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ABSTRACT 

Most robust. ~stimation te~hniques are in essence downweighting methods: in an iterative 1.s. 
scheme SUSpiClOUS observatIOns. get low ~eights accor~il!g to some specified criterion. Here we 
focus o~ the use o~ a seque~tIal updatmg of ~ prehmmarly computed solution, as a possible 
alternatIve to repeatmg ma,ny tImes the whole a?Justment. The formulae for the updating, in terms 
?f parameters as ~el1 as m t~rms of o~servatIOns, of the Cholesky factor and the inverse are 
mtroducec:I and th~lr ~omputatIOn~l load IS evaluate~; a computer program operating on matrices 
stored takmg sparSIty mto account IS presented. ApplIcations to outliers identification with different 
methods are discussed for block adjustment and surface reconstruction with spline functions. 

KEYWORDS: Robust estimation, sequential algorithms, sparse matrices. 

1. INTRODUCTION 

In the framework of I.s. computations, it is often required to 
modify a previously computed solution. Using the standard 
procedure, this would imply to compute the whole 
adjustment from the beginning, what can be costly or time 
consuming. Sequential algorithms offer a more economic 
and efficient approach: they allow the complete updating of 
the solution of an equation system, i.e. they provide not 
only the addition or the removal of an observation 
equation, but also the elimination or the introduction of 
unknown parameters. 

Sequentially building an equation system is a widespread 
technique in many areas of scientific computing: this is for 
instance the case in all dynamic measurement processes, 
where on-line data acquisition is often required to control 
in real (or near real time) the process evolution. In 
regression analysis, when testing for the significance of the 
parameters involved in determining the observed quantity, 
the obvious way of modifying the functional model is by 
using sequential algorithms. 

In photogrammetry this approach became interesting with 
the advent of on-line triangulation, where the possibility of 
direct data acquisition on the computer and the opportunity 
of having a quick check and repair of measurement and 
identification errors strongly suggested the use of such a 
tool. Many algorithms have been presented and 
investigated to this aim in the last decade, among which 
Givens transformations (Blais, 1982; Blais, 1984; Inkila, 

1984) are perhaps the most popular, in order to meet the 
specific requirements of on-line triangulation. 

Here we focus on the use of sequential techniques to 
update a previously computed solution, the objective being 
to provide an alternative to repeating the whole adjustment 
of a 1.s. equation system, rather than building the system 
itself. As an example, this might be the case of the design or 
the adjustment of a (large) geodetic network or 
photogrammetric block, to be updated with the addition of 
new observations or points. In the following we will rather 
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concentrate on the problem of outliers identification and 
removal: we assume therefore the measurement process 
already completed, and we look for an efficient strategy for 
outliers identification. The dual operation on the 
unknowns, i.e. the modification of the parameter set will be 
put aside. 
Most robust estimation techniques are basically 
downweighting methods, where in an iterative 1.s. scheme 
suspicious observations undergo to a decrease of their role 
in determining the solution, through the modification of 
their weights according to some specified criterion. The 
amount of the weight change is generally determined on 
the basis of the (standardized) residual of the observation, 
and may involve from a theoretical point of view all 
observations; this would exclude the use of sequential 
techniques, since in this case repeating the whole 
adjustment is more economic. Following a more practical 
approach, changes to the weights will be assumed to be 
significant, only for the observations directly affected by the 
outliers and for a small other group around (roughly 
speaking, all the observations closely connected by the 
funtional model to erroneous ones). This means that, apart 
from pathologic situations, we can expect that only a small 
percentage of the weights will change from two successive 
iterations. In this frame, sequential updating becames again 
an attractive proposal for outliers removal. A weight 
change will be obtained by removing from the equation 
system the same (normal) equation, with weight equal to 
the given weight change. 

