 - Whole area without vegetation areas.

RMSE (95) and Average (95) are RMS and average after excluding the 5% largest differences

Terrain type	No. of compared	RMSE	Average	RMSE (95)	Average (95)
B1	points	1 15	0.31	0.73	0.37
B2	7 993 875	1.15	0.34	0.73	0.35
B3	9.763.257	2.14	0.29	1.19	0.30
С	2,794,389	3.38	0.55	2.41	0.55
V	8,689,642	8.05	1.58	the second second	
W1	28,854,764	4.90	0.50	4.23	0.50
W2	18,022,149	2.54	0.35	1.41	0.34

ETH Migarmania radionata turbadi da candi facto Restra Indiale al Tele antigo Zoria

Performance Evaluation: IKONOS, Thun, Switzerland

Terrain	RMSE	RMSE	Average	Average
type	T_DEC_N	T_DEC_O	T_DEC_N	T_DEC_O
B1	1.15	1.27	0.31	0.82
B2	1.90	1.84	0.34	0.92
B 3	2.14	2.11	0.29	0.80
С	3.38	3.34	0.55	0.30
V	8.05	8.16	1.58	1.68
W1	4.90	4.93	0.50	1.13
W2	2.54	2.74	0.35	0.70

Terrain	No. of	RMSE	Average	RMSE	Average
type	compared points	1		(95)	(95)
B1	7,037,578	1.41	0.22	0.95	0.21
B2	7,993,875	1.77	0.29	1.09	0.29
B 3	9,763,257	1.75	0.29	1.07	0.29
С	2,794,389	2.83	-0.25	2.08	-0.25
V	8,689,642	6.61	-1.97		and the second second
W1	28,854,764	4.25	-0.40	2.96	-0.39
W2	18,022,149	2.05	0.16	1.32	0.16

			Acc	curacy	y ana	alysis			
orr	ain haid	ot (2.5D)							
211	annieigi	n (2.5D)							
0	riginal res	sults							
	Numb	er of points	Contraction of	RPC mc	del	- 71			
118	IGP DEM	Reference DEM	Max Diff.	Min Diff.	Mean	RMSE			
1	35448	100000	25.1	-32.9	-2.6	5.7			
2	32932	1000000	29.1	-37.1	-1.2	5.0			
3	33450	1000000	20.7	-17.2	-0.5	3.2			
4	32067	100000	13.6	-23.1	-2.5	4.7			
5-1	10327	21200	19.2	-33.5	-5.8	8.3			
5-2	71795	139200	136.8	-89.3	-4.3	9.5			
6	130558	600000	26.8	-27.1	1.5	4.0			
	the .			122	120				
		7.0							

