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Real world knowledge is usually vague and ambiguous and human beings generally think and communicate in fuzzy non-precise 
terms. The fuzzy sets theory introduced by Zadeh in 1965 forms the mathematical and practical basis for the representation and 
manipulation of such fuzzy information. 

Conventional databases, however, must contain precisely defined facts or data because database query languages such as the SQL 
impose strict formats for data entry and query. Conventional query languages do not permit ambiguous or non-precise queries. 

This paper presents a new method for the representation of fuzzy numerical quantities in a way favorable to the storage and retrieval of 
fuzzy values or vague expressions in a database. 
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1. INTRODUCTION. 

Conventional databases must contain precisely defmed facts and 
numeric values because database query languages such as the 
SQL impose strict formats for data entry and query. 
Conventional query languages do not permit ambiguous or 
non-precise queries. Real world data and knowledge is usually 
vague and ambiguous and human beings generally think 
vaguely and communicate in fuzzy non-precise terms (Zadeh et 
aI, 1975; Zadeh, 1989). However vague or fuzzy real world 
knowledge does not lend itself to easy manipulation by 
conventional database management systems. 

The fuzzy sets theory introduced by Zadeh in 1965 (Zadeh et a1. 
1975; Kandel, 1986) forms the mathematical and practical basis 
for the representation and manipulation of fuzzy information. 

1.1 Representation of Vague Information by Fuzzy 
Sets. 

Consider the statement that the distance from the Earth to the 
Sun is "very great", or the statement "100 is much greater than 
5". Using Zadeh's fuzzy sets theory, the terms "great" and 
"greater" may be regarded as juzzy sets and can therefore be 
defined in terms of fuzzy membership functions. Once these 
fuzzy sets have been defined the modifiers, "very" and "much", 
can be applied to transform them into the corresponding fuzzy 
sets very great and much greater respectively(see Zadeh et a1. 
1975; Kaufmann and Gupta, 1988; Shmucker, 1984; Kandel, 
1986; Zadeh, 1989). 

Typically the fuzzy set great will be represented by ajuzzy 
membership junction /lgreat(x): X->[O,IJ and greater can be 
represented by the membership function 
/lgreater than(x): X->[O,IJ. Generally /lAx} denotes the 
membership function of the elements of the universe X in the 
fuzzy set A such that the elements, x, take value in the 
universe X. The membership values, /lA{X) on the other hand 
take value in the evaluation space of the fuzzy set, generally 
considered to be the continuous interval [O,IJ (Zadeh et aI, 
1975; Dubois and Prade, 1980; Kandel, 1986). The 
membership value,/lA(x), is a real number between ° and 1 
inclusive, expressing the strength of the membership of an 
element, x, of the universe X in a the fuzzy set A. 

Practical specification of a membership function involves the 
assignment of the parameters of some standard membership 
junction, such as the S-function and 1t-function (Dubois and 
Prade 1980; Kandel 1986; Klir and Folger 1988). Important 
characteristic points of standard membership functions include; 
the cut-out points (points with zero membership value), the 
peak point (where the membership function attains the 
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maximum value of 1) and the turnover points (points where the 
membership function has the value of 0.5). Dubois and Prade 
(1988, 1990) suggest that for most applications simpler piece
wise linear membership functions such as triangular functions 
and trapezoidal functions provide satisfactory results. 

The method proposed in this paper differs from the standard 
approach in that, fuzzy expressions such as "greater than five" 
are characterized by geometric partitions induced by them in the 
real numbers domain. The paper begins by defining the concept 
of fuzzy geometric partitions and then goes on to show how it 
can be applied to the problem of storing and querying fuzzy 
database objects. For the purposes of fuzzy database retrieval, 
the universe of discourse is some search space X containing 
crisp and fuzzy objects. To facilitate database retrieval each 
fuzzy query and fuzzy database object can be associated with a 
fuzzy partition defined over the search space. The condition for 
a successful search is obtained when the partition induced by 
the query object contains the partition generated by the "fuzzy 
database object. 