2. A REVIEW OF ROBUST ESTIMATION METHODS 

Outliers identification and solution methods insensitive to 
outliers are a main topic in the geodetic and 
photogrammetric community and many significant results 
have been established. The fundamental concepts of 
internal and external reliability introduced by Baarda 
received a widespread acknowledgement and provide 
guidelines in block design as well as in outliers 
identification (Foerstner, 1986). Many testing strategies 



have been suggested to improve the efficiency of data 
snooping and reduce masking effects: some are based on 
still unidimensional test statistics and look for a satisfactory 
backward and/ or forward elimination procedure 
(Benciolini et al., 1982; Barbarella, Mussio, 1985); a 
different approach define multidimensional hypothesis 
(Kok, 1984). In the last decade also robust estimation 
procedures became part of the mathematical background 
of geodetic and photogrammetric community; further 
achievements are coming out in robust testing. This might 
lead in the future to a decline of the fortune of the 1.s. 
principle; at present, nevertheless, robust estimation 
methods heavily rely on 1.s. since, as outlined above, their 
computational scheme is based on iterative 1.s. adjustments. 
"Robustness signifies insensitivity against small deviations 
from assumptions" (Huber, 1977): it is looked for an 
estimator being perhaps less efficient when all model 
hypothesis are satisfied, but which is still capable, to the 
contrary, of identifying the kernel of consistent 
observations. Among model assumptions violations, the 
more understood is perhaps the shape of the true 
underlying distribution deviating slightly from the assumed 
(usually the gaussian distribution). According to (Hampel, 
1986), "robust statistics are the statistics of the approximate 
parametric models"; this means robust estimators are 
derived under a distributional model more flexible than the 
maximun likelihood estimators: more precisely they 
provide an infinite dimensional neighbourhood of a 
specified parametric model. Contaminations of the basic 
distribution are then explicitely accounted of. The 
estimation procedure is designed to provide a screening 
among the observations, taking a priori into account that 
not all of them should be given the same role in 
determining the solution. This does not happen to l.s. 
estimates, where all observations equally contribute, on the 
basis of their a priori variance, to the solution. 

In its original formulation (Huber, 1964) introduced the so 
called M-estimators, a generalization of maximum 
likelihood type, where the probability density function F is 
defined as the convex combination of the given probability 
distribution G of the observations and of an unknown 
contaminating distribution H: 

F(x-t) = (I-e) G(x-t) + e H(x-t) (1) 

For small e, this allows to represent explicitely an 
approximate parametric model. An M-estimator T of a 
location parameter t is defined as the solution 8f the 
minimum problem 

(2) 

or by the implicit equation 

(3) 

where R(x,t) is an arbitrary function and H(x,t) its 
derivative with respect to t. 
Defining a weight function W with coefficients 

H (Xi - T \ 
wi = --,--'--'=----=nJ~ 

(Xi - T~ 
(4) 

equation (3) is rewritten explicit ely with respect to T as a 
weighted mean of the observations: n 

(5) 

M-estimator are then characterized by these three 
functions. 
Further insight in the theoretical foundations of estimation 
methods was provided by Hampel, through the definition of 
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concepts like the influence function l.F. and the breakdown 
point. The former describes the effect on the estimate of a 
small contamination of the distribution: this can be 
evaluated as the differential influence on the estimate of an 
observation of value x, when sample size goes to infinity. If 
the I.F. is bounded, outliers cannot completely ruin the 
estimates. The latter represent the percentage of 
contaminating data which can be tolerated by the 
estimator, before it deviates. For M-estimators, it can be 
shown that the influence function is proportional to the 
derivative of the objective function. 

Applying these concepts to 1.s. criterion, we found that the 
I.F. is a straight line (the weight function is a constant) so 
there is no limit to the influence of contaminating 
observations. 
To the contrary, all robust methods show a bounded I.F. 
(the weight function goes to zero to infinity or even is zero 
after some threshold value): this means that the 
contribution of an observation to the determination of the 
estimate decreases (and may become null) with the degree 
of consistency of the observation with the bulk of the data. 