ain height (2.5D) emoval of areas covered by trees $\begin{array}{r c c c c c c c c c c c c c c c c c c c$	ain height (2.5D) emoval of areas covered by trees $\frac{RPC \mod el}{\boxed{1 \ 15.4 \ -23.7 \ -1.7 \ 4.6}}$ $\frac{2 \ 29.1 \ -31.7 \ 0.2 \ 3.6}{3 \ 20.7 \ -13.6 \ 0.1 \ 2.9}$ $\frac{4 \ 10.5 \ -18.4 \ -1.2 \ 3.2}{5-1 \ 19.1 \ -13.3 \ -1.7 \ 4.9}$ $\frac{5-2 \ 49.8 \ -66.8 \ -1.3 \ 6.7}{6 \ 26.8 \ -25.9 \ 2.1 \ 4.4}$				Ac	cura	cy ar	naly	sis		
$\begin{array}{r c c c c c c c c c c c c c c c c c c c$	$ \frac{\text{RPC model}}{\boxed{Max \text{ Diff. Min Diff. Mean RMSE}} \\ \hline 1 & 15.4 & -23.7 & -1.7 & 4.6 \\ \hline 2 & 29.1 & -31.7 & 0.2 & 3.6 \\ \hline 3 & 20.7 & -13.6 & 0.1 & 2.9 \\ \hline 4 & 10.5 & -18.4 & -1.2 & 3.2 \\ \hline 5-1 & 19.1 & -13.3 & -1.7 & 4.9 \\ \hline 5-2 & 49.8 & -66.8 & -1.3 & 6.7 \\ \hline 6 & 26.8 & -25.9 & 2.1 & 4.4 \\ \hline \end{tabular} $	ain heig	ght (2.51	D)							
Max Diff. Min Diff. Mean RMSE 1 15.4 -23.7 -1.7 4.6 2 29.1 -31.7 0.2 3.6 3 20.7 -13.6 0.1 2.9 4 10.5 -18.4 -1.2 3.2 5-1 19.1 -13.3 1.7 4.9 5-2 49.8 -66.8 -1.3 6.7 6 26.8 -25.9 2.1 4.4	RPC model Max Diff. Min Diff. Mean RMSE 1 15.4 -23.7 -1.7 4.6 2 29.1 -31.7 0.2 3.6 3 20.7 -13.6 0.1 2.9 4 10.5 -18.4 -1.2 3.2 5-1 19.1 -13.3 -1.7 4.9 5-2 49.8 -66.8 -1.3 6.7 6 26.8 -25.9 2.1 4.4	movel	of orogo	-	butte						
RPC model Max Diff. Min Diff. Mean RMSE 1 15.4 -23.7 -1.7 4.6 2 29.1 -31.7 0.2 3.6 3 20.7 -13.6 0.1 2.9 4 10.5 -18.4 -1.2 3.2 5-1 19.1 -13.3 -1.7 4.9 5-2 49.8 -66.8 -1.3 6.7 6 26.8 -25.9 2.1 4.4	RPC model Max Diff. Min Diff. Mean RMSE 1 15.4 -23.7 -1.7 4.6 2 29.1 -31.7 0.2 3.6 3 20.7 -13.6 0.1 2.9 4 10.5 -18.4 -1.2 3.2 5-1 19.1 -13.3 -1.7 4.9 5-2 49.8 -66.8 -1.3 6.7 6 26.8 -25.9 2.1 4.4	emoval	or areas	covered	by tre	es					
Max Diff. Min Diff. Mean RMSE 1 15.4 -23.7 -1.7 4.6 2 29.1 -31.7 0.2 3.6 3 20.7 -13.6 0.1 2.9 4 10.5 -18.4 -1.2 3.2 5-1 19.1 -13.3 -1.7 4.9 5-2 49.8 -66.8 -1.3 6.7 6 26.8 -25.9 2.1 4.4	Max Diff. Min Diff. Mean RMSE 1 15.4 -23.7 -1.7 4.6 2 29.1 -31.7 0.2 3.6 3 20.7 -13.6 0.1 2.9 4 10.5 -18.4 -1.2 3.2 5-1 19.1 -13.3 -1.7 4.9 5-2 49.8 -66.8 -1.3 6.7 6 26.8 -25.9 2.1 4.4		Sec. 2		10.	Read a					
