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Abstract – Spectrum matching is one approach to 

estimating water quality parameter concentrations 

(chlorophyll a, tripton and coloured dissolved organic 

matter (CDOM)) from remotely sensed images of inland 

waters. The Particle Swarm Optimisation (PSO) is a 

stochastic search technique that can be used to search the 

solution space for the closest match and deliver the best 

estimate of the water quality parameter concentrations. For 

Burdekin Falls Dam, a tropical freshwater impoundment, 

the PSO and four different matching criteria were applied 

to MERIS images to retrieve the water quality parameters. 

The mean retrieval error of the best performed similarity 

measure was 2.0 µgl-1, 2.45 mgl-1 and 0.3 m-1 for chlorophyll 

a, tripton and CDOM respectively. The paper found that the 

PSO, as implemented in this case, did not offer 

improvements in accuracy and precision sufficient enough 

to justify the increased computational overhead in the 

inversion. 
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1. INTRODUCTION 

 

The subsurface reflectance spectrum (R(λ,0-)) is a result of the 

cumulative interactions of light with the water itself and the 

water quality parameters such as the concentrations of 

chlorophyll and other pigments, tripton (the non-algal particles 

of the suspended particulate matter), and coloured dissolved 

organic matter (CDOM). To retrieve the water quality 

parameter concentrations it is necessary to invert the reflectance 

spectrum. The water quality parameter concentrations and the 

reflectance spectrum are linked by the inherent optical 

properties (IOPs) of the water. These three properties have 

magnitudes that are independent of the geometric structure of 

the light field. The absorption coefficient (a) describes the 

probability of a photon being absorbed, the scattering 

coefficient (b) describes the probability of a photon being 

scattered and the volume scattering function (VSF) (β(θ)) 

describes the probability of a scattered photon being scattered in 

a particular direction. The last two properties are usually 

combined into the total backscattering probability (bb) which 

describes the probability of a photon being scattered in a 

direction greater than 90° to its initial direction of travel. Any 

successful semi-analytic inversion approach needs to relate the 

reflectance to the IOPs and then the IOPs to the water quality 

parameter concentrations. 

 

Each natural water body, via the water IOPs, has distinctive 

relationships between water quality parameter concentrations 

and the remotely sensed reflectance. The optimisation approach 

to inversion uses a forward model to calculate a reflectance 

spectrum from water quality parameter values and then uses a 

similarity measure to match it to the measured reflectance 

spectrum.   

2. MATERIALS AND METHODS 

 

2.1 Study Site and In Situ Measurements  

The Burdekin Falls Dam (20° 37´ S, 147° 0´ E) receives inputs 

from four major sub-catchments that cover a total area of 

114,000 km2. From the north, the Burdekin River has its origin 

in tropical rainforest but primarily flows through tropical 

savannah. From the west the lake is fed from the Cape River 

which rises in reasonably steep sedimentary country and then 

flows through flat less erodible areas. The Belyando and Suttor 

Rivers meet just beyond the inundated area and feed the lake 

from the south. The Belyando River and Suttor River suffer 

from persistent turbidity. The impoundment is split into an 

upper and lower basin by a narrow neck of land. Water released 

from the dam enters the Burdekin River and discharges into the 

Great Barrier Reef lagoon approximately 200 km downstream. 

 

2.2 Bio Optical Model 

The Gordon, Brown and Jacobs (1975) semi-analytical model 

for in-water reflectance was used.  
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The proportionality factor f is often referred to as the anisotropy 

factor as it represents a correction for the direction distribution 

of light in the upwelling and downwelling fields. From the 

result of Hydrolight® simulations values for fn were calculated 

for a cubic equation for R(0-) in terms of ωb for each sun 

position. 

 

A four part absorption model was used. 
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The values for ( )λwa  were obtained from Pope and Fry (1997). 

