
DEVELOPMENT OF SUPERCOMPUTER IMAGE PROCESSING SOFTWARE WITH X-WINDOW 
USER-INTERFACE FOR THE PROCESSING OF THE REMOTELY SENSED DATA 

Young-Kyu Yang, Hyun-Ok Nam, Kyoung-Ok Kim, Seong-Ik Cho 

Systems Engineering Research Institute 
Korea Institute of Science and Technology 

1 Eoeun-dong, Yoosung-ku 
Taejeon, Korea 305-333 

COMMISSION II 

ABSTRACT 

This paper presents the design concept, the functions, and the examples of utilization of C-ERIMS 
(Environment and Resources Integrated Management System for CRA Y) image processin~ software 
package under development on Cray-2 supercomputer system. C-ERIMS is equipped wlth almost 
all the commonly used image processing algorithms as well as special features like parallel 
processing, neural network, 3-D perspective animation, etc. It has interactive true color display 
capability utilizing x-window on the CRA Y supercomputer system under UNICOS operating system. 

KEY WORDS: Image Processing, Supercomputer, Neural Network, Parallel Processing, X-window 

l. INTRODUCTION 

A powerful supercomputer based remote sensing 
image processing software package is being 
developed at the Korea Institute of Science 
and Technology (KIST). KIST have experience 
of developing image processing software on 
microcomputer and main frame computers 
(Yang, et aI., 1989a; Yang, et aI., 1989b). 

This software is code named C-ERIMS which 
is an acronym for Environment and Resources 
Integrated Management System for CRA Y. C­
ERIMS is designed to operate as a complete 
user-friendly interactive system with integrated 
software and open Graphic User Interface 
(GUI), i.e. X Window system. 

C-ERIMS system can: 

o directly access satellite images and other 
remotely sensed data, 

o extract subsections or full scene to disk 
files, 

o act upon these files to perform the 
generally available image processing 
functions, and 

o generate hard copies of processed images. 

The philosophy behind the developing C-ERIMS 
was to take advantage of the computing power 
and large main memory of supercomputer and 
provide the resource mangers and other 
decision makers with a powerful tool necessary 
for their national scale resource management. 

2. BASIC DESIGN CONCEPT 

2.1 Software Design 

A complete survey 
processing software 

for the existing image 
was performed for 

235 

maximum efficient design of the C-ERIMS 
system. The CSADIE (Samayoa, 1983) and 
GIPSY (Gu and Samayoa, 1988) software 
packages available on Cray computer system 
seem to have limited capability due to their 
batch oriented operation and lack of true color 
manipulation capability. They were originally 
developed on smaller computer system such as 
workstation or Cyber system and later ported 
to the Cray computer. Other systems including 
VICAR, ELAS (NASAjERL, 1988), and 
LARSYS (Williams, et at, 1976) were also 
surveyed and analyzed. A comprehensive image 
processing software was successfully designed to 
handle full scene satellite imagery in interactive 
way using X Window protocol. 

2.2 X Window System 

The X Window system developed at the MIT 
(Massachusetts Institute of Technology) seems 
to satisfy the needs of users for high­
performance, high functionality, network based 
system for high-resolution graphics. The purpose 
of the X Window system is to provide a 
network-transparent and vendor-independent 
operating environment for workstation software 
and to maintain portability with a common 
programming interface across multiple vendor 
platforms. 

The architecture of the X Window system is 
based on a client-server model. The X server 
controls all resources which include windows, 
bitmaps, fonts, colors, and other data structures 
used by the window system to enable clients 
to use and share these data structures 
transparently. Network transparency implies that 
applications can run on whatever CPU is most 
convenient. For example, applications requiring 
extensive computations ,can run on a network­
connected supercomputer and the result can be 
displyed on the terminal or workstation. 



3. SUPERCOMPUTING ENVIRONMENT 

3.1 Cray-2S System 

Cray-2s/4-128 supercomputer was used as the 
platform for software development. It has four 
CPU s and equipped with 128 mega word 
SRAM main memory and 40 giga bytes of 
high speed disk. The clock cycle is 4.1 nano 
second and its peak performance is 2 GFLOPS 
(Giga Floating Point Operations per Second). 
The operating system is UNICOS system which 
is based on AT & T UNIX System V and 
enhanced to support both batch and interactive 
processing in a large scale scientific computer 
environment. UNICOS supports CAL, the Cray 
Macro Assembler, and the high level languages 
including Fortran, C, and Pascal. The Fortran 
compiler has capability of automatically 
vectorizing inner DO-loops, and thus provides 
program optimization functionalty. 