In Huber estimator a threshold c is introduced, to separate 
the observations according to the magnitude of their 
standard deviation from the location parameter: the I.F. is 
the same as the 1.s. for observations smaller than c and 
became a constant for larger values. For I x I > c, this leads 
to weights vanishing as c/ixi. It can be shown that the 
corresponding distribution function of the observations is 
normal in [-c;c] and exponential outside. 

Hampel estimator is a "three part redescending estimator", 
with three constans el, c2, c3 defining four regions: the I.F. 
coincides with Huber estimator in the first two, then goes 
linearly to zero at c3 and is zero for larger values: c3 
defines a finite rejection point. Since I.F. is descending, the 
objective function is not any more convex: this means the 
uniqueness of the solution cannot be guaranteed. 

3. OUTLIERS IDENTIFICATION: ROBUST 
METHODS OR L.S. TESTING PROCEDURES? 

As already mentioned, the computation of the solution with 
such (and similar) estimators can be performed in an 
iterative 1.s. scheme, according to the weight function 
specified by the method. Also other robust methods, 
independently derived in the framework of geodetic 
sciences like the Danish method (Juhl, 1984; Eeg, 1986), 
use a fully corresponding procedure, since the basic idea is 
to weaken observations with high residuals. To reduce the 
computational load, only the solution vector is computed at 
each iteration, since it is not strictly necessary to compute 
the covariance matrix of the residuals. The weight change is 
determined on the basis of the magnitude of the residuals. 
Iterative methods are the best choice for the solution, 
taking into account their characteristics: they allow the 
sparsity of the normal system to be fully exploited in 
programming algorithms, since they preserve sparseness, 
and offer fast convergence rates. Because of its 
characteristics, the conjugate gradient method has got the 
largest popularity. 

On the other hand, outliers removal is just a preliminary 
step for the adjustment: confidence interval and error 
ellipses of the estimated parameter are of great interest. It 
is therefore necessary to invert the normal matrix, by first 
computing the Cholesky factor T and then solving the 
matrix equation: 

(6) 

at the end of the elimination process. Because of the fill-in 
of the envelope of T, sparsity is not preserved, and a 
different array structure is to be used for the inversion. 

When using testing strategies based on data snooping 



approach, standardization of the residuals and covariance 
matrices are necessary at each iteration step of the 
procedure, if masking effects are to be minimized. These 
considerations give support to the use of sequential 
updating of the solution, since this would be a more 
economic way of facing the amount of computations 
required. As already outlined above, in downweighting 
methods the magnitude of the weight change is determined 
on the basis of the residual of the observation. Empirically 
choosing a threshold, changes to the weights will be 
assumed to be significant only for larger residuals, under 
the assumption that only those affected by the outliers 
(roughly speaking, all the observations closely connected by 
the funtional model to the erroneous ones) are greater than 
the threshold. Only a small percentage of the weights 
should change from two successive iterations. In this frame, 
sequential updating becames again attracting for use in 
outliers removal also with robust downweighting methods. 
A weight change will be obtained by removing from the 
equation system the same (normal) equation, with weight 
equal to the given weight change. 

4. THE SEQUENTIAL UPDATING OF A L.S. 
SOLUTION 

4.1 Adding or removing observations: updating the 
Choiesky factor T and the solution vector 

Applying the Householder orthogonal reflection matrix Q 
to a m-vector v results in a vector u = Qv whose elements 
are zeroed from the p-th on, (1 <p<m) (Lawson and 
Hanson, 1974); a sequence of n such reflections, applied to 
the column of the design matrix A, leads to a (m,n) matrix 
U having non-zero elements only in the upper triangle; this 
takes about m n2 operations. The Cholesky factor T and the 
upper triangle in U are identical within row signs: 

(7) 

