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Abstract – Rubble detection is a key element in post disaster 

crisis assessment and response procedures.  In this paper we 

present an automated method for rapid detection and 

quantification of rubble from very high resolution (VHR) 

aerial imagery of urban regions.  It is a two step procedure in 

which the input image is projected onto a hierarchical 

representation structure for efficient mining and 

decomposition.  Image features matching the geometric and 

chromatic properties of rubble are fused into a rubble layer 

that can be re-adjusted interactively.  The targeted objects are 

evaluated based on a density metric given by spatial 

aggregation.  The method is tested on a small-scale exercise on 

the publicly available aerial imagery of Port-au-Prince, Haiti.  

Performance and preliminary results are discussed.  

 

Keywords: Rubble detection, earthquake, differential area profile, 

spatial aggregation. 

 

1. INTRODUCTION 

 

The presence of rubble in urban areas can be used as an indicator 

of building quality, poverty level, commercial activity, and others. 

In the case of armed conflict or natural disasters, rubble is seen as 

the trace of the event on the affected area.  The amount of rubble 

and its density are two important attributes for measuring the 

severity of the event, in contribution to the overall crisis 

assessment.  In the post-disaster time scale, accurate mapping of 

rubble in relation to the building type and location is of critical 

importance in allocating response teams and relief resources 

immediately after event.  In the longer run, this information is 

used for post-disaster needs assessment (PDNA), recovery 

planning and other relief activities on the affected region.  An 

example on the 2010 Haiti earthquake is available in (JRC,2010). 

 

Rubble is defined as the remains of building structures, i.e. 

fragments of irregular size, shape and texture.  In remote sensing 

imagery, aerial or satellite, areas containing rubble are 

characterized by high intensity variability.  Building fragments are 

usually compact, and of small size that varies depending on the 

building material, construction quality, and the intensity of the 

event that generated them.  They rest within a small distance from 

the collapsed structure and their density is a multi-purpose 

measure for evaluating the extent of the physical damage, the 

regional accessibility, the risk or cost in human lives, etc. 

Compiling this rubble characterization and measuring needs, a 

rubble detection (RD) system is presented based on remote 

sensing imagery.  The RD system targets small size, compact 

features, both bright and dark, in highly textured VHR images. 

Full operation cycles on selected image tiles, of the highest scene 

complexity, suggest that the proposed method can provide reliable 

results for all stages of post-disaster crisis response. 

2. RUBBLE DETECTION SYSTEM 

 

2.1 System Overview 

The RD system is based on a modular architecture that allows the 

customization of the process flow depending on the crisis 

scenario.  It operates on panchromatic images of maximum 

intensity resolution up to 16 bits/pixel.  The system input supports 

additional geo-referenced sources such as the infrared channel of 

multi-spectral acquisitions, manually generated masks, digital 

elevation models (DEM), and others.  Pre-disaster VHR imagery 

can be utilized if available, to extract the building footprints. 

Rubble-like structures are confirmed as rubble if detected in the 

vicinity of a building footprint and rejected otherwise.  Rubble 

detected in the pre-disaster acquisition is ignored in the post-

disaster process flow.  The RD system, following data preparation 

computes an image representation structure.  Image information 

mining and meta-processes are operated directly on this structure. 

  

2.2 Image Representation  

The task of this module is to transfer the image information from 

the definition domain to some hierarchical representation structure 

for indexing and fast component retrieval.  The current system 

supports the Max-Tree (Salembier,1998) and α-Tree 

(Ouzounis,2011b) structures but can easily be adopted to utilize 

others.  The process-flow described, employs the Max-Tree 

structure which was originally introduced in the context of anti-

extensive attribute filtering (Breen,1996).  The Max-Tree is a 

rooted, uni-directed tree in which, nodes correspond to sets of 

image flat-zones.  For each set of flat zones there exists a unique 

mapping to a peak component.  Given a gray-level image f and a 

level h, a flat-zone is an iso-intensity component at level h of path-

connected elements of f, and a peak component is a connected 

component of the corresponding threshold set at h.  The tree node 

ordering corresponds to the respective peak component nesting; 

each node points to its parent and the root, corresponding to the set 

of elements that define the background, points to itself.  The 

leaves of the tree are regional maxima, i.e. flat zones with 

neighbors of strictly lower intensity.  Each Max-Tree node is 

assigned a unique id which is derived from the image histogram.  

It is addressed with respect to its level h and node-at-level index k. 

The node structure consists of 4 primary members but may include 

others, custom to specific tree operations.  The members are the 

node level, the new level after processing, the parent node id and a 

pointer to an auxiliary data structure, from which a number of 

different attributes can be computed during a pass through the tree. 

 

Max-Trees can utilize mask images to control the connectivity of 

the image domain.  This is referred to as the dual input Max-Tree 

algorithm (Ouzounis,2007) and examples are the clustering and 

contraction based connectivities, which remain to be investigated 

in the study of the local background of regions containing rubble.   