Max Diff. Min Diff. Mean RMSE 1 15.4 -23.7 -1.7 4.6 2 29.1 -31.7 0.2 3.6 3 20.7 -13.6 0.1 2.9 4 10.5 -18.4 -1.2 3.2 5-1 19.1 -13.3 -1.7 4.9 5-2 49.8 -66.8 -1.3 6.7 6 26.8 -25.9 2.1 4.4	Max Diff. Min Diff. Mean RMSE 1 15.4 -23.7 -1.7 4.6 2 29.1 -31.7 0.2 3.6 3 20.7 -13.6 0.1 2.9 4 10.5 18.4 -1.2 3.2 5-1 19.1 -13.3 -1.7 4.9 5-2 49.8 -66.8 -1.3 6.7 6 26.8 -25.9 2.1 4.4			RPC mc	del						
1 15.4 -23.7 -1.7 4.6 2 29.1 -31.7 0.2 3.6 3 20.7 -13.6 0.1 2.9 4 10.5 -18.4 -1.2 3.2 5-1 19.1 -13.3 -1.7 4.9 5-2 49.8 -66.8 -1.3 6.7 6 26.8 -25.9 2.1 4.4	1 15.4 -23.7 -1.7 4.6 2 29.1 -31.7 0.2 3.6 3 20.7 -13.6 0.1 2.9 4 10.5 -18.4 -1.2 3.2 5-1 19.1 -13.3 -1.7 4.9 5-2 49.8 -66.8 -1.3 6.7 6 26.8 -25.9 2.1 4.4		Max Diff.	Min Diff.	Mean	RMSE					
2 29.1 -31.7 0.2 3.6 3 20.7 -13.6 0.1 2.9 4 10.5 -18.4 -1.2 3.2 5-1 19.1 -13.3 -1.7 4.9 5-2 49.8 -66.8 -1.3 6.7 6 26.8 -25.9 2.1 4.4	2 29.1 -31.7 0.2 3.6 3 20.7 -13.6 0.1 2.9 4 10.5 -18.4 -1.2 3.2 5-1 19.1 -13.3 -1.7 4.9 5-2 49.8 -66.8 -1.3 6.7 6 26.8 -25.9 2.1 4.4	1	15.4	-23.7	-1.7	4.6					
3 20.7 -13.6 0.1 2.9 4 10.5 -18.4 -1.2 3.2 5-1 19.1 -13.3 -1.7 4.9 5-2 49.8 -66.8 -1.3 6.7 6 26.8 -25.9 2.1 4.4	3 20.7 -13.6 0.1 2.9 4 10.5 -18.4 -1.2 3.2 5-1 19.1 -13.3 -1.7 4.9 5-2 49.8 -66.8 -1.3 6.7 6 26.8 -25.9 2.1 4.4	2	29.1	-31.7	0.2	3.6					
4 10.5 -10.4 -1.2 3.2 5-1 19.1 -13.3 -1.7 4.9 5-2 49.8 -66.8 -1.3 6.7 6 26.8 -25.9 2.1 4.4	4 10.5 -10.4 -1.2 3.2 5-1 19.1 -13.3 -1.7 4.9 5-2 49.8 -66.8 -1.3 6.7 6 26.8 -25.9 2.1 4.4	3	20.7	-13.6	0.1	2.9					
5-1 19.1 13.3 1.1 4.3 5-2 49.8 -66.8 -1.3 6.7 6 26.8 -25.9 2.1 4.4	5-1 19.1 11.3 11.1 14.3 5-2 49.8 -66.8 -1.3 6.7 6 26.8 -25.9 2.1 4.4	4	10.5	-10.4	-1.2	3.2					
6 26.8 -25.9 2.1 4.4	6 26.8 -25.9 2.1 4.4	5-2	49.8	-13.3	-1.7	4.9					
		6	26.8	-25.9	2.1	4.4					
					1447	4191					