The absorption due to CDOM, tripton and chlorophyll a is 

proportional to the concentration of the constituent. This is 

normally represented by the use of a specific absorption 

coefficient (a*) 
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A three part backscattering model was used. 
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The scattering coefficient for pure water was obtained from 

Morel (1974) and a ratio of bw:bbw of 0.5 was used. The 

backscattering of tripton and phytoplankton were calculated 

from the specific coefficients as before. 

 

2.3 Water Quality Parameter Concentration Measurements 

In situ water quality parameter measurements and near 

coincident MERIS images were obtained as part of two field 

campaigns in October 2008 and August 2009. 



 
Figure 1. Location of the validation sample sites for the October 2008 (left) and the August 2009 (right) fieldwork activities. 

 
2.3.1 Laboratory Measurements 

October 2008 Measurements 

During October 2008 the IOPs of the storage were measured at 

eleven stations (see Figure 1). Water samples were taken from 

approximately 0.3 m below the surface and kept cool for later 

laboratory measurement of tripton (TR), chlorophyll a (CHL) 

concentration and CDOM concentration and spectral 

absorption. A detailed description of the of the IOP 

measurements, water quality parameter measurements and 

subsequent SIOP domain calculation is provided in Campbell et 

al. (2011).  

 

August 2009 Measurements 

A second field campaign was conducted in August 2009 

fieldwork to obtain a larger validation dataset for chlorophyll a 

that was independent of the measurements used to parameterise 

the algorithm. Water samples were taken from approximately 

0.3 m below the surface at 25 observations stations (shown in 

Figure 1). 

 

Two replicates were prepared for each water sample by filtering 

through a 47 mm diameter GF/F glass-fibre filter (Whatman, 

nominal pore size; 0.7 µm) and then freezing the filter. The 

pigments were measured using the US EPA method 445.0 (Arar 

& Collins 1997). This method measures the combined 

concentrations of chlorophyll a and pheophytin a. With the aid 

of HPLC analysis, no pheophytin a was detected in the October 

2008 samples so it is assumed that the measured concentration 

is only that of chlorophyll a.  

 

2.4  Particle Swarm Optimisation (PSO) 

The PSO is the stochastic search technique which includes a 

random element in the search approach that was first applied to 

ocean colour by Slade et al. (2004). The algorithm represents 

the solution as an n-dimensional vector in an n-dimensional 

solution space. It then mimics the action of a swarm by 

generating a number of potential solutions or ‘particles’ and 

after each iteration having them react to the closest match in its 

local area as well as the best match from all the particles. The 

best match can be defined by any appropriate cost function or 

similarity measure.  

 

Let xj be a particle and the position of xj after the next iteration 

as xj+∆xj where ∆xj is referred to as the trajectory. The 

trajectory is related to the value of two vectors, the vector 

connecting xj to the best match that it has previously made 

(xj,best) and the vector connecting xj to the best match that any of 

the particles have made (xG,best). The random element is 

introduced by generating random number multiples of the 

components of xj,best and xG,best. The bias towards each 

component vector is controlled by two weight constants c1 and 

c2. To aid in the convergence the sum of the vectors is 

multiplied by a constriction factor χ. 

 

Formally, 
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In this case the search space is three dimensional so 
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 where rm,i are random scalars 

uniformly distributed between 0 and 1.  
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The 4>φ restriction is required to prevent the values of the 

trajectories from becoming cyclical and hence not randomly 

searching the solution space (Clerc & Kennedy 2002). The 

parameters c1 and c2 were set at 2.05 (Slade et al. 2004) and a 

swarm of 27 particles was used.  

 

2.5 Similarity Measures 

The PSO determines the direction of the search based on the 

values of the best spectrum match. Four similarity measures and 

were tested to see which returned the most accurate and precise 

results. 

 

2.5.1 Spectral Angle Mapper 

The Spectra Angle Mapper (SAM) measure treats the two 

spectra as n-dimensional column vectors and uses their dot 

product normalised for the magnitude of the vectors as a 

measure of their similarity.  Formally, let x and x' be two 

spectra with n bands then  
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2.5.2 Spectral Information Divergence 

The Spectral Information Divergence (SID) is a stochastic 

rather than deterministic measure of similarity (Du et al. 2004). 