The paper also looks at the potential use of the fuzzy 
geometrical partitions method in the construction of membership 
functions, which may then be used to represent fuzzy numerical 
sets in the usual way(Zadeh ,1975, 1989). 

2. THE CONCEPT OF FUZZY GEOMETRIC 
PARTITIONS. 

The concept of fuzzy partitions is not new, what is new is, 
however, the manner in which this concept is used to 
characterize and represent fuzzy valued expressions or juzzy 
numbers. An earlier use of the term radial partition to 
characterize fuzzy sets can be found in Kaufmann (1975). 
Kaufmann shows that a fuzzy set, M, induced by the binary 
relation y > > x , for y = kx, k > 1, in the two dimensional real 
space constitutes a radial partition of the real numbers space. 

In Dowsing et al.(1986) the concept of the diagonal set of the 
universe of discourse, is used to define and characterize the 
equality operator. This research extends and generalizes the 
concept of the diagonal set generated by the equality operator, 
defined in Dowsing et a1.(1986), and uses it to define general 
fuzzy comparison operators or fuzzy binary relations, R(x,y), 
in terms of the radial sets or partitions induced by them in a two 
dimensional real space X. 

Intuitively the operators "equal", "greater", and "less" define 
basic geometric partitions of the two dimensional space (Figure 
1). The partition generated by the equality operator, =, is called 
the diagonal set (Dowsing et aI, 1986) or diagonal partition. By 
extension the partition corresponding to the operator greater (», 
is called the upper diagonal partition, while the partition of the 



operator less «) is called the lower diagonal partition (Figure 
1). 

U sing this scheme partitions corresponding to the fuzzy 
modifications of the operators equal, greater, and less, may be 
assigned in the search space as shown in Figure 2. This is 
possible because, by common sense reasoning, the fuzzy 
expression about modifies the expression equal to by 
generating a narrow band around the value x. The width of the 
band or size of the partition generated also depends on the 
magnitude of the crisp value x. By common sense the partition 
generated by "about x", "more or less x" , and "roughly equal 
to x" are radial partitions stretching over both sides of the line of 
equality (Figure 2). Naturally the partition induced by "roughly 
equal to x" must be somewhat wider than those generated by 
"more or less x", or "about x". 

When the fuzzy modifier much is applied to the operators great 
and less it induces partitions which exclude all values close to 
the line of equality. It is logical, therefore, to place the lower 
boundary of the partition of much greater than x as far away as 
possible in the upper diagonal space. This will create a radial 
partition enclosing a "very wide" angle with the line of equality. 
Similarly the partition for much less than x encloses a "very 
wide" angle with the line of equality in the lower diagonal 
space. Note that the partitions generated by greater than x and 
less than x are supersets of the partitions induced by much 
greater than x and much less than x respectively. 

The fuzzy expressions slightly greater than x and slightly less 
than x give rise to asymmetric narrow, radial partitions "very 
close" to the line of eqUality. Naturally, the partition induced by 
slightly less than x lies in the lower diagonal space. The 
partition induced by slightly more than x lies in the upper 
diagonal space, very close to the line of equality. 

The common sense interpretation of the fuzzy expressions 
introduced above, must now be defined mathematically, in 
order to form the basis for the proposed fuzzy geometric 
partitions based representation of fuzzy objects and comparison 
of fuzzy database objects for retrieval purposes. 

2.1 Specification of the Fuzzy Partitions Induced 
by Fuzzy Restrictions. 

Fuzzy expressions, such as about x and more or less x where 
x is a number, are said to constitute elastic constraints on the 
set of admissible real numbers (Dubois and Prade, 1980, 
Kandel, 1986). An arbitrary real number x which satisfies the 
elastic constraint is said to be a generic value of the fuzzy 
expression (Kandel, 1986; Dubois and Prade, 1980). 

