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Abstract-Information about the distribution of grass 

nitrogen (N) concentration is crucial in understanding 

rangeland vitality and facilitates effective management of 

wildlife and livestock. A challenge in estimating grass N 

concentration using remote sensing in savannah ecosystems 

is that these areas are characterised by heterogeneity in 

edaphic, topographic and climatic factors. The objective is 

to test the utility of integrating environmental variables and 

in situ hyperspectral remote sensing variables for predicting 

grass N concentration along a land use gradient in the 

greater Kruger National Park. Data used include i) 

environmental variables, ii) measured grass N 

concentration and iii) in situ measured hyperspectral 

spectra. Non-linear partial least square regression was used. 

Results showed that several environmental variables were 

important for N estimation. Integrating environmental 

variables with in situ hyperspectral variables increased 

grass N estimation accuracy. The study demonstrated the 

importance of integrated modelling for savannah ecosystem 

state assessment. 
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1. INTRODUCTION 

 

Knowledge of the distribution of grass nitrogen (N) 

concentration is crucial in understanding rangeland vitality for 

effective planning and management of wildlife and livestock 

grazing. Studies indicated the importance of N concentration in 

grass to influence the distribution of livestock and wildlife 

(McNaughton 1988; Seagle and McNaughton 1992). For 

assessing the distribution of the grass quality at landscape level, 

remote sensing can play a pivotal role as it provides a synoptic 

view of the landscape. 

 

Conventional broadband indices e.g. the normalized difference 

vegetation index (NDVI) (Tucker 1979), are inadequate for 

estimating subtle changes in leaf N concentrations. The above 

indices do saturate at high canopy cover and are insensitive to 

subtle changes in leaf N concentration. On the other hand, the 

advent of hyperspectral remote sensing has highlighted the utility 

of red-edge bands (700 – 750 nm) for estimating foliar N and 

chlorophyll content (Huang et al. 2004; Cho and Skidmore 2006; 

Majeke et al. 2008; Darvishzadeh et al. 2008a). The red-edge is 

the region of abrupt change in leaf reflectance between 680 and 

780 nm. Several studies also identified and successfully used 

the absorption features for N and protein on leaf spectra for 

foliar N concentrations (Curran 1989; Kumar et al. 2001). 

Normalized difference or ratio indices computed from red-edge  

 

 

 

bands have provided more accurate estimates of leaf N compared 

to conventional NDVI derived from 680 and 800 nm (Mutanga 

and Skidmore 2007). Further, innovative spectral transformation 

technique such as continuum removal was used to enhance N 

and protein absorption features for N estimation (Huang et al. 

2004; Mutanga et al. 2004a; Cho et al. 2010).  

 

A challenge in estimating grass N concentration using remote 

sensing in savannah is that these ecosystems are characterised 

by heterogeneity in soil and plant moisture, soil nutrients, 

grazing pressures and anthropogenic activities (Ben-Shahar and 

Coe 1992). Geology, soil, precipitation, fire and temperature, 

topography or catenal position, aspect and land use types 

influence the grass biochemical concentrations. Therefore, to 

develop robust models for foliar N estimation, techniques 

which integrate hyperspectral remote sensing and 

environmental (edaphic, topographic and climatic) variables 

could be necessary. Limited studies investigated the use of 

environmental and remote sensing variables to estimate grass 

N. The objective is to test the utility of integrating 

environmental variables (climatic, edaphic and topographic) 

and in situ hyperspectral remote sensing variables for predicting 

grass N concentrations in savannahs. 

 

2. MATERIAL AND METHODS 

 

2.1. Study area and sampling design 

 

The study was undertaken in the greater Kruger National Park 

(KNP) including public and privately-owned protected areas 

such as KNP and SabiSands (SGR), as well as communal 

rangelands (Bushbuckridge area), north-eastern part of South 

Africa. These areas are characterized by gradients of moisture 

and nutrients. The communal areas on the western side receive 

more rainfall than eastern part of the study area (KNP). The 

gradient of nutrients is influenced by the domination of granite 

and gabbro underlying strata. The gabbro areas are 

characterized by higher soil fertility than the granitic ones 

(Ben-Shahar and Coe 1992). The topography is mainly 

undulating throughout the study area with some flat patches in 

localized areas. In the gabbro side we find dominant grass such 

as Setaria sphacelata dominating the crest and Urochloa 

mosambicensis dominating the valleys. There is more high 

grass biomass in the gabbro (e.g. Urochloa mosambicensis) 

than on the granitic soils (e.g. Eragrostis rigidior). The 

protected areas have various grazing activities by wild 

herbivore such impala, elephant, kudu, rhinoceros, etc. while 

the communal rangelands support grazing of mainly cattle and 

goats as well as sheep, which determine various rangeland or 

land use intensities. 
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Eight research sites were determined using the 1:250000 

geology map and 2008 SPOT 5 images. Two sites were located 

in KNP (1 in each, gabbro and granite), 2 in SGR (1 in each, 

gabbro and granite), 4 in the communal lands (2 in each, gabbro 

and granite). The sites were selected to capture the gradient of 

grass nutrients.  In each site, a line transect was purposively 

placed covering the main topographical classes (crest and 

valleys) because biomass levels vary with a topographical 

position. Along the transects, homogeneous grass plots of 30 m 

x 30 m were located 500m to 1000m from each other 

depending on the accessibility and homogeneity of the patch. In 

each plot, 3 to 4 subplots with the size of 0.5 m x 0.5 m were 

randomly selected making a total of 189 grass sample points. 

