

TUTORIAL

Extraction of Geospatial Information from High Spatial Resolution Optical Satellite Sensors

E. Baltsavias¹,L. Zhang ², D. Holland ³, P.K. Srivastava ⁴, B. Gopala Krishna ⁴, T.P. Srinivasan ⁴

- ¹ Institute of Geodesy and Photogrammetry, ETH Zurich, Wolfgang Pauli Str. 15, CH-8093 Zurich, Switzerland, manos@geod.baug.ethz.ch
- ² Institute for Photogrammetry and Remote Sensing, Chinese Academy of Surveying and Mapping, 16 Beitaiping Road, Haidian District, Beijing 100039, P.R.China, zhangl@casm.ac.cn
 - ³ Ordnance Survey, Romsey Road, Southampton SO16 4GU, UK, David.Holland@ordnancesurvey.co.uk
 - ⁴ Space Applications Centre, ISRO, Ahmedabad 380 015, India, pradeep@ipdpg.gov.in

Contents

- 1. Introduction (definition of HR, current HR sensors, main characteristics, technological alternatives)
- 2. Image quality, radiometric analysis, preprocessing
- Geometric sensor models and sensor orientation
- 4. Automated DSM generation
- 5. Orthoimage generation
- 6. Automated and semi-automated object extraction (mainly roads and buildings)
- 7. Land use and land cover mapping
- 8. Use of HR for mapping, landscape change detection and map update, and comparison to alternative information sources
- 9. Cartosat mission characteristics, data processing and products
- 10. Conclusions and outlook

Use of high resolution satellite imagery for mapping, landscape change detection and map update

David Holland
Ordnance Survey

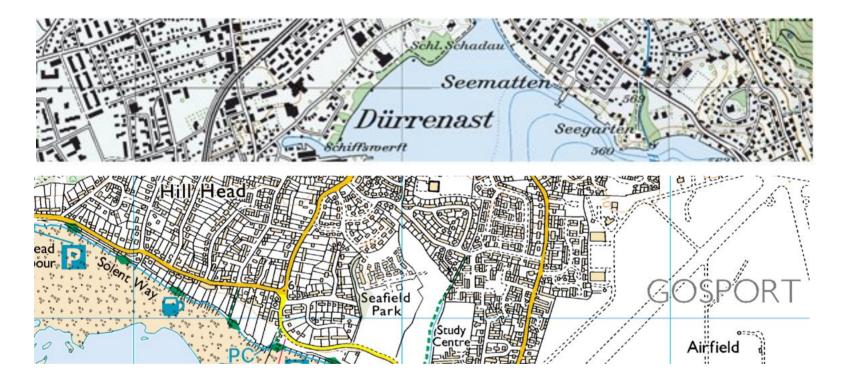
Is high resolution satellite imagery a viable, cost-effective data source for a mapping agency

What do I mean by high resolution?

- Anything with a ground sample distance of 1m or less.
- Ordnance Survey have looked at Landsat, SPOT etc. in the past, & concluded that they are not viable for mapping at the current specifications in GB
- This leaves:
 - QuickBird 61cm
 - Ikonos 1m
 - OrbView3 1m
 - Many "spy satellites" (data not generally available)
 - Several planned missions over the next few years

Different types of mapping possibly suited to HRS data

- Large scale topographic data
 - Scales 1:1 250, 1:2 500, 1:10 000
- Small scale (tourist) mapping
 - Scales 1:50 000 and 1:25 000
- Change intelligence
 - Identifying areas of change
- ·Land cover mapping, image maps...



