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ABSTRACT 

A procedure for noise and object elimination from automatic correlation data, which uses cubic 
splines is proposed. The proposed method consists of approximating cubic splines subject to given 
constraints, over a set of parallel profiles generated from the automatic correlation data. This is per
formed by varying the values of the given constraints as a function of the residual errors generated 
by the approximation function adopted. 

The performance of the proposed method is evaluated by comparing the results of the cubic 
spline algorithm and (i) the results of applying a finite element algorithm; and (ii) measurements 
over the real surface. 
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1. INTRODUCTION 

The development of an efficient algorithm for 
automatic height measurements, over a photo
grammetric model, has occupied several 
research centers during the last two decades. 
Several methods have been proposed but few of 
them implemented successfully. Only recently, 
with the emergence of digital photog ram metric 
systems, the problem was overcome. Based on 
image treatment, automatic processes are per
formed and, as a result, among others, a 
database input for a digital terrain model can be 
obtained. 

The basic procedure to perform the automa
tion is select a sufficient number of points in one 
image and find (automatically) the conjugate 
points in the other image. This task is accom
plished by image matching methods, such as 
gray level correlation or feature matching, 
whence the name automatic correlation 
methods. 

The results of these image correlation meth
ods, however, only partially present the height of 
the natural terrain. Obstacles like buildings or 
vegetation covering the terrain and false points 
due to a weak correlation are included in these 
measurements. To obtain the true surface of the 
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terrain, a post-processing must then be carried 
out to eliminate these blunders. 

The paper shows that the approximation 
function theory may be applied successfully for 
blunder's elimination. The procedure consists on 
smoothing the data by applying an approxima
tion function over the output correlation data 
combined with a method for blunder's elimina
tion. Two generals smoothing methods have 
been tested: (i) a bidimensional method, by ap
plying a spline function; and (ii) a three-dimen
sional method, by applying a finite element algo
rithm. For blunder's elimination, three methods 
have been tested: (i) two statistical methods 
based on the residual errors from the approxi
mation function; and (ii) a deterministic method 
by using vectored contours from an image proc
essing over the correlated area. 

In this article we only present the bidimen
sional method, which uses cubic splines. The 
method consists on approximating cubic splines, 
subjected to a given constraint, over a set of 
parallel profiles generated from the automatic 
correlation data. The blunder's detection is per
formed by varying the values of the given con
straints as a function of the residual errors gen
erated by the approximation function adopted. 
The three-dimensional method is described by 
Da Silva, I. (1990). Next we present the relevant 
points of the algorithm. 



2. DATA EDITING 

As a result of the automatic data sampling, 
the resulting ground coordinates output is dis
tributed over the correlated surface in different 
ways, depending on the correlation method 
used. At any rate, they will always represent a 3-
D surface, which could be easily portioned out in 
a set of profiles. 

The use of profiles has the advantage of 
allowing the application of a bidimensional 
approach as, for example, the smoothing theory 
by using cubic splines, as well as a three
dimensional approach as, for example, the finite 
element theory. In addition, it allows the 
application of a pre-filtering process over each 
profile to eliminate gross-errors. Hence this is the 
data distribution used in our algorithm. 

Further, to obtain a suitable coordinate sys
tem for graphical representation, the generation 
of parallel profiles combined with a coordinate 
transformation can be useful to obtain profiles 
parallel to the x-axis. Figures 2.1 and 2.2 show 
an example of a 3-D output correlation data, 
generated by applying the "Multi-Templet 
Matching" program developed by the Swiss 
Federal Institute of Technology - Lausanne, 
Switzerland, and its representation in profiles. 