Given the Cholesky factor T and the corresponding known 
term d, adding a new row vector a (a new observation 
equation) to the normal &},stem is equivalent to consider 
the extended matrix U = [Ut I at]t and apply n 
Householder transformations to that matrix, in order to 
zero all coefficients in the last row. Since only one element 
is to be zeroed in each column, the tranformation becames 
in fact a Givens rotation. 
The operation count then droQs from the order of m n2 

operations (or from about n3 operations solving with 
Cholesky factorization the augmented system), to the order 
of n2. It can be seen also that the j-th tranformation 
modifies only the elements of the last row and of the j-th 
row, both from the j-th column on. Only if the 
corresponding elements of the row are both zero in the 
original matrix they will be so in the updated. This means 
also that the profile is subject to changes, as soon as new 
connections are generated outside the original. Writing the 
transformation in terms of the elements tii of the Cholesky 
factor requires a working array w of lenght n, containing 
the elements of the row to add or remove. Let T* be the 
updated matrix and w(i) the vector w at the i-th step; we 
have: 

t*ii = (t2
ii 

+ /- (w(i)) 2) 1/2 

(8) 

while for the off-diagonal elements we obtain: 

>I< _ (i) (i) >I< 

t ij - (tii tij + / - W i W j) / t ii 

(9) 
w(i+1), = (w(i), t .. - w(i), t .. ) / t>l< .. 

J J 11 11J 11 

There is no basic difference between adding and removing 
an equation, since all modifications to the existing elements 
merely consist of the addition of some terms representing 
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the contribution of the equation to be introduced or 
deleted. When an observation is to be removed, the 
corresponding equation will be therefore added with all 
signs of the correction terms changed, so that the effect of 
its introduction is cancealed. 
Once T* has been computed, the solution vector follows by 
the forward-backward substitution. All in all the amount of 
operations required is therefore in the order of n2. 

4.2 Adding or removing observations: updating the inverse 

In order to update the inverse, the following linear algebra 
theorem is used: given the square nonsingular matrices Q, S 
and matrices R, T so that the product 

Q+/-RST 

can be defined and the result is nonsingular, and if matrix 

is also nonsingular, then the following equality holds: 

(Q + /- R S Ttl = 

= Q-1 _/ + Q-1 R (S-l + /_ T Q-1 Rt1 T Q-1 
(10) 

Let now substitute the normal matrix C for the matrix Q, 
the scalar p (the weight of the observation to be 
introduced) for S and the transpose at of the row vector of 
coefficients for R, the row coefficient vector for T. The 
expression then becames: 

(C +/-at pat1 = 

= C-1 -/ + C-1 at (p-l + /_ a C-1 att 1 a C 
(11) 

The procedure does not require to compute any inverse 
matrix explicitely, using the Cholesky factor T instead of 
the inverse C-1: only an additional working array e of 
dimension n is used. The first step is the backward-forward 
substitution 

yielding the unknown e; then the scalar product 

a e = f 

is computed, followed by the matrix product 

e g-l et = H 

where the scalar g is defined as: 

g = p-l +/-f 

The updated inverse C*-l is then obtained as 

C"'-l = C-1 + H 

(12) 

(13) 

Since the major cost of each updating is due to (12) and 
(13), the operation count is again in the order of n2. 

4.3 Adding or removing unknown parameters: updating the 
ChoIesky factor and the solution vector 

Modifying the parameter set is equivalent to add or remove 
a column to the design matrix (and a row and a column to 
the normal matrix). Introducing a new unknown is 
straightforward if the new parameter is stored in the last 
position in the normal matrix: there is no need for any 
modification of the previuos Cholesky factor. In fact, since 
T can be computed also column by column, from left to 
right, this is nothing but the factorization of the last column 
of the normal matrix. Removing an unknown, to the 
contrary, imply changes in all elements of the triangle 
whose row and column number are both larger than those 



of the unknown to eliminate: again, this is clearly 
understood by looking at factorization formulae: 