The term generic value is used, in this study, to characterize 
crisp values lying within a vague interval or the fuzzy partition 
associated with a fuzzy number or fuzzy restriction. The basic 
idea upon which the concept of fuzzy geometric partitions is 
founded, is the simple, intuitive, idea that in common sense 
reasoning a vague expression, such as about 5, invokes a 
mental band of uncertain but narrow width around the crisp 
number 5 as explained in the previous section. The main 
assumption is that the human mind realizes this vague interval 
by a process in which values picked out from the domain of real 
numbers are subconsciously compared with the crisp value 5 
and rejected if they differ "too much" from it. In this respect the 
vague expression, about 5, is equivalent to the generic binary 
relation, about(x, 5), where x is an arbitrary number which 
mayor may not be an acceptable member of the vague set about 
5, depending on its "distance" from the crisp value 5 (see 
Figures 2 and 6). 

Let the collection of the fuzzy restrictions: equal to, greater than, 
less than, much greater than, much less than, slightly greater 
than, slightly less than, about, more or less, roughly equal to, 
be denoted by PRED. 

U sing the idea of the diagonal subset generated by the equality 
operator in Dowsing et al. (1986), the definition of the equality 
operator can be extended and generalized to a general 
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Figure 1: Basic partitions of the search space. 
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Figure 2: Partitions induced by some common 
fuzzy expressions. 

comparison operator R E PRED. Let the partition induced by 
the general fuzzy comparison operator, R, in a two dimensional 
search space be denoted by PR. The generalized extension of 
the definition of equality operator (Dowsings et aI., 1986) is as 
follows: 

For an interpretation I, with the universe X, the set RJ on 
which R is to be true must be a radial or sectoral subset: 

{(x,y) I x E X, Y E X, x R y} of X x X 

Based on this generalized definition, individual members of the 
PRED set can now be defined. If we let R = much greater than 
we have: 

much greater thanJ = {(x,y) I x E X, Y E X, X » y} for all 

(x,y) E X x X. (1) 



similarly for R = much less than we have: 

much less than I = {(x,y) I x E X, Y E X, x« y} for all 

~~EXXX W 

where, » and « have the usual' meaning, much greater than, 
and much less than, respectively. 

Definitions of all the relations in the PRED set can be produced 
by a similar process. For practical purposes it is instructive to 
represent the partitions in Eqs. (1) and (2) geometrically. This is 
achieved by transforming the defmitions in Eqs. (1) and (2) into 
their polar counterpart. Figure 3 defines the important 
geometrical parameters needed for this. Thus referring to Figure 
3, if the partition generated by the general comparison operator, 
R, is denoted by PR it can be defined as: 

PR = {[au,a,] I au E [0, 1t/2], (XI E [0, 1t/2], al ~ au} (3) 

Now substituting the operator equal, for R, in Eq. (3) we get 
the following definition for the equality operator (Eq. 4): 

P= = lim { [au,al] } = [1t/4, 1t/4] (4) 

a u-71t/4,al-71t/4 

The equality of the upper and lower bounds in Eq. (4) means 
that the equality operator partitions the search space diagonally. 
This definition is therefore equivalent to the one given in 
Dowsing et al(1986). The partitions induced by the operators 
greater and less are defmed by Eqs. (5) and (6) below. 

(5) 

(6) 

where 1t/4- and 1t/4+ mean infinitesimally smaller than, and 
greater than, respectively. 

The above strategy can be used to define the partitions 
corresponding to the fuzzy restrictions "much greater than" and 
"much less than" as given in Eqs. (7) and (8) below. 

P«= 

lim 

(Xu-70, 

al-71t/4 - VERYWIDE' 

lim 

(Xu-71t/4 + VERYWIDE', 

al-71t/2 

(7) 

(8) 
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GG: x = Xgg = x/tan(tan(1tt/4 - ai) for much more than(x) 
E: y = x = x, for equal to(x) 
LL: x = Xl = x/tan(m/4 + aj) for much less than (x) 
Ou,OI: 

Xu = x := X /cos(m/4)cos(m/4 - ai), 

Xl = x = x/cos(1tt/4)cos(1tt/4 + aj), for all other cases. 