The fieldwork was conducted towards the end of rainy season 

in March/April 2009.  

 

2.2. Canopy Spectral measurements 

 

The spectral reflectance data was collected for each subplots 

using Analytical Spectral Device (ASD) spectroradiometer, 

Fieldspec 3®.  The ASD has spectral bands ranging from 350 

to 2500, with 1 nm band width. For each subplot, five (5) 

spectral measurements were taken and later averaged to account 

for grass canopy heterogeneity, illumination differences, and 

bidirectional effects. The spectral measurements were taken 

between 10h30 and 15h00 on clear sunny days, to minimize 

cloud effects. A 250 fibre optic was used and it was held at 

nadir and kept at a height of 1m to cover the entire subplot. A 

white reference panel (Spectralon) was used after each 

measurement to convert radiance to reflectance. After spectral 

measurements, for each subplot, grass samples were collected 

and dried at 800C for 24 hours. 

 

2.3. Chemical analysis 

 

The dried grass samples were taken to the Agricultural 

Research Council-Institute of Tropical and Subtropical Crops-

(ARC-ITSC), Nelspruit, South Africa for analysis of N 

concentration. The acid digestion technique (utilizing sulphuric 

acid) was used for foliar N retrieval on grass samples (Giron 

1973; Grasshoff et al. 1983). 

 

2.4. Spectral indices and selection of known absorption 

features 

 

Two vegetation indices were selected for this study, namely the 

red-edge position and the normalized difference vegetation 

index (NDVI). The red-edge position is known to have a high 

correlation with N and is less sensitive to soil background (Cho 

and Skidmore 2006). For this study the linear extrapolation 

technique was used to compute the red edge position (Cho and 

Skidmore 2006). Cho and Skidmore (2006) found out that 

linear extrapolation technique achieved higher accuracy as 

compared to other red-edge detection techniques in retrieving N 

and chlorophyll. More details about the linear extrapolation can 

be found in Cho and Skidmore (2006). 

 

The NDVI is a known vegetation index used in many studies as 

a surrogate for vegetation condition and health (Tucker 1979). It 

is known to minimize the atmospheric effects on the image 

(Zarco-Tejada et al. 2004). The narrow-band NDVI has been 

proposed to minimize problems of saturation generally 

observed with broadband-NDVI (Mutanga and Skidmore 

2004).  As a result, bands at 700 and 750nm were selected for 

the red and near-infrared reflectance values respectively. 

 

The known absorption features for chlorophyll, protein and N, 

ranging from the visible, near infrared and shortwave infrared 

wavelength were selected centred at 430nm, 460nm, 640nm, 

660nm, 910nm, 1510nm, 1940nm, 2060nm, 2180nm,2300nm 

and 2350nm (Curran 1989) and the reflectance values for this 

bands were extracted and used for further analysis. 

 

2.5. Environmental data 

 

Precipitation, temperature, land use, geology, altitude, slope 

and aspect were used as potential environmental variables 

influencing the accuracy of N prediction. Slope and Aspect 

were computed from digital elevation model (DEM) which was 

derived using ArcGIS 10x at a resolution of 50m. The DEM 

was derived using 1:50000 topographical maps. Mean annual 

precipitation and temperatures were acquired from the Global 

Climatic datasets at a resolution of 1 km (Hijmans et al. 2005). 

The Land use types were derived from the boundary layers of 

KNP, SabiSands and communal areas acquired from Kruger 

National Park’s Geographic Information System (GIS) and 

remote sensing laboratory. The 1:250000 geological data was 

acquired from South Africa’s Council of Geoscience. 

 

2.6. Statistical analysis 

 

Multi-variate statistical technique such as nonlinear partial least 

square (PLSR) regressions was used. The non-linear PLSR 

known as PLSR with radial basis function was used for foliar N 

estimation (Walczak and Massart 1996; Daszykowski et al. 

2007). The non-linear PLSR technique is a flexible technique 

which can predict both non-and normally distributed response 

variables, with the mutual advantage of the non-linear nature of 

the radial basis function and the capability of PLSR to 

maximize covariance between datasets. It couples the power of 

neural network and PLSR. It is implemented like any other 

PLSR techniques. The objective is to decompose a list of 

independent variables into latent and uncorrelated variables. 

Monte-Carlo leave-one-out cross-validation was used to 

determine the optimum number of factors based on the lowest 

RMSE. The weight loadings were analysed to determine the 

contribution of each independent variables. A conventional 

PLSR was used to show the PLSR weights assigned to each 

independent variable sensitive to foliar N, which the non-linear 

PLSR does not provide. For independent testing of the foliar N 

estimation models, the data was randomly split into 70% 

training and 30% test data sets. Training data sets (132 

samples) were used for model development or calibration and 

test data sets (57 samples) for validation. 

