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ABSTRACT: 

We present some Monte Carlo results about the spatial distribution of the Control Points used in the 
geocodification of satellite images in Brazilian Amazonas. 

rhis information aims at stablishing criteria for the choice of number, quality and spatial distribution of 
Control Points (CPs) to be used in image matching techiques. 

Some theory about the statistical analysis of spatial point patterns is recalled, as an aid to a future 
formulation of this problem in terms of an experiments design problem. 
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1. INTRODUCTION 

The geometric accuracy of remote sensing satellite 
images plays a central role in most applications 
(as in Cartography, to name one), so these images 
are geometrically corrected before being used. 

Moreover, when digital images are used, their 
geometric accuracy is improved by the registration 
with respect to a map. 

In this image processing techique, clearly 
identifiable points (the "Control Points", or CPs) 
are sought in both the image and the map. Taking 
the second as a reference, and using the CPs, it is 
possible to estimate the -mathematical- mapping 
that corrects the digital image. Usually, a 
polinomial transformation is used. and the degree 
of the polinomial determines the minimum number of 
CPs needed to estimate its coefficients 
(Mascarenhas & Velasco, 1989). 

The registration accuracy between an image and a 
map depends on the location accuracy and on the 
number and the spatial distribution of the CPs used 
to perform it (Ford & Zanelli. 1985). The same 
happens with the attainable precision in the 
evaluation of the geometric accuracy of an image. 

Suppose that is possible to have CPs with 
arbitrarily high location accuracy, either to 
evaluate the geometric precision of an image or to 
accomplish the registration between an image and a 
map. Precision will be highly dependent on the 
number and spatial distribution of the CPs. 
Concerning to the number, it is possible to say 
that the higher the quantity of CPs, the higher the 
achieved precision (Ford & Zanelli, 1985; Orti, 
1981). 

Relating to the spatial distribution, a 
specification of the adopted criterion has not been 
detailed reported in the literature, but in general 
is considered that a uniform distribution of 
evenly spaced- CPs is the most appropriate choice 
(Ford & Zanelli, 1985). However, it usually is 
difficult to find CPs distributed in this way; 
sometimes the CPs are grouped in a small part of 
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the area under study or a very small number of 
dependable CPs is available. Obviously, all CPs 
must be used when the last situation occurs; in 
this case it is not possible to make a choice among 
them. 

But suppose the case of having plenty of CPs of 
good location accuracy. In this situation the 
following question appears: Which should be 
selected in order to obtain a spatial distribution 
that makes possible the achievement of an accurate 
geometric correction? Or, if the registration has 
already been made with no good accuracy: How to 
know if that is due to a inadequate spatial 
distribution of the CPs used to perform it? And 
when this is the reason: Is there some manner to 
detect those CPs whose locations damage the quality 
of the geometric transformation? Note that the same 
questions are valid when the evaluation of the 
geometric quality of an image has to be assessed. 

The aim of this paper is proposing some partial 
answers to these questions, providing a tool for 
either doing an adequate selection -concerning to 
the spatial distribution- of CPs to be used for 
performing an image-map registration or for 
evaluating the geometric accuracy of an image. This 
procedure allows the identification of CPs whose 
locations damage the quality of the spatial 
distribution of the set of points; so, their 
substitution for other CPs located in more 
appropriate places is made possible. The proposed 
metodology consists in selecting CPs whose plane 
coordinates are known with precision, and then in 
submitting these points to one or more spatial 
distribution tests. For the evaluation of this 
procedure, different registered images of brazilian 
legal Amazonas were taken and their respective sets 
of CPs were submitted to the tests above. The 
amazonian region was chosen for this study because 
it has special caracteristics that make hard the 
finding of CPs spatially well distributed. To 
compare results, the same kind of analysis was 
carried out using a registered image of the 
Buritama region, Sao Paulo State, where the 
relative abundance of CPs allowed the selection of 
those whose spatial distribution is nearer to the 
optimal model. 



2. DEFINITIONS AND NOTATION 

Since we are interested in saying something 
(mathematically) about the spatial distribution of 
CPs. we shall introduce some basic ideas and 
notation. 

Our main tool will be the comparison of the spatial 
distribution of the (say "nil) given CPs with 
respect to the uniform distribution of (say "n", 
again) points in the unit square (that we will 
write "S"); whenever data do not come in this 
scale, the transformation is obvious. 

The n CPs are said to be uniformly distributed in S 
iff their coordinates (xl' y1)' •••• (x, y) are 
the outcomes of 2n independent ~dent~cally 
distributed random variables with the uniform 
distribution in the [0,1] interval (the reader 
should notice that these are not n evenly spaced 
points). We will test the (empirical) distribution 
of this set of n coordinates, against the 
hypothesis of uniform distribution over S, using 
simulation. The use of simulation is needed since 
there are no theoretical results about the tests we 
shall use. 

Let d. be the distance of the point j to its 
neare~t neighbour; let d"=(d1, ••• ,d ), with m=n(n-
1)/2 be the n(n-1)/2 dimenslonal ~ector of the 
nearest neighbour distances among the n points. 
Denote d' the vector d" with its elements sorted 
in ascending order, and d the vector formed by the 
first n elements of d l

• We will compare the values 
of the n components of d with other values obtained 
by the sampling from the hypothesized distribution; 
this sampling is repeated a fixed number (M) of 
times ("iterations"), usually with M=19 or M=99. 