Figure 3: Geometrical parameters of the partitions 
induced by fuzzy expressions. 

In Eqs. (7) and (8) the terms WIDE, VERYWIDE, and others 
listed in Table 1, represent a fuzzy constant whose value may be 
subjectively assigned to reflect individual conception of the 
vague expressions "verywide", "wide", etc. They may be 
interpreted as generic band width of the fuzzy intervals 
associated with the fuzzy expressions. Based on these 
parameters, generic band widths associated with all fuzzy 
expressions in PRED can be assigned as shown in Table 2. 

When assigning values to the fuzzy constants in Tables 1 and 2 
two important criteria must be considered: 

1. It is important for the generated partitions to be 
compatible with common sense in accordance with the 
criteria for suitable characteristics of membership functions 
(Magrez and Smets, 1989). 

2. The usefulness of fuzzy sets in modelling fuzzy 
concepts, class, or linguistic variables depends on the 
appropriateness of the selected membership 
functions(Kandel, 1986). 

Because in this experiment membership functions are 
constructed from subjectively assigned partitions, the second 
criteria will be used to test the validity of the assigned partitions. 
Accordingly the partitions assigned to fuzzy variables will be 
deemed proper if membership functions constructed from them 
are similar to or comparable with those assigned by 
conventional fuzzy sets methods. 



3. COMPUTATION OF FUZZY GENERIC V ALVES AND 
CONSTRUCTION OF MEMBERSHIP FUNCTIONS. 

When appropriately specified, fuzzy geometric partitions 
provide a means for performing direct comparison of fuzzy 
objects for data base search purposes. Alternatively fuzzy 
membership functions may be constructed from the assigned 
partitions and used to compare fuzzy objects based on existing 
theories of fuzzy set inclusion, equality and composition of 
fuzzy sets as outlined in Zadeh et al.(1975); Dubois and Prade 
(1980); Kandel (1986); Dubois and Prade (1988); Klir and 
Folger (1988); and Zadeh (1979, 1989);. 

In section 2.1 the vague expression about 5 was said to be 
equivalent to a binary fuzzy relation about( x, 5) such that x is 
a generic value satisfying the fuzzy restriction. Based on this the 
concept of the generic value of a fuzzy number may be defined 
as follows: 

Let R be any fuzzy predicate in PRED, then the unary fuzzy 
expression R(x) where x eX, is said to induce a generic 
value x eX such that the expression, x = R(x), or 
equal(x, R(x)), evaluated over the universe of discourse is 
true. 

U sing this definition the fuzzy restriction greater than 5 has a 
corresponding binary fuzzy relation greater _thane x, 5) where x 
is a generic value satisfying the fuzzy restriction. 

To characterize generic values in a mathematically meaningful 
way, tentative values for the parameters (Xi and (Xj defined in 

Figure 3 are given in Table 2. The angular parameters (Xi and (Xj 
represent the band width of left and right tailed fuzzy 
sets(Dubois and Prade, 1980) respectively. For symmetric 
fuzzy sets, (Xi and (Xj represent the left and right half-band 
widths. The term band width is used in the same sense as it is 
used to characterize standard membership functions(Kandel, 
1986). 

Notice that in Table 2 the parameters (Xi and (Xj are assigned 
values by logarithmically weighting the fuzzy constants defined 
in Table 1. This is necessary to preserve the fact that perception 
of changes in numerical magnitudes vary as the difference 
between the numbers involved change from very small to very 
large. It is intuitive to use logarithmic weighting since 
logarithmic functions are also used in modelling image 
intensities in natural vision, photography and image processing 
to reflect the human physiological response to increasing light 
stimulus (Land et al, 1989). 

Based on the. values in Table 2, functions for computing 
arbitrary generic values for the fuzzy expressions in the PRED 
set can be derived. These functions are summarized in Table 3. 