Fig. 2.1- Example of a 3·D correlation output data 
representation 

Fig. 2.2- Example of the output correlation data 
portioned out in profiles 

304 

3. PRE-FilTERING 

We apply the pre-filtering process to eliminate 
the following points of the profiles: (i) coincidental 
points; Oi) points belonging to an acute positive 
angle; and (iii) points belonging to an acute 
negative angle. Hence, for 

Zp (i,j)-zp (i,j-l) 
81 = arctg 

Xp (i,l)-xp (i,j-l) 
and 

82 = arctg 
Zp (i,j+ 1 )-zp (i,j) 

x p (i, j + 1 )-x p (i, j ) 

where xp and zp are ground coordinates. 

An acute positive angle is found when 

for 81 > 0 and 82 < 0 

An acute negative angle is found when 

for 81 < 0 and 82 > 0 

The pre-filtering process is applied in the 
beginning of the first iteration. 

4. APPROXIMATION THEORY m 

BASIC CONCEPTS 

As the interpolation function theory, the 
approximation function theory is used to describe 
the behavior of an experiment for which only 
discrete points were measured. The main 
difference between them is that an interpolation 
function is a curve that passes through the data 
points and an approximation function does not. 

By definition, an approximation function is the 
function that gives for a set of measured points 
(Xi,Yi), the values (Xi, P(Xi)) , where P(Xi) = yi + Vi 
and Vi is the difference between the measured 
value and the approximation function. 

As for interpolation functions, we use 
polynomials as function approximators and as 
curves for data fitting, since they and their ratios 
are the only functions that can be reduced to 
elementary arithmetic. There are, however, 
situations in which the approximation 



polynomials do not describe efficiently the 
experiment. In that case, as emphasized by 
Yakowitz, S. and Szidarovszky, F. (1986), 
"Instead of trying to approximate a function over 
the entire interval by one polynomial of high 
degree, one may approximate the function by 
piecewise polynomial function, where the degree 
of the polynomial piecewise associated with each 
subinterval is small. Splines are piecewise 
polynomials that prevent such erratic profiles by 
imposing derivate constraints at the common 
boundary points of the polynomial pieces". 

In our algorithm we use the cubic splines 
approximation theory developed by Schoemberg 
and Reinsch (1967). A summary of that theory 
follows. 

Let Xl, X2, ... , Xn, and Yl, y2, ... , yn be a set of 
measured points for a given problem and for 
which we seek an approximation cubic spline 
function f(x}. 

In agreement with the approximation function 
theory, it can be stated that for each point yi 
there will be an expression of the type 

(1 ) 

where f(xi) is the approximation function and Vi is 
the difference between the measured value and 
the approximation function at the point Xi. 

We wish a function f(xi) that could be 
approximated to the measured points by an 
appropriate constraint and that, at same time, be 
sufficiently smooth for not having acute angles. 

Schoemberg and 
following conditions 
function f(xi): 

Smoothing condition 

I
X2 

xl 
g"(x)2dx 

Reinsch propose the 
for the approximation 

(2) 

Approximation condition 

(3) 

where g(x) E c 2 [xi ,xn]. 

Here. 8y; > 0 for i=1,2, ..... ,n and S>O. are 
given numbers. The constant S is redundant and 
is introduced only for convenience. 
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The solution of the problem is obtained by 
introducing the Lagrangian parameter 'A and an 
auxiliary value z. We now look for the minimum 
of 

We also want a function f(x) composed of 
cubic splines of the type 

Si(X) = ai + bi(x - Xi) + Ci(X - Xi)2 + d i(X - Xi)3 

having the following characteristics: 

Si(Xi + 1) = Si + 1(Xi + 1) 
S'i(Xi+1) = S'i+1(Xi+1) 

S II i( Xi + 1) = S II i + 1 (X i + 1) 

So, by introducing 

hi =Xi+l-Xi 

C=(C2, ...... Ci-l)T; Cl =Cn =0 

y = (Yl, Y2, ... , yn); 

a = (a1,a2, ... an) T; 

D = diag(8Yl,8Y2, ... ,8Yn) 

a short manipulation yields 

i = 1,2, .... , n -1 

and finally 

a = y - A-I D -2 C 

(4) 

(5) 

(6) 

Next, if the Lagrangian parameter A is given, 
we obtain by further manipulation the vector c, 
and then the vector a and the remaining 
coefficients bi and di. 