Figure 1.  A simple 1D signal (shaded) decomposed to 3 area 

zones, and the corresponding Max-Tree.  

 

 

An example of a Max-Tree computed from a simple 7-level 1D 

signal is shown in Figure 1.  A node exists for each peak 

component that is partially or fully a flat zone. 

 

2.3 Image Information Mining 

Projecting the input image to a tree-based structure compresses the 

information content by organizing same intensity path-connected 

elements to hierarchically ordered components that are represented 

by nodes.  Mining the tree is a simple pass through the structure in 

which node attributes are compared against a given set of 

thresholds.  In the case of rubble, size is the predominant attribute 

but others, like compactness, may also contribute for a more 

constrained representation.  To constrain the search space in the 

mining process, the tree structure is partitioned to a set of semantic 

layers.  A typical set-up involves a 4-layer decomposition; the 

noise, the rubble, the local background and the image residual 

layer. The decomposition algorithm employed is a third generation 

Differential Morphological Profile (DMP) (Pesaresi,2001), i.e. one 

that supports connected attribute filters (Breen,1996) for 

computing the contribution of each image element to the 

respective set of layers.  The size metric in this case is the 

component area as opposed to width in regular DMPs.  This is 

described as the Differential Area Profile (DAP) (Ouzounis,2010).  

 

Let E be the definition domain of an image f. Moreover, let 

)( fα
λγ  and )( fα

λφ  be an area opening and closing of f 

respectively (Vincent,1993).  They are both connected operators, 

i.e. they transform the image partition of flat zones from fine to 

coarse (Salembier,1998); subject to an area criterion.  An area 

opening reduces the intensity of a peak component P  marked 

by Ex∈ to that of its highest ancestor P′ satisfying the area 

criterion, i.e. )(PArea ′≤λ . An area closing is the dual operator.  

Openings are utilized for accessing and processing bright image 

components and closings for dark components.  Consider a top-hat 

and bottom-hat scale space of f based on area openings and 

closings respectively. The DAP of a point Ex∈ , is the 

concatenation of two vectors, perpendicular to the image plane, 

and in opposite direction with respect to each other. They are 

called the differential area opening and closing profiles of x, each 

consisting of (I−1) elements, in which I is the number of scales. 

 
(a) 

 
(b) 

 
 

(c) 

 
(d) 

 
(e) 

Figure 2.  An image tile containing building rubble (a), and its 

inverse in (b).  The opening (top) and closing instance (bottom) of 

the DAP vector field in (c).  Cross sections of the two instances in 

(d) and (e) respectively. 

 

 

The differential area opening profile of x is given by: 
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concatenation byC , the DAP of x is given by:  
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The set of DAPs for the entire definition domain of the input 

image is called the DAP vector field and is divided into its two 

constituent parts, the opening and closing instance. An axial cross-

section of any of the two instances is referred to as a DAP plane.  

An example is given in Figure 2.  Image (a) shows the input and 

(b) its inverted replica.  Computing the dual of a connected filter is 

identical to computing the original operator on the inverted image. 



Image (c) shows the color labeled DAP vector field of (a).  Images 

(d) and (e) show two sagittal cross-sections, of the opening and 

closing instance of the DAP vector field respectively.  The 

bottom-most plane of each instance contains all small size 

components.  Planes are also referred to as area zones because 

they contain objects of strict size limits.  The gray shaded bands of 

the signal in Figure 1 demonstrate a 4-area zone partition of the 

input signal; the (1,4), (4,8), (8,10) and (10, image size) zone 

respectively.  The area zone decomposition of the input images of 

Figure 2, i.e. (a) and (b), considers the first plane of each instance 

to contain all rubble candidates.  There is no noise layer due to 

resolution limitations.  Following fine tuning of the area zone 

thresholds, discussed in Section 3, the rubble layer is computed by 

summing the two primary zones/planes of the respective instances.   

 

2.4 Information Meta-Process 

The extracted rubble layer following an area-based tree query is an 

image consisting of rather low intensity components that 

correspond to image features, both dark and bright, of size within 

the corresponding area zone bounds.  They convey geometric and 

intensity information that can be perceived as low level semantics. 

Shape is not considered in our approach.  Intensity specifies the 

extent to which each component stands out with respect the local 

background layer. Bright components in the rubble layer however, 

do not necessarily correspond to rubble.  To suppress the response 

of such cases, the spatial distribution of the extracted components 

is taken into consideration.  This is through a commonly used 

method in cluster analysis; the spatial aggregation.  This yields a 

set of higher level semantics considering the density metric; the 

rubble clusters.  Spatial aggregation is a spatial averaging of a 

gray-level function over a finite neighborhood. Assuming a 

Gaussian distribution of standard deviation σ, the process reduces 

to low a pass filter or Gaussian blur, given by: 

 

 

2

2

2

2
2

1
)( σ

πσ

x

exG
−

= . 
 

(3) 

 

                                   

I.e. given a point Ex∈  defining the centre of a Gaussian kernel 

K, its intensity is given by averaging the weighted intensities of its 

neighbors within K.  G(x) is the value of the density metric at x.  