Not all maps are the same...Swiss and British 1:25 000 maps

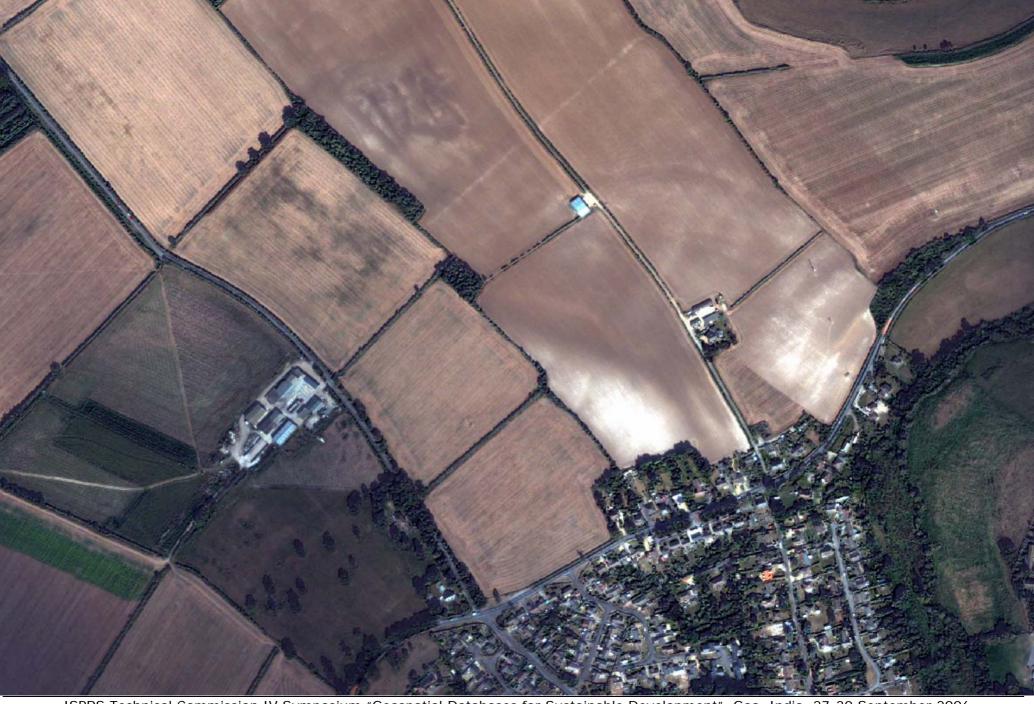
Some examples of mapping projects

- Street maps of 1,800 sq. km. of the Jakarta metropolitan area using IKONOS 1meter panchromatic imagery, for use in cable TV network planning
- Mapping of Saudi Arabia (100,000 square km) using IKONOS and QuickBird imagery
- Mapping of large areas of Poland (50,000 square km) using IKONOS
- QuickBird images also used extensively by the press in recent conflicts (the Gulf, Afghanistan, Lebanon)
- Researchers at the CCRS report that QuickBird meets the US 1:2400 to 1:4800
 National Map Accuracy standard

Moving to the mainstream?

- For the first few years, Ikonos and QuickBird data was used in:
 - Small projects
 - Research studies
 - Military and intelligence applications
- Once it became more accepted by users:
 - More evidence of larger, national projects
 - More civilian and commercial applications
- Now:
 - All gone quiet...
 - ...or is it now part of the mainstream?

Mapping from QuickBird at Ordnance Survey


- QuickBird imagery of several UK sites (urban and rural)
- Panchromatic and Multispectral
- Some nice images with no clouds (in England!!)
- Orthorectified, typically using large scale map detail as control points and a 10 mspaced DTM
- Achieved geometric accuracy of 1.7 m to 3.3 m RMSE (we acknowledge that a higher resolution is possible if using GPS control points)
- Geometric accuracy suggests mapping at 1:6000 scale is possible

ISPRS Technical Commission IV Symposium "Geospatial Databases for Sustainable Development", Goa, India, 27-30 September 2006

ISPRS Technical Commission IV Symposium "Geospatial Databases for Sustainable Development", Goa, India, 27-30 September 2006

ISPRS Technical Commission IV Symposium "Geospatial Databases for Sustainable Development", Goa, India, 27-30 September 2006

ISPRS Technical Commission IV Symposium "Geospatial Databases for Sustainable Development", Goa, India, 27-30 September 2006

