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ABSTRACT 

With the rapidly evolving possibilities in computations and visualization as a consequence of tremendous changes in computer 
technology, the processing of geoinformation can be increasingly automated with adaptive procedures in varied applications. 
Selecting appropriate methodologies usually involves dealing with incomplete information while minimizing the necessary 
assumptions. One general approach which has proven successful in very different applications is using information theory. Practical 
applications of information theory in spectrum estimation, adaptive filter design and inverse problems will illustrate the potential for 
other similar applications. General conclusions and recommendations will be included. 

1. INTRODUCTION 

Fundamental changes are taking place in positioning, mapping 
and related fields. Angle and distance measurements are being 
supplemented and replaced by the recording of observations 
from satellites, accelerometer systems and gyroscopes along 
with frequency standards for d!gital signal p~oce~s~ng .. Ana!og 
photographs are rapidly beco~mg ?bsolete wl.th digltallffia~ng 
systems and mapping operatIons mtegrated mto geographIcal 
and more generally spatial information systems. Visualization 
systems will soon replace conventional topographical maps with 
terrain rendering and spatial information display systems. These 
fundamental changes have far reaching implications for the 
analytical tools and procedures which are necessary in the data 
processing of observations and measurements. 

The advent of modern computer technology with the ever 
increasing computing power and availability also has profound 
implications in the selection o~ tools and pr?c~dures. In 
particular, algorithms are becommg more ~Ophl~tICa~ed and 
adaptive procedures are most often deSIred m VieW of 
automating the processing of observations and measurements. 
The increasing sophistication has led to dealing with patterns, 
trends and the like in order to have adaptive procedures. These 
tendencies are really leading to information processing in 
general and even knowledge processing in specialized 
application areas. 

Among the outstanding questions in this field of geoinformation 
processing are the identification and recognition ?f patterns, ~he 
quantification of information contents for adaptIve processmg 
and quality control, and inference procedures that can transcend 
the data processing requirements. In other words, what are the 
new requirements in terms of tools and procedures for 
geoinformation processing that will lead to the knowledge
based systems of the near future? 

The following discussion will first consider the mathematical 
differences between data, information and knowledge, and then 
the relationships between accuracy, uncertainty and semantics. 
These concepts have important implications for the 
understanding of what is needed in categorizing and 
characterizing the analytical tools and procedures for 
geoinformation processing. As distinct from data processing, 
information processing deals with adaptive methods of filtering, 
pattern extraction and processing, dealing with incomplete 
information for decision support and other applications. 

A brief overview of information theory which has proven very 
appropriate for quantifying information contents and 
categorizing patterns and structures will be given. Examples 
from three areas of applications will be discussed to illustrate 
the use of information theoretical principles in those contexts. 
General conclusions and recommendations will be included as 
guidelines for other areas of potential applications. 

2. FROM DATA TO INFORMATION 

Observations and measurements are well known to provide little 
information unless they are properly designed and adeq~ately 
carried out. This clearly illustrates that data do not always Imply 

185 

substantial or significant information and hence proper 
strategies and analyses are required. Among the principal 
objectives of geoinformation processing, the extra~tion of 
useful information from available data ranks very hIgh and 
much research and development efforts have been invested in 
various application fields. However, fundamental questions 
remain about the nature of information and its quantification or 
measure to decide on optimal data and information processing 
strategies for all kinds of applications. 

In the case of distance and angle data processing for positioning 
purposes, the analysis is definitely simpler than when dealing 
with pattern identification and recognition in digital image 
processing. Accuracy and reliability in survey networks are well 
understood but the analogous concepts with digital imagery and 
spatial information are definitely more complex. With the 
current emphasis on spatial information systems (SIS), these 
questions are becoming more and more important and further 
investigations are definitely warranted. 

Data are observations or measurements that are collected in 
order to extract some required or expected information and 
knowledge. Data processing using conventional algorithmic 
methods is well understood in physical science and engineering. 
Accuracy considerations are usually taken into account in the 
data processing to reflect the quality of observation and 
measurement procedures, the numerical techniques and related 
operations. The derived quantities are then categorized in terms 
of accuracy and reliability. 

Information usually refers to patterns, features and the like that 
are normally extracted from observation and measurement data 
through processing. Explicit interpre~ations are not no~ally 
included in such patterns and tendenCIes as these can easIly be 
context or application dependent. For instance, the estimation of 
a linear or quadratic trend between two data sequences does not 
necessarily include any interpretation of the inferences for the 
variables in question. Hence mathematical information can be 
considered as abstractions or derivations from data without 
including any semantics. Information processing in the 
mathematical sense is logical pattern and similar processing that 
would take any uncertainty or incompleteness of the information 
into consideration. 

