

A RAPID UPDATING METHOD OF LOCAL HIGH-PRECISION TERRAIN DATA IN 3D
TERRAIN SCENE

Hao LIU

Academy of Disaster Reduction and Emergency Management; Beijing Normal University, Beijing 100875, China

(lihaha1985@126.com)

ABSTRACT: In many applications, three dimensional terrain scene has to be updated in local area with high-precision data, in
order to build a local high-precision scene. Aim at the dynamic updating of local terrain data, this paper puts forward a GPU
tessellation-based "Mosaic" method of local high precision terrain. Through the interpolation and subdivision on the terrain grid
within the updating area in GPU to increase the number of triangles, as a result, the geometrical accuracy of the local terrain model is
improved without increasing the bandwidth of the memory and video memory. The results show that the precision of updating area
meet the demand and this algorithm’s execution efficiency is obviously better than the common method.
KEY WORDS: Three dimensional terrain scene; Local terrain updating; Real-time grid tessellation; GPU algorithms

1. INTRODUCTION

The 3D terrain scene has been widely applied in many fields, in
many applications the user often pay more attention to the local
area of the scene, take emergency rescue in the earthquake as an
example, the user often focus on residential areas and
indifferent to the mountains, so it is necessary to construct a
more elaborate disaster scene within the important area. This
paper aim at construct local fine scene with high precision data
based on the large scale virtual scene, also is to realize the fast
updating of local terrain scene.
At present, the 3D terrain application system usually update
local terrain data by reprocessing the data, integrating the new
data to the original data set, and then restarting the terrain
visualization system, which is contrary to the original intention
of the real-time simulation system. Dynamic updating takes
grater advantages: (1) Considering the spatial distribution, the
focused area may be any part of the scene, and may be chosen
by user’s impromptu decision. So it is difficult to construct the
important virtual scenes once by data preprocessing. (2)
Considering the continuous, local data are usually
discontinuous, the simulation system can dynamically loading
new data in real-time, without shutting down the system.

2. RELATED WORKS

The data organization and the rendering processes of the
existing terrain rendering method[1-2] are interrelated and
inseparable, is aimed at a single scale terrain rendering or
similar scale, therefore can only satisfy the scene rendering of
fixed size and form. In view of the present study, there is few
aim at unified terrain rendering of multi scale, Li Wenqing[3]
realized unified rendering of global terrain scene and local
scene by GPU vertex and fragment program, at the rendering
stage of global terrain and local with two separate class, which
is able to render multi-scale terrain, but greatly increase the
amount of calculation.
This paper takes advantage of the new features of modern GPU-
Tessellation, which use the Tessellator (a internal hardware unit
of GPU) to subdivide rough terrain mesh by adding an extra
vertex, and greatly increase the amount of triangles.
In recent years, the GPU tessellation technology is gradually
applied to terrain rendering. Story[4] and Ni[5] introduced
DirectX11 GPU tessllation rendering pipeline, and the general
principles and methods for real-time rendering of terrain with
tessellation; Rollin[6] and San[7] discussed the properties of GPU
tessellation of OpenGL and its application to terrain rendering;
Cantlay[8] and Valdetaro[9] using GPU tessellation achieved

multi-resolution terrain rendering; Yusov[10] realized terrain
rendering by LOD selecting and Patch segments. Due to the
patch is used as the processing unit, adjacent patches are
relatively independent, terrain rendering algorithm based on
GPU tessellation do not need hierarchy management, and the
consistency problem between adjacent patches on different
levels can be solved through shared edge subdivision. It has a
natural advantage for local high precision terrain "mosaic"

3. OUR METHOD

Due to the terrain structure is in a fixed state when updating the
local data, there is much difference in area and precision of
local data and large scale terrain. Dynamic loading of new high
precision data is seen as a "mosaic" operation in the existing
low precision terrain. As the meshes of rendering terrain has
been fixed, the new loaded data with higher precision are still
sampled with old resolution, as a result, it is unable to reflect
the accuracy of new loaded data. In this case, remote sensing
images rendering as textures also appear fuzzy.
The problem that terrain meshes is oversized can be achieved
through mesh refinement. However, there would be much
redundancy if refinement is done to the whole scene, so
refinement can only be done to the covered area of new data.
The process is shown as Figure 1.