The computation of the Lagrangian 
parameter A can be done by using an iterative 
process as. for example, the Newton's method. It 
consists on repeating iteratively the formula 

(7) 

In their article, the authors propose a method 
for computation of the Lagrangian parameter. 



5. THE DEVELOPED ALGORITHM 

Our algorithm is completely based on the 
theory discussed above. 

The algorithm consists on applying the 
approximation technique described above over 
each profile individually, without considering its 
neighbors. The method is applied iteratively. 
After each iteration a new approximation function 
is generated, and used as input for the next 
iteration. The process stops after 3 or 4 
iterations. Figure 5.1 shows an example of the 
behavior of a profile after each 'iteration. 

a) First Iteration· after pre-filtering 

b) second iteration 

c} third Iteration 

d) fourth Iteration 

Fig 5.1·General representation of the result of 
applying the spline function algorithm. 

The developed algorithm is composed by 
several operational phases. Figure 5.2 shows 
the general configuration of the algorithm. 
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Fig 5.2 - General configuration of the algorithm 

Next we describe the relevant points of each 
phase. 

5.1. DATA PREPARATION 

The data preparation consists on 
renumbering the data input, to put them in 
agreement with the approximation function 
theory. This is done to consider the eliminated 
points after each iteration. 

The data preparation is done at the beginning 
of the iteration. 

5.2. WEIGHTING PROCESS 

The weighting process consists on given val
ues to the constraint byi of the formula (3) 

where S = N -J2N and N is the number of points 
of the profile. 

As we will see next, the value of the 
constraint byi is given as a function of the 
variation of the residual error between the 
measured points and the approximation function. 



5.3. ESTABllSHEMENT OF THE APPROXIMATION 
FUNCTION 

The approximation function is established as 
described by Schoemberg and Reinsch. 

5.4. COMPUTATION OF THE RESIDUAL ERRORS 
AND THE REFERENCE STANDARD 

DEVIATION 

The computation of the residual errors is 
simply performed by computing the difference 
between the original pOints and the 
approximation function at each point. Next, the 
reference standard deviation is computed by the 
following formula: 

where 

(8) 

a is the reference standard deviation 
V is the vector of the residual errors 
P is the weight matrices 
N is the number of points of the profile 

The residual errors and the reference 
standard deviation are used as a constraint 
value for point elimination. 

6. WEIGHTING STRATEGY 

I n an attempt to obtain appropriate and rapid 
blunder's elimination, the principal point to 
consider in the process is the weighting strategy. 
By correctly weighting the oyi value, blunders 
can be eliminated more rapidly. 

The weighting strategy used in our algorithm 
is applied as follows: 

1-ln the first iteration, the approximation 
function is completely modeled with the 
profile. This can be done by giving a small 
value to the oyi constraint. 

1-Next, the sign and the magnitude of the 
residual errors are taken into consideration. 
Hence, to emphasize the existing blunders 
and given that they will always lie above the 
approximation function, all points lying 
above the approximation function are 
weighted by means of a exponential 
function of the type 

(9) 
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where 

k1 is a constant 
a is the reference standard deviation 

0,1 ~ Oyi ~ 0.5 

and all pOints lying below the approximation 
function are weighted by means of a 
constant value k2s0,1. 

The limit values 0,1 and 0,5 were fixed by 
experience. 

By applying such a weighting strategy, the 
approximation function is forced to keep of 
the points lying above it and at the same 
time to descend toward the points lying 
below it. 

