Hapiing on the Analytical Stereoplotter Using SAR Inges

Zhu Cai-Ying, Cai Wang-Sen

Dept. of Photogranitry \& Remote Sensing. Zhengzhoa Institate of Surveying \& Mapping (ZISM)

ABSTRACT This paper analyses the apping characteristics of SAR iages, describes a kind of projection equations for the SAR isage, emphatically discusses the principle and the wethod of reconstracting a stereomodel of SAR stereoimages on APS-1 analytical stereoplotter. Fially, the result of the experiment using practical SAR image data is given.
[KEYWORDS] SAR, Free-parallax stereovodel, Analytical plot

1. Introduction

A Mapping Syster SARUS has been developed on the China-ade APS-1 analytical stereoplotter. The software packet SARMS has been proved practicable by some experiaents the thedar inages of GEMS radar system provided by china company of Aero - Remote -Sensing-Serving. While there were not aquigation data and base-to-height ratio (B / H) was less than 0.27 , only the control points could be ased as control conditions, the accuracy of location of sterromodel coald be ased to masure a planimetric ap of scale range fro $1: 50$, 00 to $1: 100$, 000 or a topographic ap of scale $1: 200$, 000 .

2. Mappping chracteristics of SAR iages

The SAR iunge is distance projection ieng which is different from traditional centre projection ones. They are diffreat in the projection equations and the accaracy of the projection equations. There is not inaer orientation ark in the SAR image and the SAR iege's error source is more complex than the centre projection image's. On account of above factor, the software packet of mapping using the sar ieages on analytical stereoplotter wist be designed again.
3. Projection equations

There are two projection equations for SAR iages:
(1) Range condition :

...... (for distance range)
$(X-X s) \times \not 22+(Y-Y s) \times k 2+(Z-Z s) \times k 2=\left(y \times M y+R_{0}\right) \times k 2$
....... (for slant range)
(2) Zero Boppler condition :
$X s^{\prime} \neq(X-X s)+Y s^{\prime} X(Y-Y S)+Z s^{\prime} \neq(Z-Z s)=0$
Where, in (1) and (2) :
X, Y, Z are point ground coordinates ;
$\mathrm{Xs}, \mathrm{Ys}, \mathrm{Zs}$ are ground coordinates of instantaneons sensor position. They are polynomils of flight time:
$X_{s}=X_{s o}+X s^{\prime} * T+X s^{\prime}{ }^{\prime} * T \times k 2+$

$Z s=Z s o+Z s^{\prime} \times T+Z s^{\prime \prime}$ '炏火2 $+\ldots \ldots$. $\mathrm{T}=\mathrm{Mx} \times \mathrm{x}+\mathrm{To}$ (3)
Where,
x is radar ieage coordinate in the flight direction; y is radar image coordinate in the range direction ;
Mx , My are scales denominator of x, y;
$\mathrm{R}_{0}=$ range delay;
$T_{0}=$ flight tive correspond to zero of image coordinates system;
$X_{s^{\prime}}, Y_{s^{\prime}}, Z s^{\prime}=$ velocity vector of flight ;
$X s^{\prime \prime}, Y_{s}{ }^{\prime \prime}, Z s^{\prime \prime}=$ acceleration vector of flight; $H=$ flight height ;
4. The principle and the ethod of reconstructing a SAR i ages stereowodel

In order to set ap free-parallax radar stereo nodel, new Real-Tiae-Loop progra was designed wich adapt to synthetic apertare radar. The new Loop progra has following fanctions:
(1) Real-Time function.

The ran time period of the new Loop prograt is less 20 so that the operator could follow the tracks of easurement arks．
（2）lage coordinates are corresponded to the ground coordinates each other．

Leading above equations into the nee Real－Tine－ Loop progra was very effective for setting a radar stereomodel．

When equation（3）was ased ia one order form，the radar i mage physcial coordinates were obtained as follows ；

$$
\begin{align*}
T= & {\left[X s^{\prime} *(X-X s o)+Y s^{\prime} *(Y-Y s 0)+Z s^{\prime} *(Z-Z s i)\right] / } \\
& \left(X s^{\prime} * * 2+Y s^{\prime} * * 2+Z s^{\prime} * * 2\right) \tag{4}\\
R= & \operatorname{SQRT}((X-X s) \times 火 2+(Y-Y s) * * 2+(Z-Z s) * * 2)
\end{align*}
$$

Then the radar ieages coordinates mere obtained with the known orienation parameters．

$$
\begin{align*}
& \mathrm{x}=(\mathrm{T}-\mathrm{T} 0) / \mathrm{Mx} \\
& y=\left(R-R_{0}\right) / M_{y} \quad \text { (for slant range) } \\
& y=\left(\text { SQRT }(\text { R×× } 2-H \times 22)-R_{0}\right) / M y \\
& \text { (for slant range) } \\
& \text { (for ground range) }
\end{align*}
$$

According to equation（4），（5），（6）and（7），the new Real Tiue－Loop prograe can translate the point ground coordinates into iage coordinates ，so while operator inpats the point groand coordinates X, Y, Z ， the inage coordinates x and y are calcalated autonatically，driving system of the analytical stereo plotter would drive the measurement marks to locate in the corresponiag position of the inages．
（3）Free－parallax ．
Using the priaciple of interpolation of waltilayer two order carved surface to correct reana parallaxes．