Local data
updating

GPU-based local
terrain tessellation

Updated
terrain scene

Compute the
updating area

New data of
local terrain

Large-scale 3D
terrain scene

Figure 1. Flow chart of local terrain data updating

3.1 GPU tessellation

In order to increase the details of terrain meshes, extra terrain
mesh points are needed, this could be completed by GPU. The
development of GPU rendering pipeline might be divided into 3
stages: The first stage is only for simple geometric

mailto:lihaha1985@126.com

transformations and drawing; The second stage is Geometry
shader which is used to create new elements in GPU with low
efficiency; The third stage is GPU tessellator, which is fixed in
the DirectX11 graphics rendering pipeline as a device unit, can
be used to increase details of meshes efficiently.
The GPU tessellation can be applied efficiently to terrain
rendering by increasing details of rough terrain meshes, the
accuracy of the terrain model is improved without increasing
the transmission pressure between graphics memory and the
main memory.

3.2 Local terrain "mosaic"

Local terrain "mosaic" algorithm is designed based on GPU
tessellation, as shown as Figure 2. The initial terrain grid
resolution is determined by the initial terrain data, when new
data is loading, compute the coverage of new data first, and
mark the mesh grids within the scope, then compute the
tessellation coefficient through new data, the coefficient will
determine the degree of subdivision. Finally, the mesh is
tessellated and rendering.

Figure 2. Flow chart of local terrain “Mosaic” algorithm

Figure 3 shows the processing flow of the local terrain “mosaic”
in GPU. The processing of local terrain “mosaic” is embedded
into GPU rendering pipeline, when updating, the area of new
data is computed in real-time, then the area and spatial scale
information are transferred to Hull shader, and then compute the
tessellation coefficient which is then transferred to tessellator
and tessellated the meshes.

Figure 3. Rendering terrain with new graphics pipeline

3.3 Generate tessellation coverage map dynamically

The coverage of new data is random, and has irregular shape, so
it is hard to accurately compute the coverage only by simply
reading metadata. We rendered the coverage of new data into a
gray map by Render to Texture in the pixel shader, the gray map
records the area that would be tessellated. The coverage is
rendered onto the gray map by orthogonal projection, as shown
as Figure4. The gray map initialized in black, the initial value is

0, only the pixels that located within the coverage would be
changed and located between [0-255], the image will be transfer
into Hull shader.

Fig.4 Get the coverage of new data with orthogonal projection

3.4 Compute the tessellation coefficient

The tessellation coverage map assigned the coverage of
tessellation, but did not specify the degree of tessellation, which
is decided by the coefficient, tessellation coefficient will be
computed in the Hull shader. Usually, the following factors will
be considered into the calculation of tessellation coefficient:
side length of patch, elevation value, screen error and viewpoint.
However, because the Hull shader has calculated tessellation
coefficient in rendering phase for rough terrain mesh, the
coefficient here(L) is a further tessellation parameters, which is
added to the initial coefficient. The calculation process of L is
as follows:
Suppose the minimum execution unit(Patch) is a rectangular,
the sampling interval of initial terrain data is 30m, while the
new data’s is 5m, tessellation is operated in diploid until the
minimum interval is less than or equal to the target sampling
interval(5m).

3.5 Tessellation control of tessellator

Tessellator is able to formulate tessellation coefficient for each
edge of a patch, 4 kinds of tessellation mode are supported:
Integer Power, Pow2, Fractional_even and Fractional_odd, due
to the tessellation coefficient of each edge could be inconsistent,
which is helpful to realize the smooth transition between
different subdivision level, thereby eliminating the jump
phenomenon between levels. We choose Fractional_even mode
in order to realize the continuous terrain meshes, the
segmentation results in Figure 5.