It reduces the vectors to probability vectors before comparing 

them. This is achieved by normalising the vector by dividing by 

the sum of its components. For a given band this probability can 

be converted into its self-information. In broad terms this 

describes the unlikeliness of the predicted outcome. The 

discrepancy in a particular band is the difference between the 

self information of the comparable bands in the two spectra. 

The discrepancy of the spectra is the sum of the band 

discrepancy weighted by that band’s probability. For this reason 

the discrepancy is not commutative so the SID is calculated as 

the sum of the discrepancies of the two combinations. 

 

Formally, let x and x' be two spectra with n bands with 

probability vectors p and q respectively.  The probability for a 

given band is:  
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 and the self-information for each band is 

( ) ( )ii pI log−=x .  

The discrepancy of a band is 
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Lastly, 
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2.5.3 Spectral Correlation Mapper 

The Spectral Correlation Mapper (SCM) is a modification of the 

SAM that takes into account the sign of the correlation not just 

the magnitude (Carvalho & Menezes 2000).  
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2.5.4 Minimum Distance 

The three previous measures mathematically eliminate the 

magnitude of the reflectance spectra from the calculation and 

focus on its shape. However, as the tripton concentration 

increases in water, the increased scattering leads the reflectance 

spectra to increase in magnitude rather than change in shape. 

The minimum distance measure only considers the magnitude 

of the two spectra by calculating the Euclidean distance 

between their vectors in band space.  
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2.6 Atmospheric Correction 

The c-WOMBAT-c software (Brando & Dekker 2003) was 

used, but was modified to use the 6S radiative transfer model 

and the Thuillier et al. (2003) reference sun irradiance spectrum. 

The c-WOMBAT-c approach corrects for the adjacency effect 

by applying an n x n low pass filter to the image to supply an 

average radiance (Lrs,b) image. A value of n = 9 was adopted, 

resulting in a 2.7 km x 2.7 km adjacency window. 

 

The aerosol optical thickness (AOT) was estimated by taking 

advantage of the homogeneity of aerosols over small spatial 

scales of 50-100 kms (Vidot & Santer 2005) to calculate the 

AOT over adjoining dense dark vegetation (DDV) and then 

applying this value to the water body. The Vidot and Santer 

approach assumes that the reflectance value of the dense dark 

vegetation (DDV) in the blue and red regions is known and uses 

these values to identify the aerosol type and retrieve the aerosol 

optical thickness. In this work the aerosol type was selected 

based on the water body location and the prevailing wind 

conditions prior to the image acquisition. The reference DDV 

values for three bands (412, 443 and 665 nm), corrected for the 

BRDF effects using the Leroy et al. (1998) model, were 

extracted from the MERIS auxiliary files. Image pixels were 

designated as DDV pixels if their Atmospherically Resistant 

Vegetation Index (ARVI) (Kaufman & Tanre 1992) was above 

a given threshold. 

  

A simple ARVI threshold is prone to select normal vegetation 

that is shadowed by cloud at the time of the image acquisition. 

The reflectance value in the 865 nm band was used to separate 

cloud shadow from DDV using a minimum reflectance of 17%  

and a subset of image pixels that represented the highest 0.5% 

of ARVI values was selected. The DDV pixel subset was 

averaged to get the DDV spectrum for that AOT value. The 

AOT value was iterated until the image DDV value matched the 

reference DDV.   

 
3. RESULTS 

3.1 October 2008 Results 

A MERIS full resolution image was obtained for 15th October 

2008.  The image was corrected for the influence of the 

atmosphere and the PSO was applied to produce concentration 

maps for the three water quality parameters. The retrieved 

values were compared to the in situ observations and the mean 

error was calculated and shown in Table 1. 