3.2 Network 

The Cray-2S system is connected to IBM 3083, 
and MicroVax system through 100 mega bytes/ 
second HYPER Channel (Figure 1). Local 
Ethernet network is also connected to Cray 
system through TCP/IP networking protocol. A 
remotely located NAS AS/XL V50 and a CDC 
Cyber 960-31 mainframe computers are 
connected to Cray system via dual 1. 5 mega 
bits per second T1 communication line. The 
Unix workstations including Sun, Silicon 
Graphic's IRIS are connected to Ethernet 
network and thus provides users with 
accessibility to any of the existing computer 
resources including Cray, NAS, Cyber, Vax, 
and other workstations. 

Fig. 1. Supercomputing environment 
in KIST. 

236 

4. IMAGE PROCESSING MODULES 

Most of commonly available image procesing 
functions are being implemented. It includes 
preprocessing, image enhancement, image 
transformation, image classification, overlaying 
and mosaicking, data compression, and some 
utility functions. 

4.1 Preprocessing 

The sources of geometric error are instrument 
error, panoramic distortion, earth rotation and 
platform instability. The geometric correction 
process comprises the determination of a 
relationship between the coordinate system of 
map and image. It establishes a set of points 
defining pixel centers in the corrected image 
that, when considered as a rectangular grid, 
defines an image with the desired cartographic 
properties, and the estimation of pixel values 
to be associated with those points. The cubic, 
bilinear, and nearest neighborhood method are 
available as the resampling methods. 

4.2 Image Enhancement 

Image enhancement is to enhance the 
weakened image and to increase visible effect. 
Contrast stretch method (linear, normalized, 
histogram equalization, exponential, and 
logarithmic methods) for image enhancement 
were implemented. Spatial filtering with mean, 
mode, Roberts gradient, difference operator, 
and sobel operator were also implemented. FFT 
(Fast Fourier Transformation), contouring, and 
color enhancement is also available. 

4.3 Image transformation 

Various image transformation algorithm is 
available. They can be summarized as follows: 

1) Arithmetic operation: 
o band ratio 
o band difference 

o sum 
o add 

2) Vegetation index 
o normalized difference 
o leaf area index 
o transformed vegetation index 
o tasselled cap transformation 
o perpendicular vegetation index 

3) Principal Component Analysis 

4.4 Classification and Other Algorithms 

1) Classification 
o supervised o unsupervised 

2) Terrain analysis 
o slope-gradient 
o shaded relief 

o slope-aspect 

3) Three dimensional perspective view 
(Figure 2) 
o coordinate transformations 
o projection transformation 
o hidden line procedure 
o scaling 

4) Generation of mosaic map (Figure 3) 
o density level normalization 
o correction of the density level by 

overlapped area 
o seam control point matching 



5) Utility routines 
o data file handling 

- file format conversion 
- band extraction 

o coordinate conversion 
- UTM versus geographic 

coordinate 
o color map manipulation 
o histogram computation 
o statistical analysis 
o image compression 

4.5 Time Comparison with Other Systems 

Test run of the several algorithms on Cray-2S 
computer shows more than 50 times 
improvement in processing speed comparing to 
the IBM 3083 and VAX system. The 
algorithms used for test are as follows: 

o G CP correction 
o 3-D perspective view display 
o Maximum likelihood classification 

Fig. 2. Three dimensional display of 
Typhoon "A be". 

Fig. 3. Mosaic image of middle part 
of Korea. 

237 

5. NEURAL NET ALGORITHM 

5.1 Introduction 

Recently efforts to adopt neural net algorithm 
to sa tellite imagery analysis have been very 
active (Benediktsson, et al., 1990; Heermann 
and Khazenie, 1992; Lee, et aI., 1990; Ryan, 
et al. , 1991) . 

A neural net algorithm and software named 
"atree (Adaptive TREE)" was adopted and 
implemented in Cray-2S. It was originally 
developed for PC and workstations by 
University of Alberta, Canada (Dwelly, 1990). 
The atree contains the learning algorithm for 
adaptive logic netwoks, which is the 
backpropagation algorithm for multilayer feed 
forward artificial neural networks. The atree 
algorithm demostrates that for those networks 
which is consisting of multilayer threshold,its 
elements can be effectively trained. 