Fig.5 Effect of Fractional_even mode with different coefficient

4. EXPERMENT RESULTS

To verify the correctness and effectiveness of the algorithm, we
completed the algorithm in the windows environment based on
Direct3D and C++. When dynamic loading new terrain data, the
system first generate a coverage map according to the
geographical scope, then calculate the tessellation coefficient
based on the precision of new data and original data, the
sampling interval of the original data is 90m, while the new
data’s is 5m.
Figure 6 shows the effect of local high precision terrain mosaic,
the mesh density of updated area is significantly higher than the
surrounding area, and there is not cracks between different
levels while the mesh density has a great leap, which is the
advantage of GPU tessellation based method. Effect of drawing,
Figure 7 shows the effect of remote sensing image rendering
within the updated area.

Figure 6. Effect of local high-precision terrain “Mosaic”

a b

Figure 7. Effect of RS image overlaying on the updated terrain

In addition, we tested the execution efficiency of our method, as
is shown in Table 1, the sampling precision of original terrain
mesh is 90m, the local elevation data’s is 30m and 5m, we
compared our method with exiting GPU algorithm[3] and CPU
algorithm, the results show that efficiency of our algorithm is
better than that of the exiting methods.

Precision Quantity CPU GPU Our

30m 500MB 82.23s 45.23s 28.15s

30m 800MB 130.57s 75.42s 33.27s

5m 600MB 160.23s 87.15s 36.35s

5m 1000MB 262.11s 110.35s 44.84s

Table 1. Time consuming of dynamic data loading

5. CONCLUSION

Aiming at the dynamic updating of local terrain data, from the
accuracy and execution efficiency, this paper proposed a rapid
updating method for local terrain “mosaic” based on GPU real-

time tessellation. Access to the coverage of updated data,
tessellation coefficients is calculated and mesh tessellation is
completed in GPU. Experiment results show that, the accuracy
and efficiency of our algorithm are both superior to the existing
algorithms.

6. REFERENCES

[1] Du Ying. A research on key Technologies of Global Multi-
resolution virtual terrain environment. The PLA Information
Engineering University, 2005.

[2] Yu Zhuo, Liang Xiaohui, Ma Shang, et al. A real-time
rendering method for large terrain including details in different
resolutions. Journal of Computer Research and Development,
2010, 47:988-995.

[3] Li Wenqing. Research and implementation of VV-Ocean
System on marine environment simulation and data
visualization. Ocean University of China, 2011.

[4] Story J, Cebenoyan C. Tessellation performance. (2010-03)
[2011-10-11].
http://developer.download.nvidia.com/presentations/2010/gdc/T
essellation_Performance.pdf

[5] Ni T Y. DX11 tessellation. (2010-08) [2011-10-11].
http://www.nvidia.asia/content/asia/event/siggraphasia2010/pre
sos/Ni_Tessellation.pdf.

[6] Rollin P,Oster B.OpenGL and CUDA-based teselltion.
(2011-08)[2011-10-11].
http://www.nvidia.com/content/siggraph/Rollin_Oster_OpenGL
_CUDA.pdf.

[7] San Jose C. OpenGL 4. 0 Tessellation for professional
applications.(2010-09)[2011-10-11].
http://www.nvidia.com/content/GTC-2010/pdfs/2227_G-
TC2010.pdf

[8] Cantlay I. DirectX 11 terrain tessellation.(2011-01)[2011-
08-16].
http://developer.nvidia.com/sites/default/files/akamai/gamedev/f
iles/sdk/11/TerrainTessellation_White-Paper.pdf

[9] Valdetaro A, Nunes G, Raposo A, et al. LOD terrain
rendering by local parallel processing on GPU, Games and
Digital Entertainment (SBGAMES), 2010 Brazilian Symposium
on,vol.,no.,pp.182,188,8-10Nov.2010.

[10] Yusov E,Shevtsov M. High-performance terrain rendering
using hardware tessellation. Journal of WSCG, 2011,19(3):85-
92.

	1. INTRODUCTION
	2. RELATED WORKS
	3. OUR METHOD
	3.1 GPU tessellation
	3.2 Local terrain "mosaic"
	3.3 Generate tessellation coverage map dynamically
	3.4 Compute the tessellation coefficient
	3.5 Tessellation control of tessellator

	4. EXPERMENT RESULTS
	5. CONCLUSION
	6. References