 

3. RD SYSTEM OPERATION CYCLE 

 

3.1 System Input 

In this section a rubble detection exercise is demonstrated on a 

limited coverage dataset.  The process flow initiates at the image 

representation stage and no pre-processing or additional input 

sources are used.  This is done to highlight the strength of the 

proposed methodology directly on the raw, primary source.  The 

dataset used is a set of VHR aerial images of Port-au-Prince after 

the Haiti earthquake in January 12th, 2010.  They are courtesy of 

©Google 2010, and are available at the Google Crisis Response 

web-site (Google,2010).  They are sub-sampled to 8-bits/pixel.  

 

3.2 Interactive Image Decomposition and Query 

In the first stage of the process flow, the primary input is projected 

onto a Max-Tree and a Min-Tree structure for bright and dark 

information indexing respectively.  A Min-Tree is the dual of a 

Max-Tree. Instead of involving a separate algorithm to compute it, 
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Figure 3. An RGB tile of Port-au-Prince aerial imagery dataset in 

(a) and the detected rubble clusters in (b). Images (c)-(h) show 

selected regions of (a) and (b) respectively. 

 

 

it is sufficient to invert the input image and re-compute the Max- 

Tree.  Computing the two trees is a rather intensive task for which 

the RD system employs a concurrent implementation of the 

algorithm, for shared memory, multi-processor machines 

(Wilkinson,2008).  It has been utilized for computing regular 

DMPs in (Wilkinson,2011).  In the case of DAPs, following the 

concurrent tree construction, it runs the area zone decomposition 

algorithm of (Ouzounis2011a).  In this algorithm the tree is 

partitioned into sets of nodes based on their size attributes; each 

set contains all the tree nodes that correspond to image features 

with size being within the zone’s bounds.  This process is 



implemented in the form of a top-down pass through the tree and 

its runtime is independent of the number of zones.  Moreover, 

zones can be split or merged interactively thus allowing for fine 

tuning of the decomposition, i.e. selecting the optimal thresholds 

to define the rubble layer.  The thresholds are selected after 

examining several manually identified regions containing rubble. 

 

Rubble in the given exercise can be approximated by 5-pixel wide 

square tiles. The spatial resolution of the input image is 

0.139m/pixel, thus rubble chunks are of estimated size up to 0.7m. 

The minimum building height of regular houses including the 

roof, in normal residential areas, i.e. excluding slums, commercial 

districts, etc., is estimated to 3.5m.  If a wall collapses the debris is 

expected to reach a distance equal to twice its height from the 

corresponding footprint edge, i.e. approximately 7m. This is called 

the rubble expectation radius R, and the ratio of R to rubble width 

is used empirically as a generalization scale for specifying the size 

of the Gaussian kernel. In this case the ratio equals 10, which 

multiplied by the rubble width in pixels, yields 50 elements 

associated to each reference point, i.e. a 51-element wide kernel.   

 

The operation cycle was tested on a set of 75 square tiles, each 

being 4096-element wide and of 8-bit intensity resolution.  The set 

was processed as a single image of total size of 1.2GB.  A 20-scale 

size decomposition was computed with the bounds of the first 

plane/zone of each of the two instances of the DAP vector field set 

to (1,25).  The remaining 18 planes did not contribute to the 

overall rubble analysis but were purposely set to add redundancy 

to the system.  The rubble detection cycle (image representation 

and decomposition) was computed in 194.16s. on a 24 core 

Opteron-based machine (4-socket 6 cores per socket) with 128GB 

of memory, when using 24 threads.  

  

4. INTERPRETATION AND QUALITY ASSESMENT 

 

Figure 3 shows the results of cluster analysis, i.e. the higher level 

semantics.  Image (a) shows an original tile and (b) shows the 

detected rubble clusters.  The colour code is from blue to red (or 

dark to bright), i.e. low to high density and is computed on the 

rubble layer following histogram stretching.  Images (c) – (h) 

show selected regions of the original (left) and the corresponding 

rubble clusters (right).  The quality of the results was assessed by 

visual inspection, following a density threshold on the cluster 

image that was set empirically to the mid-range value.  For the tile 

in Image (a), the method detected 92 correct targets and 5 false 

alarms (3 dump sites and 2 corrugated roofs).  Moreover, 2 targets 

were missed.  

 

5.  CONCLUSIONS  

 

The proposed method was tested for the case of a simple 

dichotomy, i.e. detecting rubble against the global background. 

The detection success rate for the tile of Figure 3 was 

approximately 92%, suggesting that the method in its simplest 

form is sufficiently reliable for rapid damage assessment.  In 

future work, we aim at utilizing the local background information 

layer to minimise the false alarms.  Richer set of constraints, based 

on attribute vectors, are investigated for computing more delicate 

decompositions.  Moreover, an automatic assessment method is 

being developed to compare the results of our method against the 

ground truth (JRC,2010) in a full scale exercise on the entire Port-

au-Prince dataset (360GB), currently under preparation.  
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