(14) 

j < i (15) 

In order to modify the elements of the above mentioned 
triangle, it is sufficient to take into account that since the 
matrix element tf results !rom a sum of produ~ts, whose 
factors ar~ th,e cotrespondmg elements of columns i and j, 
!he c?~tnbutIOn due to the unknown k (k<i <j) is easily 
IdentIfIed, :ro compute the modified element we merely 
subtract thIS term to the original; to this aim, only the 
nonzero .part of the row corresponding to the parameter to 
remo~e,Is used, Let w be again a working array of size n, 
contammg at step 1 the h-th row to be removed: 

t*ii = (t2
jj 

+ 1- (w(i-h)i) 2) 1/2 

(16) 

while for the off-diagonal elements we obtain: 

t* .. = (t .. t .. +1- w(i-h). w(i-h).) I t* .. 
lJ 11 lJ 1 J 11 

w(i-h)= (w(i-h). t .. - w(i-h). t .. ) I t* .. 
J 11 llJ 11 

(17) 

The c~rrections apply for i = h + 1, nand j = h + 1, n; it can 
be notIced that (16) and (17) are in fact fully equivalent to 
(8) and (9). The number of elements to be actually 
updated, th~refore, dep.en~s on the storage position of the 
parameter m the matnx: It can be as large as n( n + 1) 12 
~hen unknown 1 is removed or just zero when unknown n 
IS cancealed. On average, considering that each updating 
takes three oper~tions ~ an operation = a multiply and an 
add), we can obtam agam an order of n2 operations. 

4.4 Add~ng or removing unknown parameters: updating the 
normal mverse 

To ~erive the ~xpre~sio~ of the updated inverse, let first 
co~sl~er a p~rt~tIOnmg m four submatrices of a positive 
d~fmlte matrIX, l,nsuch a way that the last diagonal element 
s IS one of the dIagonal blocks and the first n-1 elements of 
last row rt and column r are the off-diagonal blocks C 
being the rest: ' 

(18) 

The corresponding partitioning of the inverse 

[~, : 1 (19) 

expressed as a function of s, rand C is obtained by 
exploiting the identity: 

[~:][~:J (20) 

We obtain for r, sand G the following expressions: 

r = - ( C-1 - r rt I s )-1 rls (21) 

s = ( 1 - rt r ) I s (22) 
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(23) 

Applying theorem (10), (23) breaks off in a series of 
ele~e?tary products: the product C-1r=e is not computed 
exphcltely, but rather a backward-forward substitution 
using T gives the vector e. Then the scalar product: 

rt e = f 

is computed and the matrix products: 

e et = G 

e f et I s (s-f) = H 

follow. From the last two equation we obtain: 

G = C-1 + G + H 

Again from (10) applied to (21) we get: 

r = - e/s - e f/s(s-f) 

(24) 

When an unknown parameter is removed from the model, 
expression (24) is to be used, this time solved with respect 
to C-1: 

c-1 = G - G - H 

Note that there is no actual dependence on C-1 in G and H 
since all terms involving the inverse can be computed by 
first updating the factor T and then solving once more two 
triangular systems. 

In order to introduce the solution formulae we used a 
partition where the modified parameter is the last. This is 
not actually a limitation, since we can always think of pre
and post-multiply C-1 by a permutation matrix, so that the 
candidate parameter becames the last. This is just a 
symbolic operation, since in a computer program we merely 
skip over in all computation the element of row and column 
to remove. 