7. BLUNDER'S ELIMINATION 

For blunder's elimination two types of errors 
should be distinguished: (i) measuring errors due 
to weak correlation; and (ii) points not measured 
on the ground (obstacles). The first one is 
eliminated during the pre-filtering process if they 
are excessively big. When they are not big 
enough to be automatically eliminated during the 
pre-filtering process, they will rather be 
considered as the second type of error. The 
second type of error can be eliminated by taking 
into account the residual error generated during 
the approximation adjustment. 

The blunder's elimination method used in our 
algorithm consists simply on eliminating 
measurements for which the residual error is 
greater than a specified value. Threshold values 
can be fixed by using the computed reference 
standard deviation value. 

8. PRACTICAL RESULTS 

For testing the procedure, a computer 
program was written in FORTRAN 77 for a VAX-
8350. 

The input data used for testing were a series 
of 28 simulated profiles handled from a 
photogrammetric model by means of the 
analytical plotter KERN DSR-11. 

The profiles represent a slightly hilly terrain 
with sparse buildings and few trees. They are 
300 m long (100 points) and are separated 5 m 
wide. The image was generated using a normal 
angle camera (c=300 mm) and with a flight high 



of 1500 m (scale = 1 :5000). Figure 8.1 shows an 
aerial image of this input data. 

Figures 8.2 and 8.3 show a perspective view 
and a representation with contours line of the 
relief before smoothing. To compare the results, 
figures 8.4 and 8.5 show a perspective view and 
a representation with contours line of the 
smoothed relief manually handled. 

The results of the developed algorithm are 
shown in figures 8.6 and 8.7. The figures show a 
perspective view and a representation with 
contours line of the smoothed surface. 

Fig. 8.1 • Aerial view of the testing region 

Fig 8.2 • Perspective view of the original surface 
(with obstacles) 

Fig. 8.3 • Representation with contours line of the 
original surface before smoothing 
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Fig 8.4 • Perspective view of the surface smoothed 
manually 

Fig. 8.5 • Representation with contours line of the 
surface smoothed manually 

Fig 8.6 • Perspective view of the smoothed surface by 
applying the developed algorithm 

Fig. 8.7 • Representation with contours line of the 
smoothed surface by applying the developed 

algorithm 



To compare the results of the developed 
algorithm with the finite element algorithm, the 
figures 8.8 and 8.9 show the region test 
represented by a set of profiles smoothed by 

Fig S.S-Set of profiles smoothed by applying the 
developed algorithm 

Total Quantity of 
SMOOTHED METHODS number of eliminated 

points points 
Spline functions algorithm 4692 2700 
Finite element algorithm 4692 2205 

% of 
eliminate 
d points 
57,4% 
47,0% 

applying the developed algorithm and the finite 
element algorithm respectively. Also, the main 
results of each method is presented in table I. 

Fig. S.g-Set of profiles smoothed by applying the finite 
element algorithm 

CHARACTERISTIC VALUES 

STANDARD DEVIATION OF THE DIFFERENCE 
BETWEEN THE ORIGINAL SURFACE AND THE 

SMOOTHED SURFACE 
A B C TOTAL 

4.254 m2 9.347 m2 6.375 m2 42.524 m2 
161 points 358 points 243 points 1553 points 

63cm 77cm 77cm 70cm 
64cm 70cm 60cm 65cm 

Table I - Characteristic values obtained by applying the developed algorithm 

9. CONCLUDING REMARKS 

As demonstrated, the spline function 
approximation, can also be used for noise and 
object elimination from automatic correlation 
data. It is, however, less sensible to the variation 
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of the terrain than the finite element algorithm, 
what means that it smoothes more. Also, 
because the spline function approximation does 
not consider the neighbors profiles, it is less 
stable than the finite element algorithm, what 



means that the smooth control is easily 
controlled on the finite element algorithm. 

On the other hand, the spline function 
approximation method is less time consuming 
than the finite element algorithm (at least 10 
times). So, even if it is less efficient then the 
finite element algorithm, it can be used for rough 
analysis or in the case where the terrain has few 
obstacles. 
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