3. THE ALGORITHM 

The algorithm is as follows (Diggle, 1983): 

1) For j = 1 to n do 
min (j) 2 
max (j) ° 
mean (j) ° 

2) For k = 1 to M do 

2.1) Observe u
1

, ••• u ; v
1 

••• v : 2n independent 
outcomes of a r~ndom va¥iable uniformly 
distributed over [0,1]. 

2.2) Form the coordinates set for the current 
iteration (u

1
,v

1
), ••• , (un'v

n
). 

2.3) Calculate e = (e
1

, ••• , e ), where e is a 
n-dimensional vector de¥ined in the same 
manner as d above, for the current set of 
coordinates. 

2.4) For j = 1 to n do 
mean (j) = mean (j) 
if e. <: min (j ) 

lJt min(j) 
if e. >max(j) 

lJt max(j) 

3) For j = 1 to n do 
mean(j) = mean(j)/n 

4) Draw the plot 

then 
= e. 
the.J 

e. 
J 

+ 

mean(j), min(j), d., max(j) 
for every j between 1 and n. 

e. 
J 
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5) End 

4. INTERPRETATION OF RESULTS 

For every j, min(j) and max(j) form an approximated 
confidence interval of level M/(M+1) for d. 
obtained by simulation. mean(j) gives a (rough~ 
though useful) approximation of the mathematical 
expectation of the random variable E., whose 
outcomes e. were observed. The plot Jshows a 
confidence Jnvelope for the input data: if the data 
lie in the region above the minima and below the 
maxima we accept the hypothesis of uniform 
distribution over the sets. If the data lie in the 
region below the mlnlma, there is evidence 
favouring an "attraction" model for the location of 
CPs, i.e. they are more spatially clustered than 
independent (uniformly distributed) points. If the 
data lie in the region above the maxima, there is 
evidence favouring a "repulsion" model for the 
location of CPs., i.e. they tended to be further 
appart from each other than independent (uniformly 
distributed) points. 

5. METHODOLOGY 

The algorithm above is very simple to implement, 
and we feel that it might be helpful in the 
diagnostic and identification of problems regarding 
the spatial distribution of CPs. (Listings in the 
C++ programming language available from the authors 
upon request). 

Given n, the number of CPs, and once obtained the 
values mean(j), min(j), max(j) for every j, these 
envelopes could be understood as frontiers between 
the following regions: (i) the "acceptable" 
([min(j) • max(j)]) ; (ii) the "optimal" ([f 
2',max(j») and (iii) the "unacceptable" 
« 0, min (j ) ) ) • 

Regions (i), (ii) and (iii) correspond to the 
labels we would attach to the data sets whose 
vectors d fall into, with respect to their spatial 
quality. 

6. ANALYSIS OF THREE DATA SETS 

In the following we used M=19 obtaining. thus, 
aproximated 95% confidence intervals for d .• 

J 

The first data set (WI) was used in the 
registration of an image of Tucurui, Para State, 
Brazil. The whole image matching (including the 
evaluation of its accuracy) involved seven CPs 
whose spatial distribution exhibits a strong 
tendency to the "attraction", as previously defined 
(see Fig. 1a). The plot 1b shows that most of these 
points are located in region (iii), considered as 
"unacceptable". 

The second data set (W2) comes from the area of 
Serra do Roncador, Mato Grosso State, Brazil. Ten 
CPs were used in this case, where an "atraction" 
model is also suited to describe their spatial 
distribution (weaker, though, than the WI set; see 
Fig. 2a). The plot 2b shows that most of the points 
fall into region (i), considered as "acceptable", 
with a few shifted towards region (iii). 

The WI and W2 data sets correspond to regions in 
the brazilian legal Amazonas, and are typical cases 
of the conditions found in that area: few or no 
features like crossroads, bridges, etc. preclude 



the selection of enough CPs with good spatial 
distribution, being the minimal qual ity criterion 
that all points belong to region (i). 

The W3 data set corresponds to a Buritama (Sao 
Paulo State, Brazil) image. In this case the 
selection of the nine CPs was easier, rendering an 
spatial distribution better fitted by a "repulsive" 
model (Fig. 3a). The plot 3b shows that the spatial 
quality of these points is mostly "optimal", or 
"acceptable". 

Thus. the presented methodology allowed the 
assessing of the quality of the spatial 
distribution of these three data sets. Also, it 
suggests simple options to improve these qualities. 

APPENDIX: COMPUTATIONAL INFORMATION 

Hardware: SUN SPARK 1 STATION. 
Language/Compiler: SUN C++ Version 2.0. 
Special functions used: qsort provided in stdlib.h. 
Pseudorandom number generator: g9827 (Bustos, 
1990). 
CPU time used: about one second for every presented 
result. 
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95% Confidence Envelope for W I data 
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95% Confidence Envelope for W2 data 
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95% Confidence Envelope for W 3 data 
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