3.1 Comparison of Fuzzy Objects Using Generic 
Values. 

The equations required for computing upper and lower 
bounding generic values for all the fuzzy predicates in the 
PRED set are summarized in Table 3. Generic values computed 
by these equations can be used to facilitate direct comparison of 
fuzzy objects for the purposes of database searching. For 
example the query object more or less x can be interpreted as a 
request to retrieve all database objects satisfying the elastic 
constraint more_or _less(y,x). Valid generic objects y must 
therefore have values lying close to the crisp value x. This 
condition may be expressed as 

(9) 

where Xu and XI are generic values corresponding to the upper 
and lower bounds of the partition induced by the fuzzy 
restriction more _or _less(x). The values of Xu and Xi can be 
computed from Eqs. (10) and (11) respectively, where the term 
CLOSE' is as defined in Table 2. 

Table 1: DEFINmON OF THE FUZZY CONSTANTS DETERMINING THE BAND 
WIDTH OF THE FUZZY PATITIONS. 

LABEL VERYWIDE WIDE CLOSEl CWSE VERYCWSE 

GENERIC WIDTII 1[/3 1[/6 1[/12 1[124 1[/48 

Table 2: FORMULAE FOR COMPUTING THE GENERIC BAND WIDTH OF THE 
PARTITIONS. 

Fuzzy Predicate 

much~atecthan(x) 

much_less_than(x) 
slightly _more_than(x) 
slightly _les s_than (x) 
more_oc1ess(x) 

about(x) 

roughly(x) 

Left and Right Tails: 

WIDE+ VERYCLOSE/( 4+log(x» 

WIDE+VERYCLOSE/(4+10g(x) 
3*VERYCLOSE/(1 +0.510g(x») 
3*VERYCLOSE/(1 +0. 510g(x» 
5*CLOSE1I(8+10g(x» if x<=5 
CLOSEl/(2+10g(x» if x<=10 
CLOSEl/(3+10g(x» if x> 10 

4*CLOSE/(3+310g(x» ifx<=5 
4*CLOSE/(6+310g(x» if x<=l0 
4*CLOSE/(9+310g(x» if x> 10 

CLOSEl/(l +log(x) if x <= 5 
CLOSEl/(2+log(x» if x <=10 
CLOSEl/(3+10g(x» if x >10 
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Symbolic Value 

VERYWIDE' 

VERYWIDE' 
VERYCLOSE' 
VERYCLOSE' 

CLOSEl' 

CLOSE' 

CLOSE" 



The meaning of the trigonometric expressions appearing in Eqs. 
(10) and (11) is obvious from Figure 3. The condition in Eq. 
(9) may now be used by the query processor for the 
approximate selection of database objects which satisfy the 
fuzzy query. 

Xu ~ COSX(:f) cos (:f - CLOSE') (10) 

(11) 

Thus by means of the concept of fuzzy partitions and generic 
values the original fuzzy query is transformed into an interval 
comparison problem in which the interval bounds correspond to 
the cut-out points, peak points, turnover points, or any other 
desirable characteristic points of the membership function of the 
fuzzy object. It must however be noted that manipulation of 
fuzzy numeric data by interval arithmetic can only be tolerated 
for low accuracy requirements (Kandel, 1986, Klir and Folger, 
1988). 

3.2 Construction of Fuzzy Membership Functions 
From Geometric Fuzzy Partitions. 

Construction of membership functions is a necessary step 
towards verification and validation of the assigned partitions in 
line with the second criteria in section 2.1. In addition the 
membership functions are useful in themselves, as theoretically 
well founded tools for representing and querying fuzzy 
knowledge(Schmucker, 1984; Dubois and Prade, 1988; 
Kandel, 1986). 

The construction of membership functions must be done subject 
to certain desirable characteristics of membership functions 
(Zadeh et al. 1975; Kandel, 1986; Klir and Folger, 1988): 

(i) The membership function must map the set of objects in 
the universe of discourse into the interval [0,1]. 