5. THE PROGRAM SEQUALGE 

As outlined above, in our approach outliers identification 
cannot be seen as a separate step of the adjustment 
procedure: this lead us to integrate the sequential updating 
just described into the existing software library of our 
Department. 
The stress has been put on two applications which are of 
main interest at D.I.I.A.R. since the last decade: the 
adjustm.ent of ~eodetic network and photogrammetric data 
(~<?rlam, MUSSIO; 1986) as ,well as surface reconstruction by 
fImte elements mterpolatIOn and 1.s. collocation filtering 
(Crippa, Mus.sio, 1.987). To take the sparsity structure of 
normal matnces m geodesy and photogrammetry into 
consideration, the adjustment program CALGE uses 
Cholesky factorization and minimum profile algorithm 
(Gi~bs et al:, 1976) to reduce storage requirements; in the 
deSIgn matrIX only non-zero elements are ~tored, while the 
whole ~nvelop~ of the normal matrix is stored in an array, 
~)Verwntte? ~lth the, Chol~sky factor T an~ the partial 
mverse. SImIlar conSIderatIOns apply to the mterpolation 
program SPLINE-P, which is available also with a 
conjugate gradient version. 
W~thin this background, SEqUALGE program has been 
wntten, capable of all updatmg of a l.s. problem depicted 
above. 
Actually, three different versions of SEQUALGE exist 
d~aling with full, banded and sparse matrices, to integrat~ 
WIth the corresponding linear algebra library routine. The 
algorithms for the updating apply equally well to full and 
sparse matrices. Notice only that, as in 1.s. adjustment 
p~og!ams, the. inv,erse is only updated (and computed) 
wlthm the profIle, m the sparse storage version. In terms of 



storage, requirements are larger than those demanded bv 
solving the system in a single step: we need both T and Cr. 
In fact this is not strictly necessary, since there is no need 
for these matrices to be in core memory at the same time: 
nevertheless, loading and unloading from disk would 
reduce sharply program performances. 
Each time an equation or an unknown parameter is 
removed, both the design matrix and the factor Tare 
modified, to save storage. When adding unknowns, they are 
always put in the right margin of the normal matrix, since 
this is straightforward. Introducing new equations, on the 
other hand, may change the profile: then a preliminary 
check is necessary in the profile version of the program; if it 
is the case the envelope is enlarged. This is also the reason 
why, for geodetic and photogrammetric applications, 
SEQUALGE has been designed primarily to update 
equation systems, rather than building them sequentially 
from the beginning. The latter approach would make 
reordering very inefficient, since each time an unknown is 
introduced, a new reordering is necessary. The argument 
does not apply of course to SPLINE program, where 
reordering is not used. 
At the current stage, SEQUALGE has been integrated as a 
subroutine module in the two mentioned adjustment 
programs. The outliers identification procedure allows the 
use of Huber and Hampel estimators, as well as the data 
snooping. 

6. EVALUATION OF PROGRAM AND ALGORITHMS 
PERFORMANCES - EXAMPLES 

To compare the performances of different robust methods 
in gross errors identification and to evaluate program 
performance a series of adjustment has been executed on 
two photogrammetric blocks and a DTM. 
All estimators available to the program were used in the 
computations. Observations were completely simulated in 
the photogrammetric examples, while for the DTM the 
original measurements were used. Moderate and large 
gross errors were introduced in different combinations and 
percentages in data set, to have a picture of the sensitivity 
of the robust methods used. 

6.1 Program performance 

Describing sequential algorithms we already pointed out 
the amount of savings in terms of floating point operations 
and the increased cost of storage. When focussing the 
analysis on the use of programs taking sparsity into account, 
some additional remarks are necessary. 
The basic assumption in suggesting the use of such methods 
in the context of outliers location is that the number of 
weights subject to changes in an iteration should be small, 
compare to the number of unknowns. This fact may not 
occurs when a large set of data is acquired, e.g. 
automatically. However in this case a recommandable 
statistical treatment implies always the preprocessing of 
small subsets of data. If this is not the case, repeating each 
time the whole adjustment would be more economic. Let 
be: 

m the number of observation equations; 
n the number of unknowns; 
h the bandwidth of the normal matrix; 
~ th~ average number of weight changes in an 
IteratIOn; 
1 the number of iterations in the identification 
procedure. 