			Acc	urac	analysis		
al die	stance	(3D)					
ai uis	stance	(30)					
	-	RPC	nodel	-			
N.	Max distance	Average	Standard	RMSE			
1	18.7	2.2	1.7	2.8			
2	37.5	2.7	2.0	3.4			
3	21.4	2.7	1.8	3.2			
4	20.0	2.2	1.6	2.7			
5-1	26.3	6.4	4.4	7.8			
5-2	70.1	6.0	5.0	7.8			

		Orthoima	ige G	enera	tion	
Zug		Test resu	lts			
	Sens el DTM sp GCP ac GCP de Elevati	ev. (deg) bacing/accur curacy (m) finition on range (m)	(m)	8 5 / 1. Medium 400	5.7 70.4 5-2 n to good 9-990	
	Version	GCPs / CPs	RMS/X	RMS/Y	Max. abs X	Max. abs Y
18 A 19 1	1	27 / 41	1.5	1.6	3.8	3.2
	2	27 / 69	2.5	2	11.3	6.5
Method: Ki Extrapolat	ratky's P ion occur	FMs 's when chec	k points	s are def	fined	

	Orthom	lage Gen	eration	States and
uzern	Test r	results		
4	Sense DTM s GCP a GCP d Elevat	elev. (deg) spacing/accur (iccuracy (m) lefinition tion range (m)	m) 25 / 2 Ve	67.7 2.5 lowland, 10 Alps 0.5 - 3 ery poor to good 400-2100
1	Meth	hod: Affine tr	ansforma	tion
2	GCPs/CPs R	hod: Affine tr MS/X RMS/YI	ansforma Max. abs X	tion Max. abs Y
	GCPs/CPs R 0 /66 1	hod: Affine tr MS/X RMS/YI 34.2 30.6	ansforma <mark>Max. abs X</mark> 501.5	tion Max. abs Y 118.1
	GCPs/CPs R 0 /66 1 6 / 65	hod: Affine tr MS/X RMS/YI 34.2 30.6 2.6 2.2	ansforma <mark>Max. abs X</mark> 501.5 9.9	tion Max. abs Y 118.1 5.9

	Or	thoimag	ge Ge	nera	tion	
syros		Те	st resul	ts		
	1 mart	Sen DTN GCP	s elev. (« A spacing accurac	deg) g/accur ;y (m)	(m) 2	73.5 2 / 3.3 ca. 0.5
	the second	GCP Elev	definiti ation ra	<mark>on</mark> nge (m)	Poc	r to good 0-700
		GCP Elev	^e definiti vation ra Vlethod	on nge (m) : Affine	Poc	r to good 0-700 nation
	Version	GCP's/CPs	definiti vation ra Viethod	on nge (m) : Affine RMS/Y	e transform	n to good 0-700 nation
	Version	GCP's/CPs 0 / 38	Vethod RMS/X	on nge (m) : Affine RMS/Y 75.5	transform Max. abs X 153.1	nation Max. abs Y 122.8
	Version 1 2	GCP's/CPs 0 / 38 4/34	Vethod RMS/X 106.1	on nge (m) : Affine RMS/Y 75.5 1	Poo transform Max. abs X 153.1 4.4	nation Max. abs Y 122.8 2.3

Orthoimage generation (IKONOS, Quickbird) in Geneva

Input data

2 IKONOS Geo images (IKONOS-West / IKONOS-East) 1 Basic QUICKBIRD Image

Orthoimages (for acquisition of GCPs): OP-DIAE: Digital Orthos of Canton Geneva (25 cm pixel size, 0.5 m planimetric RMS) Swissimage: Digital Orthos of Switzerland of Swisstopo (50 cm pixel size, 1m planimetric RMS)

DTMs:

DTM-AV (from airborne laser scanning): 1 m grid spacing, 0.5 m height RMS DHM25 of Swisstopo (from digitised contours): 25 m grid spacing, 1.5-2 m height RMS

Measurement of GCPs with ellipse fit and line intersection.

Image orientation with various sensor models. RPCs with subsequent affine transformation used for orthoimage generation.

Image	Number of GCPs/CPs	X RMS (m)	Y RMS (m)	X mean with sign (m)	Y mean with sign (m)
Ikonos West	10/23	0.55	0.63	0.25	-0.49
Ikonos East	10/33	0.47	0.76	0.10	-0.59
Quickbird	10/53	0.56	0.60	-0.08	-0.38

In Y mean (bias) large due to coordinate system differences.

ETH ter Keisel Scherbergeberg Orthoimage generation (IKONOS, Quickbird) in Geneva

Planimetric accuracy of panchromatic orthos with GCPs from OP-DIAE and Swissimage

Image	Number of GCPs/CPs	X RMS (m)	Y RMS (m)	X mean with sign (m)	Y mean with sign (m)
Ikonos West	10/58	0.91	0.72	-0.07	-0.30
Ikonos East	10/57	0.67	0.75	0.00	-0.33
Quickbird	10/93	0.66	0.77	-0.06	-0.11

Submeter accuracy even with GCPs from not so accurate Swissimage orthos.

Road Extraction – Project ATOMI
Automated Reconstruction of Topographic Objects from Aerial Images using Map Information.
It's a co-operation between swisstopo (Swiss Federal Office of Topography) and ETH Zurich, financed by swisstopo.
ATOMI uses edge detection and existing knowledge and cues about road existence to detect road centrelines from orthophotos.
ATOMI is used to remove cartographic generalisation and fit the geometry of roads to the real world to an accuracy of better than $1m$ in x, y and z
ATOMI keeps the topology and attributes of the input vector map data set (VECTOR25)
The result is a new accurate 3D road centreline data set without gaps, containing the topology and attributes of the input data as well as new weighted mean road width attributes