It is an important property for logic networks 
to have ability to generalize their responces to 
new inputs, presented after training is 
completed. The successful generalization 
properties of these logic networks are based 
on the observation, backed up by a theory, 
that trees of "two-input" logic gates of types 
AND, OR, LEFT and RIHGT are very 
insensitive to changes of their inputs. 

5.2 "A tree" Algorithm Concept 

An atree (Adaptive TREE) is the fundamental 
structure used by routines in this software 
(Dwelly, 1990). This is a binary tree with 
nodes of two types: (1) adaptive elements, and 
(2) leaves. Each element takes one of four 
logical functions, AND, OR, LEFT, or 
RIG HT depending on initialization or the 
training it has undergone. The leaf nodes of 
the tree serve only to collect the inputs to 
the subtree of elements. Each one takes its 
input bit from a boolean input vector. The 
tree produces a single bit as its output. For 
computing non-boolean outputs, several trees 
are used in parallel to produce a vector of 
bits representing the output value. 

5.3 "Atree" Implementation 

The original routines written in C language by 
University of Alberta to create, train, evaluate, 
and print out adaptive logic networks were 
transported to the Cray computer. The user 
can create a training set, then create a tree 
using 'atree_create'. The tree is trained using 
'atree_train' and then it can be used to 
evaluate new inputs using 'atree_evaI'. Because 
a single tree produces only one bit, the 
programmer must train several trees on the 
input data, each one responsible for one bit 
of the output data. This is made slightly 
simpler by the choice of parameters for 'atree_ 
train' which takes an array of bit vectors as 
the training set, and an array of bit vectors 
for the result set. The figure 4 shows its 
typical description. 

6. USER INTERFACE 

6.1 Graphic User Interface 

X-lib was selected as the graphics tool for C-



ERIMS system. It defines -an-extensive set of 
functions and provides complete access and 
control over the display, windows, and input 
devices. It seems to become one of the most 
widely used low-level graphic interface in Unix 
systems. 

Motif was selected as the user interface tool. 
Many software developers prefer to use one 
of the higher-level X toolkits since using low­
level graphics library to develop application 
software could be tedious and time consuming. 
A toolkit should contain a user-interface 
subroutine library to simplify the design and 
development of application user interfaces. 
Motif provides special tool kit feature named 
widgets which supports human interface graphic 
objects, such as dialogue box, menu, or mouse­
sensitive button. 

6.2 Execution of an X program 

A minimal X application first sets up a 
connection to the workstation, then creates a 
window, creates X resources, maps the window 
to the screen to make it visible, solicits the 
input events it is interested in, reads and 
interprets these input events, and finally 
generates graphical output. 

In order to run an X Window based software, 
following procedure is necessary. 

1) Compilation of an X application program 
in Cray computer: 

cc filename -IX 11 -lnet 

Trees -- one 
per output bit 

Xl X2 

y 

Random 
connections 

'--"-"l...--' Complements 

Fig. 4. Description of A tree struc­
ture (Dwelly, 1990). 

238 

2) Designating the display device: 

xhost Cray2s 
telnet Cray2s 
userid: xxx 
passwd: yyy 
setenv DISPLAY irisOOO 

6.3 X Toolkit Programming 

In X Toolkit programming, Xt Intrinsics serves 
as a framework that allows programmers to 
create user interfaces by combining an 
extensible set of user interface components. 
These components are known as widgets, and 
include menus, dialogue boxes, title bars, 
scrollbars, selection boxes, labels and push 
buttons. 

X Toolkit application performs several basic 
steps. These are: 

o Initialize the Intrinsics. 
X tlnitializeO esta bUshes 
a connection to the X server. 

o Create widgets. 
XtCreateWidget(name, class, 
parent, args, nargs) 

o Register callbacks and event 
handlers. 
Xt 

o Realize all widgets. 
o Enter the event loop. 

The compilation step would be: 

cc -0 filename 1 filename2 -IXm -iXt 
-X 11 

7. PARALLEL PROCESSING 

In order to benefit from the power of vector 
hardware, existing programs should be rewritten 
or translated to the parallel form. The existing 
auto vectorizing compiler does not provide 
maximum efficient method to discover the 
parallelism implicit in a Fortran program. 