Knowledge would then refer to context dependent information 
or interpretations that are common in reasoning like processing. 
In other words, spatial information patterns and trends generally 
have different interpretations and implications for different 
classes of users of the information. For example, a linear or 
quadratic trend between two variables can be the object of 
numerous interpretations. Knowledge processing involves 
facts, rules and procedures that often come from learning 
experience in some specific context or environment. Knowledge 
acquisition, representation and processing are among the 
outstanding research topics in knowledge based system design 
and implementation. 

In terms of abstraction and complexity, information processing 
problems range from data processing algorithmic problems to 
knowledge related questions. The sequel will only consider the 
selection and analysis of appropriate analytical tools and 



procedures for information processing purposes. Open 
problems in geoinformation processing abound and further 
research and development work is required for wide ranging 
applications. Such experience with information processing 
should be useful in contemplating the problems of knowledge 
acquisition, representation and processing. 

3. OVERVIEW OF INFORMATION THEORY 

From a theoretical perspective, the origins of information theory 
go back to the foundations of probability theory as dealing with 
uncertain or incomplete information is at the very basis of 
probabilistic considerations. Measuring or quantifying 
information contents is fundamental in formulating optimal 
solutions for estimation and inference problems. Depending 
upon the specific requirements, some information measures and 
related discrimination functions may be more appropriate than 
others. 

Information measures are often expressed in terms of 
frequencies of occurrence of errors or grey levels as these 
provide a general approach to information contents without 
necessarily any interpretation or evaluation of the implications. 
Various information measures have been suggested and used in 
different application contexts. For digital image processing and 
related applications, the Shannon-Wiener entropy H[p] in terms 
of discrete frequencies or probabilities p = [Plo P2, ... , Pn] is 
perhaps the best known and most appropriate for the intended 
applications. Explicitly, the Shannon-Wiener entropy H[p] is 
defined by 

n 

H[p] = H[Pl, P2 ,_. -, Pn] = - L Pk10gPk 
k=l 

and the corresponding relative entropy in case of a general 
background or reference probability distribution q = [ql> q2, 
... , qn], 

n 

H[p;q]=H[Pl,P2,···,Pn;ql,q2,-·,qn]= - LPk1og(Pk/qk) 
k=l 

where the summation signs are replaced by integral signs in 
applications with continuous probabilities. The logarithms used 
in these definitions are assumed to have the appropriate base 
(usually 2) or else a multiplicative constant should be included. 
When the background or reference probability distribution is 
uniform, then the relative entropy reduces to the absolute 
entropy_ 

For practical applications, information measures need to be 
coordinate system independent and least sensitive to additive 
noise in the data. The Shannon-Wiener relative entropy has 
been shown to satisfy these conditions in practice [Blais and 
Boulianne, 1988]. Furthermore, the relative entropy measure is 
known to be unaffected by any orthogonal transformation (e.g., 
a rotation) of digital image data where the normalized grey level 
frequencies are interpreted as probability distribution 
frequencies [Andrews, 1970]. The latter is especially important 
in the context of digital image processing using Fourier and 
other orthogonal transforms which preserve the energy 
associated with the grey levels. 

For a continuous random variable with a Gaussian probability 
distribution, the Shannon-Wiener entropy is proportional to the 
logarithm of the variance in one dimension, and the logarithm of 
the covariance matrix in higher dimensions [e.g., Blais, 1991a]. 
This is not a surprising result as a Gaussian probability 
distribution is fully specified by its first two moments and hence 
the Shannon-Wiener entropy can be expected to be expressible 
in terms of the second moment. Obviously, the situation is 
different with other probability distribution functions which can 
only be specified fully by their higher statistical moments. 

It is important to realize that no interpretation nor any semantics 
are included in the preceding definitions and discussions. 
Mathematically, the analysis of a probability distribution does 
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not require any interpretation of the inferences as these can be 
very different in different application contexts. On the other 
hand, the appropriateness and implications of using one 
information measure in a specific context may very well include 
semantics and valuations for reasoning-like processing as in 
expert systems. 

The preceding concepts from information theory are very useful 
in estimation and inverse problems where the available 
observational and other information is often incomplete for the 
desired solution. Considering the available information for 
maximum exploitation without making any unnecessary 
assumptions about what is not known is precisely the maximum 
information or maximum entropy approach. Explicitly, the 
maximum entropy principle states: 

When making inferences based on incomplete information, the 
estimates should be based on probability distributions 
corresponding to the maximum entropy permitted by the 
available information. 