(ii) The membership function must satisfy necessary fuzzy 
set theoretic properties with respect to fuzzy union, 
intersection, complementation etc. 

Let R(x) represent a general fuzzy predicate or fuzzy comparison 

operator in the PRED set, where XE X is some crisp numeric 
value in the real numbers universe. If the generic value induced 
by R on x is denoted by x, and x is selected such that it is a 
bounding value, then it lies on the boundary of the partition 
generated by R in the universe of discourse. 

Denote the amount by which R "stretches" x by D. Then 
D = I x - x I represents the width of the partition generated by R 

in X x X. The set {x I x = R(x)}, for all XE X, defines the 
partition induced by R. Let y represent some crisp value (or the 
crisp generic value of a fuzzy number) in the search space. 
Denote the difference between y and x by d. Then by set 
membership definition (Klir and Folger, 1988), y is contained 
in the partition induced by R(x) if the condition(see Figure 4): 

d=ly-xl<D (12) 

is satisfied. This condition means that y falls within the 
"stretch" of R(x). 

To provide a fuzzy set theoretic basis for the comparison of 
fuzzy values, membership functions for the general fuzzy 
restriction, R(x), may be constructed by the following 
procedure (Figure 4): 

1. Set the width D of the partition generated by R(x) on the 
v-axis (horizontal axis) as shown in Figure 4. 

2. Draw a line of unit length along the u-axis(vertical axis). 
3. Link the end of the unit line with point D on the v-axis. 
4. Plot the distance d, of y from x, along the v-axis. 
5. Mirror project d perpendicularly on to the u-axis and 

denote its image by IlR' 
6. The distance, IlR of the projection point is proportional 

to the strength or'the membership of Xl in the fuzzy set 
represented by R{x). It may therefore be regarded as a 
fIrst approximation to its fuzzy membership value. 

7. Letting y cover the range of all values in X modify IlR 
by applying intensifIcation, dilation, normalization, 
concentration (Schmucker, 1984; Kandel, 1986), or any 
other fuzzy set theoretic transformation function, F, to 
arrive at a suitable shape of the membership function. 

From Figure 4 an approximate formula for computing the fuzzy 
membership value is obtained(Eq. 13). 

IlR =.d.. 
D (13) 

To enforce the condition that fuzzy membership values must be 
in the range [0,1] Eq.(13) is rewritten as 

if y:t R(x) \ 

if y = R(x) J 
(14) 

Table 3: COMPUTATION OF GENERIC V ALVES FROM GENERIC BAND 
WIDTH. 

Fuzzy Predicate 

much~eatecthan(x) 

much_less_than(x) 

slightly_more_than(x) 

slightly _less_than(x) 

more_ocless(x) 

about(x) 
roughly _equal_to(x) 

more_than(x) 

less_than(x) 

Generic Value Equation 

x" = x/tan(pi/4 - VERYWIDE') 

x" = x/tan(pi/4 + VERYWIDE') 

x" = x/cos(pi/4)cos(pi/4 - VERYCLOSE') 

x" = x/cos(pi/4)cos(pi/4 + VERYCLOSE') 

x" = x/cos(Pi/4 +- CLOSEl') 

x" = x/cos(pi/4 +- CLOSE') 

x" = x/cos(pi/4 +- CLOSE") 

x" = x + D; D > ° real number 

x" = x + D; D < ° real number 
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where F is some appropriate function. 