An efficient translation algorithm is being 
developed as shown in figure 5. The scanner­
parser phase converts the input program to an 
abstract syntax tree that is used as the 
intermediate form throughout the translation. 
The pretty printer can reconstruct a source 
program from the abstract syntax tree; it is 
used throughout the translator. The vector 
translation phase consists of three main 
subphases: 

(1) subscript standardization, 
which encompasses all the 
transformation that attempt to 
put subscripts into canonical 
form; 

(2) dependence analysis, which 
builds the interstatement 
dependence graph; 

(3) parallel code generation, 
which generates array 
assignments where possible. 

8. CONCLUSION 

A Cray-2s based image processing system code 
named C-ERIMS is being developed. It will 



have full scene handlirig capability tak~g 
advantage of high speed and large mam 
memory of the supercomputer. It's software will 
be composed of the most of the commonly 
available functions including preprocessing, 
image enhancement, image transformation, 
classification, image compression, three 
dimensional perspective view generation, mosaic 
map generation and terrain information analysis. 
Most of the image processing modules are 
written in Fortran and C. Test run of the 
some algorithm in C-ERIMS on the Cray 
showed more than 50 times improvement in 
processing speed comparing to the IBM and 
V A X systems. 

C-ERIMS has user friendly interactive capability 
on X-terminal or UNIX workstations connected 
to Cray system via X Window protocol. The 
X lib was adopted as the graphic tool and 
Motif tool kit provides easy-to-use menu 
system. It will also be equipped with special 
features such as neural net algorithm, parallel 
processing algorithm, and some of knowedge 
based inference algorithm to enhance the 
processing capability and the classification 
accuaracy. C-ERIMS system is expected to be 
available to the pubhc by the end of 2nd 
quarter next year (1993). 

Scanner 
Parser 

tree 
Vector 

Translator 

tree 
Pretty 
Printer 

Preliminary 
Transforms 

(standardization, 
dependence analysis) 

Parallel Code 
Generation 

Fig. 5. Overview of Translation Process 

9. ACKNOWLEDGEMENTS 

The authors would like to 
Research, Inc. for partially 
ERIMS development project 
University Grant Program. 

REFERENCES 

thank Cray 
supporting C­
through Cray 

Benediktsson, J. A., P. H. Swain, and O. K. 
Ersoy, 1990. Neural Network Approaches 
Versus Statistical Methods in Classification of 
Multisource Remote Sensing Date, IEEE 
Transactions on Geoscience and Remote 
Sensing, 28(4): 540-551. 

Heermann, P. D. and N. Khazenie, 1992. 
Classification of Multispectral Remote Sensing 

239 

Data Using a Back-Progation Neural Network, 
IEEE Transactions on Geoscience and Remote 
Sensing, 30(1):81-88. 

Dwelly, Andrew, 1990. An Implementation of 
Adaptive Logic Networks, University of 
Alberta, Canada. 25 pg. 

Gu, Goson and B. Samayoa, 1988. Conversion 
of Gipsy Code on Cray Unicos System, The 
Final Report on 1988 Summer Intern Project 
in Digital Image Processing, Cray Research 
Inc., 31 pg. 

Lee, J, R. C. Weger, S. K. Sengupta and 
R. M. Welch, 1990. A Neural Network 
A pproach to Cloud Classification, IEEE 
Transactions on Geoscience and Remote 
Sensing, 28(5) :846-855. 

NASA/ERL, 1988. ELAS: Earth Resources 
Laboratory Application Software. NASA/ERL 
NSTL Report 183. NSTL, MS. 

Ryan W., P. J. Sementilli, P. Yuen, and B. 
R. Hunt. 1991. Extraction of Shoreline 
Features by Neural Nets and Image Processing. 
Photogrammetric Engineering and Remote 
Sensing, 57(7) :947-955 

Samayoa, William, 1983. CSADIE 3.0 for 
Cray Computers: System Documentation. Cray 
Research Inc., Mendota Height, Mn. 175 pg. 

Williams, G. N., et al., 1976. Conversion of 
LARSYS III. 1 to an IBM 370 Computer. 
Final Report, Contract NAS9-14514 by Texas 
A&M Univ. for Earth Observation Division, 
NASA Johnson Space Center, Houston, TX. 
60 pg. 

Yang, Y. K., S. E. Cho, et aI., 1989a. 
Development of a Microcomputer Image 
Processing Systems for Analyzing Satellite and 
Airborne Sensor Data. MOST National 
Research Report BS N20622. 173 pg. 

Yang, Y. K., S. E. Cho, et al., 1989b. 
Development of Satellite Image Processing 
Software on Mainframe Computer. Journal of 
Korean Society of Remote Sensing, 5(1):29-39. 