 

Table 1. The means of the absolute values of error between 

the laboratory measured concentrations and those retrieved 

from the 15th October 2008 image for selected matching 

criteria. 

 Chl (µgl-1) TR (mgl-1) CDOM(m-1) 

 Av SD Av SD Av SD 

SID 3.27 3.32 14.5 9.03 1.31 0.69 

SAM 3.72 3.32 14.3 8.98 1.28 0.70 

Min Dist 4.07 2.70 3.35 2.29 0.30 0.26 

SCM 4.65 1.78 2.45 2.11 0.33 0.21 

 

The SID and SAM criteria performed very poorly with respect 

to the estimation of tripton and CDOM concentration. Both 

these criteria mathematically eliminate the magnitude of the 

reflectance spectra from the calculation and focus on its shape. 

 

The SCM produced statistically significantly better retrievals 

for the tripton and CDOM water quality parameters. The SCM 

is a modification of the SAM that takes into account sign of the 

correlation not just the magnitude (Carvalho & Menezes 2000). 

Investigation of the optical closure between the measured and 

forward modelled spectra showed differences were equally 

distributed either side of a 560 nm peak. Perhaps the ability to 

‘balance’ the misclosure has led to a more reliable result. 

Notwithstanding the mean error, it should be noted that the 

SCM returned the greatest number of physically impossible 

negative concentrations for chlorophyll a.  

 

3.2 August 2009 Results 

An MERIS full resolution image was obtained for 13th August 

2009.  The image was corrected for the influence of the 

atmosphere and the PSO was applied to produce concentration 

maps for the three water quality parameters. The retrieved 

values for chlorophyll a were compared to the in situ 



observations and the mean error was calculated and shown in 

Table 2. 

 

Table 2. The means of the absolute values of error between 

the laboratory measured concentrations and those retrieved 

from the 13th August 2009 image for selected matching 

criteria. 

 Chl (µgl-1) 

 Av SD 

SID 1.52 1.11 

SAM 1.68 1.26 

Min Dist 2.22 1.07 

SCM 1.85 1.56 

 

The SID, SAM and SCM similarity measures were equally 

good at retrieving chlorophyll a and the SID measure performed 

statistically significantly better than the minimum distance 

criterion. 

 

4. CONCLUSIONS 

 

If the two validation sets are pooled the SID similarity measure 

had a mean error of chlorophyll a retrieval of 2.0 µgl-1, the 

SAM criterion 2.3 µgl-1 and the minimum distance and SCM 

criteria both had a mean error of 2.7 µgl-1. A number of caveats 

should be attached to these results. Firstly, the range of water 

quality parameter concentrations measured in the two field 

campaigns was limited, secondly, there is no way to evaluate 

the accuracy of the atmospheric correction on any particular 

image without some additional in situ data and lastly, it is not 

possible to be definitive about the accuracy when there is 

notable uncertainty in the ground truth values. 

  

The assessment of the average error for tripton and CDOM 

retrieval is covered by the same caveats as those mentioned for 

the chlorophyll a retrieval: that is, a limited range and 

uncertainty in the ground truth data. The best performed SCM 

criterion had a mean error of 2.5 mgl-1 and the minimum 

distance criterion had 3.4 mgl-1. The SID and SAM criteria were 

incapable of retrieving a credible tripton concentration. For 

CDOM it was found that the best performed minimum distance 

similarity measure had a mean error of 0.30 m-1 and the SCM 

criterion had a mean error of 0.33 m-1. Both these measures 

were superior to the SID and SAM measures.  

  

This paper has found that the PSO, as implemented with this 

reflectance model and similarity measures, does not offer 

improvements in accuracy and precision sufficient enough to 

justify the increased computational overhead of the inversion.  

This is not to say that the application of the method to a more 

accurate and complex reflectance model or a non-linear SIOP to 

IOP relationship or another similarity measure could not change 

the balance between the two considerations. 
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