Practical membership functions for the fuzzy constraints in the 
PRED set can now be obtained by substituting for D and d 
based on the equations of the generic values defined in Table 3. 
For example to get the membership function for the fuzzy 
expression "much more than x", the width of the partition 
induced by the fuzzy restriction is computed from 

D = abs(x - x) (15) 

where x is a generic value lying on the boundary of the partition 
induced by much_more _than(x), and its value can be computed 
using the equations in Table 3 as 

x x 
tan (~ - VERYWIDE') 

From Table 3 VERYWIDE' is defined as 

VERYWIDE' = WIDE + VERYCLQSE 
(4 + log x) 

and after appropriate substitutions and simplification we get 

x x 

tan (1t .K{ 8 + 1 )) "4 - 48\ 4 + log x 

(16) 

(17) 

(18) 

The problem of determining the compatibility between y and 
much_more _than(x) is equivalent to the problem of finding the 
membership value of y in the fuzzy set induced by the fuzzy 
restriction "much more than" on x. From Eq. (14) an 
approximate value of the membership of y in the fuzzy relation 
R(x) is given by Eq. (19). 

IlR(Y) = abs(y - x) 
abs(x - x) 

(19) 

Assuming a square compatibility function for both much more 
_than(x) and much_less_than(x) their membership functions 
are given by Eqs. (20) and (21). The plot of the membership 
function for much _less_than (5) is shown in Figure 5. 

f 0, 

Il»x (y) = \ (~ ~ ~ y , 
1, 

if x ~ x 

if x > y> x 

else where 

(20) 

f(~: ~J' 
Il«x (y) = \ 0, 

1, 

ifx<y<x 

ify~ x 

elsewhere 

(21) 
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d=y-x 

D = x - x; x = R(x) 

Figure 4: Construction of membership function 
from fuzzy partitions. 

After substituting the expression for x in Eq. (20) using Eq. 
(16) we get 

0, if x ~ x 

Il»x (y) = 
( 

y-x )2 x ,if x> y > x 
-x 

tanK._1t8+ 1 (4 fs( 4 + log x)) 

1, else where 

(22) 

as the membership function for much_more_than(x). 

U sing this approach membership functions can be constructed 
for all the fuzzy predicates in the PRED set. A Graphical 
representation of the fuzzy membership functions for about( 5), 
more_or _less(5), and roughly equal to (5 ) are shown in 
Figures 7 to 8. It is clear by looking at the shapes of the 
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DATABASE VALUE 

Figure 5: Membership Function for much less than 5 
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ABOUT M.FUN,1 about 5 ... (1) 

ABOUT M.FUN,2 about 5 ... (2) 

Figure 6: Membership Function for about 5; 
Two interpretations. 
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Figure 8: Membership function for roughly equal to 5; 
Two interpretations. 

> OR < M.FUN,2 more or less 5 ... (2) CREATE GENERIC V AWE 

EXTRACf FUlZY VALUE 

CREATE GENERIC V AWE 

Figure 7: Membership function for more or less 5; 
Two interpretations. 

Figure 9: Design of the FUZZ subsystem for processing fuzzy query. 

membership functions that the fuzzy partltIOns based 
representation of fuzzy numeric expressions produces 
membership functions similar to those produced by using 
standard membership functions. For comparison purposes 
reference can be made to Zadeh et al. (1975), Mizumoto and 
Tanaka (1975), Dubois and Prade (1980), Chen (1985), Kandel 
(1986) and Dubois and Prade (1988). 

3.3 Fuzzy Database Query Using Generic Values 
Derived From the Fuzzy Geometric Partitions. 

Fuzzy database retrieval requires the solution of two different 
problems. The first problem arises when a vague, or fuzzy, 
query is placed to a database containing precise, well defined, 
data or facts. The second problem concerns retrieval of precise 
queries placed to a fuzzy database. The concept of the generic 
value of a fuzzy numeric expression, introduced at the 
beginning of section 3, has been used to design a fuzzy 
comparison operator capable of solving the two problems, and 
therefore, capable of fuzzy database retrieval. 

The design of the operator, called FUZZ(Mtalo, 1990), is 
shown in Figure 9. Using this operator both the fuzzy query 
and fuzzy database object are parsed into atomic fuzzy 
components which are then transformed into generic values for 
database matching purposes. If the query and database object 
currently being examined are both non-fuzzy the operator uses a 
simple database matching procedure, otherwise the operator 
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generates and compares upper and lower bounding generic 
values to determine the matching object(s). 