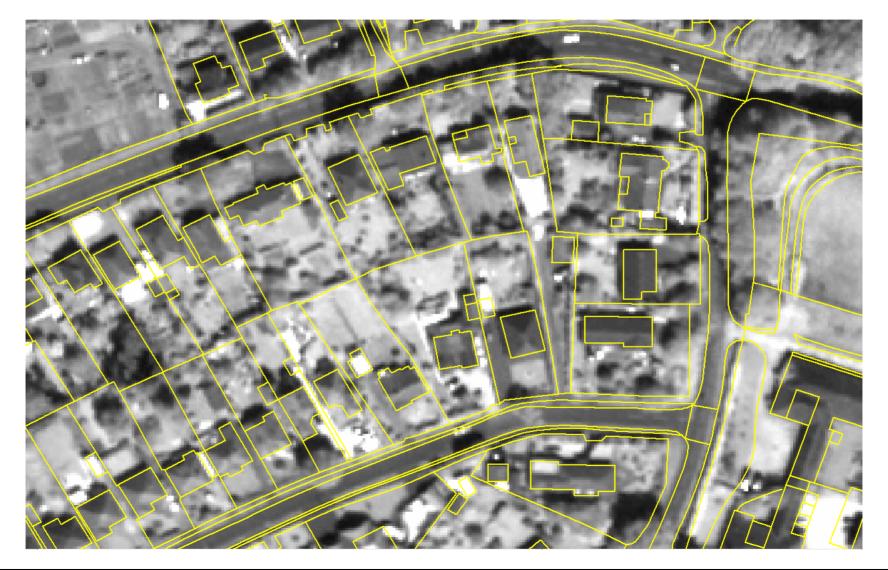
Aerial photo – 12cm

Aerial photo – 25cm

QuickBird – 60cm

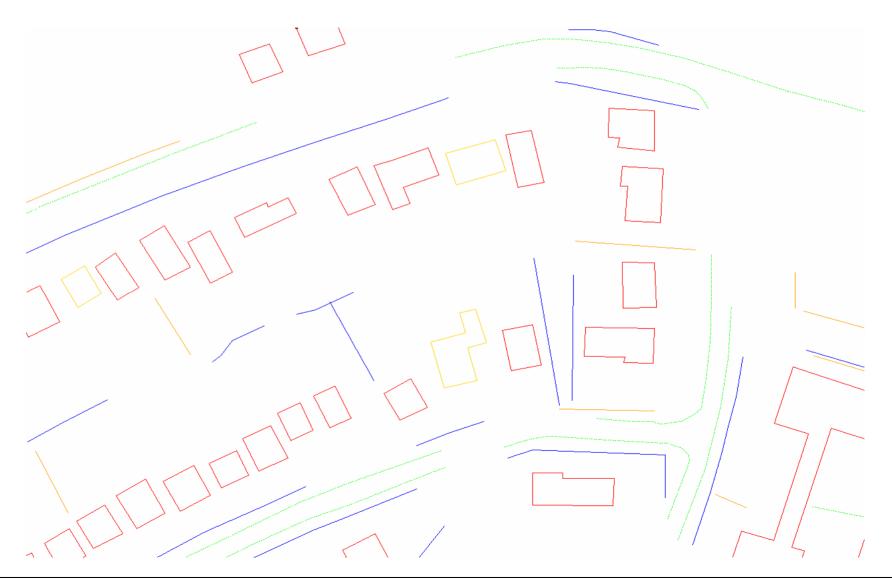
Large Scale mapping - example of OS MasterMap

Example of data captured from QB



QuickBird plus existing map vectors

Map data captured from QuickBird



Vectors Captured from QuickBird

Existing vectors and QB captured vectors

Feature geometric accuracy results

Feature type	No. of points	Min	Max	Mean	SD	RMSE
House corners	218	0.24	6.57	1.98	1.22	2.32
Fence junctions	28	0.24	3.06	1.37	0.81	1.59

- Comparison between house corners and fence junctions on the map, and the equivalent point on the image.
- Geometric accuracy suitable for mapping at scales of about 1:5000

Feature identification results

	Quickbird			Air photo		
Level of requirement:	High	Medium	Low	High	Medium	Low
No of tests	86	65	63	86	65	63
No. of features present	38	38	25	38	38	25
Number correctly identified	35	26	11	37	32	22
Number not identified	3	12	14	1	6	3
Success rate %	92	68	44	97	84	88