This principle was proposed independently by Kullback and 
Liebler [1951], Jaynes [1957] and Ingarden [1963]. It has been 
justified in terms of combinatorial arguments, axiomatic 
inference, objectivity, consistency and reliability of the 
estimation process [Jaynes, 1982 and 1983]. 

Applications of this maximum information principle are wide 
ranging in physical science and engineering. Some applications 
in model identification, digital image processing and spatial 
information systems are discussed in Blais [1991a and b]. The 
following discussions will concentrate on applications in 
spectrum estimation, adaptive filter design and inverse problems 
to illustrate the applicability of information theory and the 
principle of maximum entropy. 

4. APPLICATIONS IN SPECTRUM ESTIMATION 

Estimates of power spectral density functions are required for 
numerous applications in digital signal and image processing. 
Filter design often relies on the analysis of the spectral analyses 
of data sequences and arrays. The estimation of the spectrum of 
one-dimensional data sequences is relatively straightforward 
and the analysis of the estimates does not usually present any 
problems. The situation is however quite different in two and 
higher dimensions where the implications of difficulties in 
factorization and positive definiteness of autocovariance 
functions can imply serious difficulties. 

Given a sample autocovariance sequence of finite length, the 
spectrum estimation problem involves the extension of this 
sequence for the Fourier transformation to estimate the spectrum 
of the process. Well known approaches to the spectrum 
estimation problem include the periodogram and correlogram 
methods, the parametric modeling techniques of autoregressive 
and moving average formulations, and the maximum entropy 
approach which is based on information theory. 

When using Fourier based methods, the extension of the 
autocovariance function is implied by the periodicity of the 
Fourier transform. This situation is usually quite appropriate in 
noise dominated sequences although the spectral resolutions are 
affected by the well known leakage and aliasing effects that are 
unavoidable with Fourier transforms. With proper analysis of 
the available information and constraints for the application 
context, the periodogram and correlogram approaches to 
spectrum estimation are generally acceptable, but not necessarily 
optimal at least in terms of resolution. 

With the parametric modeling approaches, the extension of the 
autocovariance function is implied by the autoregressive, 
moving average, autoregressive-moving-average or variation of 
these models. Some constraints may also be required to ensure 
that the extension of the autocovariance function is fully 
compatible with the observations of the physical process. It is 
important to note that the autoregressive modeling approach in 



one dimension fully agrees with the maximum infonnation or 
entropy of the underlying stochastic process (see, e.g., Blais 
[1992b] for details). 

In two and higher dimensions, these classical Fourier based and 
parametric methods often lead to complications and ambiguities. 
More specifically, extensions of the sample autocovariance 
functions need to be compatible with causality and other 
physical requirements of the observed process. The 
nonuniqueness of the extension solution implies that the 
estimated spectrum needs to be constrained to correspond to the 
application requirements. 

Numerous researchers have investigated the use of maximum 
entropy approaches for spectrum estimation in two and higher 
dimensions. Among them are Burg [1975], Pendren [1979], 
Wernecke and D'Addario [1977], Lim and Malik [1981], and 
Lang and McClellan [1982]. The approach of Lim and Malik 
[1981] is especially appealing with a recursive strategy using 
fast Fourier transforms and the dual of the sample 
autocovariance function. The latter has been studied and further 
discussions can be found in Blais [1992b] with a variation of 
the Lim and Malik [1981] approach having been proposed and 
experimented with in Blais and Zhou [1990 and 1992]. 

The maximum entropy approach has intrinsic features which are 
most interesting in the sense that the sample autocovariance 
function is extended in an optimal manner without using 
artificial constraints or models. The implemented conditions in 
this extension are simply the positive definiteness for 
realizability of the physical process and correlation matching for 
known lags. In other words, only the implications of the 
observed process are used in the estimation of the spectrum. 
Among the characteristics of the spectrum estimates are the 
resolution features, the consistency and reliability of the results. 

5. APPLICATIONS IN ADAPTIVE FILTER 
DESIGN 

In digital signal and array processing, filters are designed to 
restore the infonnation by removing the noise or correcting for 
some degradation function. In several applications of signal and 
array processing, the underlying process is not stationary with 
the implication that the filters need to be adaptive to meet the 
expectations. Adaptiveness in filter design means that the filter 
parameters change whenever the conditions in the applications 
warrant it. In other words, the filters are self calibrating in their 
implementation. 

The adaptability of a mean or median filter in digital image 
processing simply implies a variable mask or template over 
which the mean and median operations are carried out. For 
instance, under smooth texture conditions, a smaller mask may 
be sufficient while under rougher conditions, the mask may 
need to be larger for reliability and other similar requirements. 
Other filter applications may have directional dependence and 
hence the detection of optimal directions may be necessary for 
adaptability to different conditions. 