 

3. RESULT AND DISCUSSION 

 

The results shows that integrating environmental variables with 

in situ hyperspectral variables increased grass N estimation 

precision and accuracy (Training: R2=0.77, root mean square 

error of cross-validation (RMSECV) =0.11%, Test: R2=0.49, 

root mean square error of prediction (RMSEP) = 0.14%) 

compared to using remote sensing variables only (Training: 

R2=0.50, RMSECV=0.13%, Test: R2=0.41, RMSEP=0.16%) 

(Figure 1). The incorporation of environmental variables with 

in situ hyperspectral data produced a more robust model of N 

which better accounts for the heterogeneity and complexity of 

the savannah ecosystem.  

 

Results showed that generally environmental variables had a 

higher influence on the model outputs than the spectral 

variables. Amongst the environmental variable geology (GEO) 

and temperature (TEM) had the highest PLSR weights followed 



 

 

 

by land use types (LAN) and slope (SLO) (Figure 2). The 

diversity and availability of minerals in the soil determines the 

complex web of the inter relationships between geology, 

topography and grass N concentrations. Geology was 

significantly important in estimating grass N concentration 

since there are evidence of the correlation between foliar N and 

soil fertility levels (Ben-Shahar and Coe 1992). In the study 

area, the gabbro underlying geology influence the higher soil 

nutrient (dark and humus rich) which in turn influence higher 

grass N concentration and generally higher grass biomass for 

species such as Setaria sphacelata, Urochloa mosambicensis, 

Digiraria eriantha Themenda triandra and Punicum maximum 

(Ben-Shahar and Coe 1992). In contrary, the granitic area 

supports low foliar N concentrations with relatively lower 

biomass of species such as Eragrostis rigidior, Sporobolus spp, 

Tracheolena monache. The slope also determines the 

occurrence of high quality grasses mainly along the valleys 

while the crests have relatively lower N concentrations.  This is 

due to the fact that run-off of nutrients and fine clay particles 

from the crest or along the slope are deposited into the valley or 

depressions along the riparian zones.  

 

Amongst the spectral variables REP was found to have a higher 

impact on the model, as compared to the narrow band NDVI, 

while that for the absorption bands 910 and 1020nn had the 

highest contribution to the model. The red edge position is 

known to minimize the soil background effects, and it has been 

widely utilized and highly correlated to chlorophyll (Cho and 

Skidmore 2006; Darvishzadeh et al. 2008a). Studies also found 

out a positive correlation between chlorophyll and N (Yoder 

and Pettigrew-Crosby 1995). The results found here are in line 

with other studies focusing on foliar N concentration using in 

situ hyperspectral remote sensing (Gong et al. 2002; Mutanga et 

al. 2004a). Gong et al. (2002) showed the importance of using 

the blue and red edge for N estimation. While Mutanga and 

Skidmore (2004a) find out that the use of continuum removal 

indices also improve the estimation of N, because it enhance 

the absorption features. 

 

The selected absorption features are sensitive to foliar N 

through various vibration mechanisms such as electron 

transition or bond vibrations (Curran 1989). Absorptions in the 

visible region of the spectra are produced by electron transition 

while in the near and short wave infrared they are produced by 

bond vibration; see Curran (1989) for details. Several studies 

used N and protein absorption features not only for foliar N 

estimation, but also for biomass and LAI estimations (Cho et al. 

2007; Darvishzadeh et al. 2008a). PLSR has so far proved to be 

a robust multivariate approach for biochemical estimation as 

compared to univariate analysis. The multivariate techniques 

yield higher precision and accuracy for biochemical estimation 

than the univariate ones, which use narrow band NDVI or red 

edge position (Gong et al. 2002; Darvishzadeh et al. 2008a). 

However, integrating NDVI, red edge, known absorption 

features for protein and N as well as environmental variables 

using multivariate techniques increase the accuracy of foliar N 

estimations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: Foliar N estimation A) calibration model with remote sensing variables only B) calibration with the 

remote sensing and environmental variables, C) validation for remote sensing derived model and D) 

validation for remote sensing and environmental variables integrated. RMSECV=root mean square error of 

cross validation, RMSEP=root mean square error of prediction. 



 

 

 

 
Figure 2: Partial least square regression (PLSR) weights for 

remote sensing and environmental variables in grass N 

estimation (GEO=Geology, LAN=Land use, Alt=altitude, 

ASP=aspect, PRE=precipitation, REP=red edge position). 

 

 

4. CONCLUSIONS 

 

The study demonstrated the importance of integrated modelling 

for ecosystem state assessment which is imperative for planning 

and management of protected and communal savannah 

rangelands. Environmental variables could play a crucial role in 

improving the accuracy of foliar N estimation. The use of 

environmental variable could be imperative for upscaling N 

estimation models to regional scale to understand distribution 

of livestock and wildlife densities for planning and 

management purpose of protected and communal savannah 

ecosystems. 
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