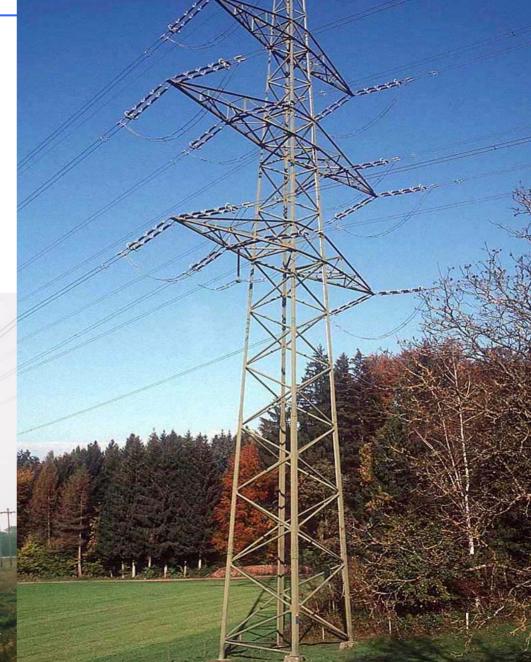
- <u>High</u>: **must** be identifiable at this scale of mapping (e.g. boundary feature)
- Medium: desirable to be identifiable at this scale of mapping (e.g. type of boundary hedge)
- Low: **some interest** at this scale of mapping (e.g. nature of boundary permanent or temporary)

What we can/can't capture using QuickBird imagery

- We can successfully identify and capture the following, to meet the Ordnance Survey 1:10 000 scale specification:
 - Roads, railways, airports
- We can usually capture:
 - Buildings
 - Lakes, rivers, streams
 - Tracks & paths
- It is not usually possible to capture:
 - Fences, walls
 - Narrow tracks & paths
 - Electricity Transmission Lines
 - Field and property boundaries

Other things you cannot collect

- Small geometric objects:
 - juts, recesses on buildings
 - fence posts
 - pylons
- High and low tide lines
- (And, of course, non-topographic attributes such as place names, road classifications, addresses – but these are also fairly difficult to capture from aerial photography!)



Electricity transmission lines

What sort of map could be produced?

- Using only a satellite image, a satisfactory cartographic map could be produced at a scale of 1:6000 or smaller.
- By changing the specification (e.g. not requiring fences, small paths, streams)
 larger scale maps could be produced.
- Image maps i.e. georeferenced background images with added attribution could be produced very easily
- Other information would be needed to populate the attributes (but much of this information may already be available in well-mapped countries)

Change Detection

- Probably the most viable use of satellite imagery for Ordnance Survey
- In both urban and rural areas, QuickBird imagery was successfully used to detect change
- Urban new housing, industrial buildings, roads
- Rural fences, tracks, vegetation boundaries
- Main drawback is the cost of the images

Example of change in Manchester: demolition of industrial buildings

Other uses

- Capture of transport network information
- Quality auditing (checking currency of maps)
- Image maps (especially from pan-sharpened images)
- Land-cover maps
- Automatic/manual detection/capture of currently-unmapped features (e.g. trees, road markings)

Advantages of satellite imagery over aerial photography

- The satellite is operational 365 days of the year,
- Frequent re-visit times (~every 4 days),
- Imagery is post-processed relatively quickly,
- No Air Traffic Control restrictions apply,
- Large area footprint (e.g. 16.5 x 16.5 km2) cuts down the need for block adjustment and creation of image mosaics,
- The satellite can easily access remote or restricted areas,
- No aircraft, cameras or expensive equipment are required (by the end user).

And the disadvantages...

- The typical off-nadir viewing angle of up to 25° is not acceptable
- The production processes required for high resolution satellite imagery may be different to those of traditional photogrammetric data capture
- The reliability of capture and delivery of imagery can be poor at times
- Image resolution is low compared to most aerial photography
- Cost of the imagery may be too high (when compared with air photos)
- There is a strong possibility of cloud cover

Conclusions

- Current satellite imagery could be used for mapping at 1:6000 scale
- Satellite imagery could be used for several different purposes in a mapping agency, especially change detection
- Satellite imagery is a convenient data source, which is less complex to process than aerial photography
- The true benefit of this imagery in a well-mapped country is yet to be proven, but multiple use of the data could be its major selling point to a mapping agency

Contact for further information

David Holland
Research & Innovation
Ordnance Survey
Romsey Road
SOUTHAMPTON
United Kingdom
SO16 4GU

Phone: +44 (0) 23 8079 2808

Fax: +44 (0) 23 8079 2615

Email: David.Holland@ordnancesurvey.co.uk

Web site: www.ordnancesurvey.co.uk