To ensure that borderline cases are not rejected offhand, the 
crisp interval represented by the upper and lower bounding 
generic values is "fuzzified" by allowing values slightly greater 
or slightly less than the computed generic values into the set of 
possible database objects. This allows queries not precisely 
matching the specifications of database objects to be processed. 

The retrieval of fuzzy queries based on the concept of generic 
values must be regarded as an approximate method since it 
resorts to interval comparison. However vague user queries 
reflect a degree of uncertainty about what the user wishes to 
retrieve. Similarly fuzzy data reflects uncertainty about the 
information stored in the database. Under these circumstances 
the proposed method provides a simple and convenient way to 
represent and manipulate the uncertainty inherent in vague 
queries and fuzzy database information. Where more accuracy 
in the representation of uncertainty is needed fuzzy operators, 
based on the fuzzy set theory, must be used as elucidated in 
Dubois and Prade (1988), Kandel (1986) and other literature. 



3.4 Fuzzy Database Query Using Membership 
Functions Based on the Fuzzy Geometrical 
Partitions. 

In order to show the usefulness of the constructed membership 
functions in fuzzy query processing the new method was tested 
on a simulated database to determine value of the complex query 
objects "much greater than 5 and much less than 40" (Figure 
10) and "slightly less than 5 or slightly more than 5 and 
roughly equal to 5" (Figure 11). 

It must be noted that these kinds of queries cannot, in general, 
be solved by conventional database management systems 
because they require the interpretation of the fuzzy expressions 
"much greater than 5", "much less than 5", "slightly less than 
5", "slightly more than 5", and "roughly equal to 5". However 
using a fuzzy query processor the membership functions for 
these fuzzy expressions can be constructed and used as the 
basis for selecting valid database objects. 
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Figure 10: Selection of database values for the fuzzy 
query much more than 5 and much less than 40 
based on non-zero membership values. 
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SU < M.FUN slightly less than 5 
ROUGHLY M.FUN,2 roughly equal to 5 

Figure 11: Fuzzy query selection for slightly less than 5 
or slightly more than and roughly equal to 5 using 
the intersection of the membership functions of the fuzzy 
query components. 

The selection of database objects satisfying complex fuzzy 
queries corresponds to the intersection of the fuzzy membership 
functions as shown graphically in Figures 10 and 11 for the 
fuzzy queries discussed above. In fuzzy sets literature the 
process of determining the (crisp) object satisfying the condition 
set out by the fuzzy sets intersection is referred to as 
defuzzification. One defuzzification strategy involves selection 
of the object corresponding to the centroid of the intersected 
region(s). 
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In General once the fuzzy membership functions are available 
standard fuzzy set theoretic operators can be used to solve the 
fuzzy query (see Kandel, 1986; Magrez and Smets, 1989; 
Zadeh, 1989). 

4. CONCLUDING REMARKS. 

A new method for representing and manipulating fuzzy 
information has been formulated and tested. It has been amply 
illustrated in the paper that this method differs substantially 
from the traditional approach of representing fuzzy linguistic 
variables. In particular this method makes it possible to define 
the meaning of fuzzy numerical restrictions in the domain of 
discourse by fuzzy geometric partitions of the search space. 

By means of geometric fuzzy partitions generic values of 
fuzzy numerical expressions can be constructed and used to 
facilitate comparison of fuzzy objects for database retrieval 
purposes. Alternatively it has been shown that geometric fuzzy 
partitions can form the basis for constructing reasonable 
membership functions for characterizing fuzzy numeric 
expressions. 

The usefulness of fuzzy membership functions generated from 
fuzzy geometric partitions in fuzzy query processing was 
illustrated for a model database. In addition a fuzzy comparison 
operator based on the fuzzy geometrical partitioning of the 
search space was designed and implemented in an experimental 
knowledge based system. 
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