It is important to evaluate the number of operations 
req~ired to complete the process when dealing with arrays 
stonng the whole normal matrix rather than only its profile. 
Working only within the profile, the number of operation 

required to solve a l.s. problem is in the order of n h2. The 
corresponding single step (a weight change) of a sequential 
update will then involve n h operations. If we compare now 
the ratios between full and sequential solution in case of 
full and sparse storage, we see that, while for full matrices 
the sequential solution is always reasonably competitive 
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(especially when using data snooping), dealing with sparse 
storage, the dependence of the complete solution switches 
from the number of unknonws to the bandwidth: in this 
case only for small percentages of weight changes 
sequential updating will be still more efficient. 
To try to establish a balance point between the two 
approaches, let assume the bandwidth to be proportional to 
the square root of the number of unknowns and the relative 
redundancy to be about 2. If we assume 1 % of weights to 
change at each iteration, we have the balance for n close to 
2500; with 2% the balance is reached much earlier, at 
about 600 unknowns. 

In order to empirically confirm this analysis of program 
performance, a service version of CALGE and SPLINE-P 
has been set up, which, once observations weights are 
modified, restart the complete system solution. The same 
results are then obtained by using sequential updating and 
by building a new normal system at each iteration. A 
comparison has been done between the CPU time spent by 
SEQUALGE in the iterative sequential updating of the 
weights and CPU time required to the service version for 
the equivalent adjustment. 

6.2 Test 1: joint adjustment 

The photogrammetric blocks used were adjusted together 
with their control network on ground. Both examples use 
simulated observations, in order to be able to monitor the 
behaviour of the estimators; the observation scheme in 
both cases is a realistic one, since we used an existing block 
and net configuration. 
The first block consists of 13 photograps divided in three 
strips, with 65% forward overlap and 20% sidelap. The 
control net is made of a triangulation net and of a spirit 
levelling loop. The number of observations is 846, the 
unknown parameters are 549. 
The second consists of four strip, with photograps taken 
with 65% forward overlap and 50% sidelap, for a total of 15 
models. The control network includes four connected 
levelling loops and a two chains of traverses, strongly 
connected. The number of observations is 1548, the 
unknowns are 745. 
In both examples the observations were first given normally 
distributed errors and then small outliers (two or three 
times the minimum undetectable error of the observation) 
were introduced, in the control network as well as in the 
block. 
In a second series of simulations, bigger outliers were used. 

6.3 Test 2: surface reconstruction 

The DTM used in this example is the N oiretable area, the 
same used as test area from OEEPE some years ago. It 
consist of profiles almost equally spaced with an interval of 
about 20 m, with irregular sampling within each profile; the 
amount of observations is close to 6600. Bicubic splines 
were introduced every 100 m on a regular grid, this choice 
resulting in a normal system of about 1300 unknowns. The 
sigma naught of the spline interpolation before introducing 
the errors was about 2 m; then a number of gross errors of 
constant size (15 m) were introduced, roughly equally 
spaced, amounting to 2% of the observations. Then the 
error location procedure was performed. 

6.4 Analysis of the results 

From the relatively limited amount of simulations 
performed we could not get a clear picture of differences in 
the behaviour of the robust methods. 
In the two photogrammetric blocks, with small outliers we 
had ambigous results: the largest errors were identified, 
while some of the smallest were not; furthermore, we 
noticed still masking effects, since also "correct" 
observations were labeled as outliers. It is also difficult to 
highlight differences among the estimators (at a first look, 
one could say rather they behaved quite the same way), 



since wrong or mlssmg identifications occurred to all of 
them. With large outliers on the contrary, the results are 
very satisfactory, since all errors were found; again, no 
apparent difference among the methods could be noticed. 
In DTM interpolation, with true observations, results are 
apparently better, because all the outliers introduced were 
found, by all methods. Some other observations were 
labeled as erroneous, but in this case we cannot say 
whether masking occurred or not. 
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