The adaptability of a spectral filter such as an inverse filter 
would require a variable transfer function while an adaptable 
Wiener filter would mean a variable transfer function or spectral 
density function for the signal. In such applications, the average 
infonnation content often plays an important role as optimal 
infonnation extraction is the usual objective of the filtering. The 
question of deciding on an appropriate measure for the 
infonnation content is very much dependent on the application 
context and the specific objectives of the operations. 

The problem of optimal filter design is essentially one of model 
identification strategies and infonnation theory is well known 
for its applicability in these areas [e.g., Blais, 1987 and 1991b]. 
The observational and related infonnation can usually be 
analyzed in tenns of infonnation contents to infer a most 
appropriate model for the application. A number of researchers 
from Kullback and Liebler [1951] to Landau [1987] and others 
have studied the use of information theory for these 
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applications. A number of distributional and related model 
identification results can be found in Blais [1987 and 1991b]. 

There are still several open questions in model identification 
concerning the consistency and asymptotic efficiency of the 
selected models, especially in multivariate applications and 
implementations with limited data samples and missing 
observations. Research on these and related questions is 
continuing, especially for digital image and array processing. 

6. APPLICATIONS IN INVERSE PROBLEMS 

Inverse problems are among the most common problems 
encountered in the physical sciences. With only limited 
observational and other infonnation, inverse problems often 
present tremendous difficulties to the scientists who want 
reliable answers that are justifiable and appropriate. 

There are different classes of inverse problems depending on 
the nature of the problems and the infonnation involved. First, 
there are mathematical inverse problems such as Cauchy 
contour integration and the inversion of integral transfonns in 
purely analytical tenns. Second, there are the inverse problems 
exemplified by object reconstruction and tomography which 
involve geometrical analysis as well as estimation 
considerations. Third, there are the geophysical inverse 
problems which involve much physics and geology for analysis 
and interpretation of the results. 

One implication of the preceding observations is that the study 
of inverse problems is clearly more than a simple extension and 
generalization of estimation theory. The perspective used in the 
following is that inverse problems are problems with incomplete 
information so that much of the experienced complications are 
actually due to the missing infonnation and the implications 
thereof. One approach which has been successful in numerous 
applications is using information theory and related 
considerations. The advantages of this general approach will be 
discussed in the following with examples of applications. 

In strictly mathematical tenns, the problem can be fonnulated as 
follows: 

u=KU 

where U describes a true state vector and u is the observed state 
vector or the perceived signal or image after having been 
corrupted or modified by mechanisms of observation or 
measurement. The direct problem is primarily one of deductive 
prediction, Le. given prior knowledge ofU and the operator K, 
deduce or estimate u. The corresponding inverse problem, i.e. 
given the observed or measured u and a specific operator K, 
estimate the true vector U. In practice, it often occurs that K is 
also poorly defined or even understood. 

The general solution to any inverse problem can be described in 
tenns of Bayes' theorem which involves probabilistic measures 
of the available infonnation. Assuming that the observed or 
measured vector u is a function of components Un of the true 
state vector U with the probability (uIUn) known, then Bayes' 
theorem implies 

where I denotes the available prior infonnation. In cases where 
prior infonnation is known to be unifonn, then 

which implies a straightforward solution. 

The preceding Bayes' theorem shows how to combine partial 
information in a mathematically rigorous manner. Then the 
principle of maximum infonnation or entropy can be used to 
arrive at optimal frequencies taking into consideration additional 



modeling and other constraints required for the solution of the 
inverse problem. This methodology which is based on Bayes' 
theorem is only one of the possibilities to formulate the desired 
solution for a given inverse problem. Tarantola and Valette 
[1982] offer another strategy based on an extension of Bayes' 
theorem. 

The implementation of the preceding approach to solving 
practical inverse problems is sometimes difficult as the available 
observations or measurements and prior information have 
uncertainties which cannot easily be quantified or measured. 
This is where information theory can help in providing better 
insight into the situation. Further discussions of these questions 
can be found in Blais [l992a]. 

7. CONCLUSIONS AND GENERAL 
RECOMMENDATIONS 

With the changes taking place in data and geoinformation 
processing, the analytical tools and procedures need to be more 
sophisticated and adaptive in their implementations. Information 
theory provides insight and methodologies for analyzing 
problems characterized by incomplete observational and prior 
information. 