Because of the affection of image resolution， terrain types，seasor position and orbital paraeters， ground－control points，the wathematical concept of radar geometry，and the geometry of steromodel，the base－to－height ratio，there were still reain vertical parallaxes in every model．Those parallazes were analysed and were found that they showed soee systeatic natures．If the vertical parallax of model point was regarded as Z coordinate and the planetric coordinates as X, Y coordinates，then the sarface of model was a smoth and irregular curved surface．We adopted the method of interpolation of natilayer two order carved surface to describe the irregular curved surface．

The ultilayer two order carved surface had a form as follows：
$f(X Y)=Z=K X Q\left(K Y X_{1} Y_{1}\right)+K X Q\left(X Y X_{2} Y_{2}\right)+\ldots \ldots+K X Q\left(X Y Y_{n Y n}\right)$
（ 8 ）
where， $\mathrm{j}=1,2, \ldots \ldots$ ，
if the asount of the known vertical parallax points is ，then n must be less than ，according to equation（8），the equation can be listed as follows：

$$
\begin{equation*}
V=Q K-2 \tag{9}
\end{equation*}
$$

侽號，

$$
\begin{aligned}
& V=\left[\begin{array}{llll}
V_{1} & V_{2} & \ldots & V_{1}
\end{array}\right]^{T} \\
& Z=\left[\begin{array}{llll}
21 & 22 & \ldots & 7
\end{array}\right]^{\top} \\
& K=\left[\begin{array}{llll}
K 1 & K 2 \ldots & K_{n}
\end{array}\right]^{\top} \\
& Q=\left(\begin{array}{cccc}
Q 11 & Q_{12} & \ldots & Q_{1 \mathrm{~B}} \\
Q_{21} & Q_{22} & \ldots & Q_{2 \mathrm{~B}} \\
\cdot & & & \cdot \\
\cdot & & & \cdot \\
Q_{11} & Q_{12} & \ldots & Q_{\text {min }}
\end{array}\right]
\end{aligned}
$$

The solation of equation（9）with $L S M$ is ：

$$
\begin{equation*}
K=\left(Q^{\top} Q\right)^{-1}\left(Q^{\top} Z\right) \tag{10}
\end{equation*}
$$

A any point would obtain correction Zp ：

$$
\begin{equation*}
Z_{p}=\left[Q_{p 1} Q_{p 2} \ldots Q_{p n}\right] K \tag{11}
\end{equation*}
$$

When the nem Real－Tine－Loop progra is raming in the＂odel work＂way，if operator input the inner parameters，the exterior parameters，the point model coordinates，the scales of model and the corection parameters inte the common area of the Real－Time－ Loop，in the view systew of the APS－1 analytical stereoplotter，a free－patallas stereonodel of SAR inages would be seen clrealy．

5．The result of experiment

A SAR Mapping Systet SARMS has been designed，it consists of ：
－Real－Time－Loop progra
－Interior orientation progray
－Exterior orientation progra
－Contonring progra
－Other applying prograws

SARMS has been proved practicable by some experimets with the radar ieges of GEMS radar system provided by China conpany of Aero－Remote－ Sensing－Serving．The specifications of experiment i wage data is listed in Table 1 ：

iters	flight line	flight line 2	
\| image record	horizontal	horizontal	
\| form	distance record	distance record	
designed		10,000	
\| flying	10,000		
\| height			
Scandelay	126.6 us	244.0 us	
Scale in	1:108, 000	1:101, 8 80	
\| distance			
direction Mx\|			
scale in \|	1:100,000	1:100,000	
azimeth			
\|direction My			
\| distance	3 \%	3 .	
\| resolation			
azionth	3	3 1	
resolution			
elevation	900		
difference			
B/4 ratio	0.16		
radar stereo	stereo in the same side		
config			

The accaracy of the location of stereomedel listed in Tahle 2 and the results of accaracy is obtained by statistics of the the errors betwean the knowin ground coordinates and the readiag in the wodel.

Results of accuracy test
Tel. 2

$\text { points } \backslash \text { RNSE }$ nuber	$\underset{(\mathrm{mx}}{\ln }$	$\begin{aligned} & \text { y } \\ & \text { (臬) } \end{aligned}$	
control points			
g	13.8	16.2	13.2
target points			
72	26.7	23.1	33.1
known points			
31	23.7	21.8	28.7

伙 The known points iaclade the control points and the target points.

The topographic ap seale $1: 2008$, 000 is shown as fig. 1 , the altitade length of contour is 28 .

referbncr
[1] Shermas S. C. Wa, Franais J. Sohafer, Amie How-ington-Kraus: Mappiag Accuracy Using Side-Lookiag Radar lages on the Analytical Stereoplotter, Present paper at the 16 th ISPRS Congr, Comel. IlI, 1988.
[2] Raggam, J. : Radar Stereo Model Set - ap on the Analytical Plotter Kera DSR-1, Present paper at the 15th ISPRS Congr. Conw. III, 1934.