Three areas of applications, i.e. spectrum estimation, adaptive 
filter design and inverse problems have been selected to 
illustrate the usefulness and applicability of information theory 
in geomatics. The discussions have been in terms of 
methodologies to solve such problems with references to other 
publications for specifics on the formulation and implementation 
of the solutions in practical environments. The emphasis on the 
solution strategies is justifiable in terms of the rapidly changing 
application contexts and the anticipated requirements of the near 
future activities in applied science and engineering. 

8. ACKNOWLEDGMENTS 

The author wishes to acknowledge the sponsorship of the 
Natural Sciences and Engineering Research Council of Canada 
in the form of an operating grant on the applications of 
information theory, and research funding for the development 
of analytical tools in geomatics from Energy, Mines and 
Resources Canada. 

REFERENCES 

Andrews, H.C., 1970. Computer Techniques in Image 
Processing. Academic Press. 

Blais, J.A.R., 1992a. Generalized Inverse Problems and 
Information Theory. Presentation at the Canadian Geophysical 
Union and American Geophysical Union Meeting in Montreal, 
Quebec. 

Blais, J.A.R., 1992b. Spectrum Estimation Using Maximum 
Entropy. Manuscript under preparation, Department of 
Surveying Engineering, The University of Calgary, Calgary. 

Blais, J.A.R., 1991a. On Some Practical Applications of 
Information Theory in Geomatics. CISM Journal ACSGC, 
Vo1.45, No.2, pp.239-247. 

Blais, J.A.R., 1991b. On Some Model Identification Strategies 
U sing Information Theory. Manuscripta Geodaetica, Vol.l6, 
No.5, pp.326-332. 

Blais, J.A.R., 1987. Information Theory and Optimal Esti
mation. Manuscripta Geodaetica, VoLl2, NoA, pp.238-244. 

Blais, J.A.R. and M. Boulianne, 1988. Comparative Analysis 
of Information Measures for Digital Image Processing. 
Archives of Congress of the ISPRS, Commission III, Working 
Group 4, in Kyoto, Japan, Vol.27, part B8, pp.34-44. 

188 

Blais, J.A.R. and W. Zhou, 1992. Spectral Analysis 
Applications in Digital Image Processing. Archives of Congress 
of the ISPRS, Commission III, in Washington, D.C., in press. 

Blais, J.A.R. and W. Zhou, 1990. Spectral Analysis of Digital 
Images for Filtering and Restoration. Proceedings of the ISPRS 
Commission III Symposium in Wuhan, P.R. China, Volume 
28, Part 3/2, ppA8-63. 

Burg, J.P., 1975. Maximum Entropy Spectral Analysis. Ph.D. 
Dissertation, Stanford University, Stanford. 

Ingarden, R.S., 1963. Information Theory and Variational 
Principles in Statistical Theories. Bull. Acad. Polon. Sci. Ser. 
Sci. Math. Astronom. Phys. Vol.lI, pp.541-547. 

Jaynes, E.T., 1983. Papers on Probability, Statistics and 
Statistical Physics. Reidel. 

Jaynes, E.T., 1982. On the Rationale of Maximum Entropy 
Methods. Proceedings of the IEEE, Vol.70, No.9, pp.939-952. 

Jaynes, E.T., 1957. Information Theory and Statistical 
Mechanics. Physics Reviews, Vol. 106, pp.620-630; VoLl08, 
pp.171-182. 

Kullback, S. and R.A. Liebler, 1951. On Information and 
Sufficiency. Annals of Mathematical Statistics, Vo1.22, pp.79-
86. 

Landau, H.J., 1987. Maximum Entropy and the Moment 
Problem. Bulletin of the American Mathematical Society, 
Vol.l6, No.1, ppA7-77. 

Lang, S.W. and J.H. McClelland, 1982. Multi-Dimensional 
MEM Spectral Estimation. IEEE Trans. Acoust., Speech and 
Signal Processing, ASSP-30, pp.880-887. 

Lim, J.S. and N.A. Malik, 1981. A New Algorithm for Two
Dimensional Maximum Entropy Power Spectrum Estimation. 
IEEE Trans. Acoust., Speech and Signal Processing, 
Vol.ASSP-29, No.3, ppAOI-412. 

Pendrell, J.V., 1979. The Maximum Entropy Principle in 
Two-Dimensional Analysis. Ph.D. Dissertation, York 
University, Toronto. 

Tarantola, A and B. Valette, 1982. Inverse Problems = Quest 
for Information. Journal of Geophysics, Vo1.50, pp. 159-170. 

Wernecke, S.J. and L.R. D'Addario, 1977. Maximum Entropy 
Image Reconstruction. IEEE Trans. Computer, Vol.C-26, 
pp.351-358. 


