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Abstract: 

In the least-squares adjustment of a trilateration network composed of interlacing braced quadrilaterals and centered polygons, the current 
procedure is to compute approximate values of the angles forming the geometrical figures of the net. These values are then used to get the 
correction for the measured sides either as a least-squares triangulation adjustment with condition equations or by applying the least-squares 
method of variation of parameters. 

In either case, the question arises why then take the difficulty of measuring lengths, if at the end we are computing approximate values of the 
angles which could have been measured more easily and effectively with a theodolite. 

In this paper, a proposed least-squares adjustment of the trilateration problem is introduced which does not rely altogether on the 
computation of any angle. Besides, it reduces the number of conditions to only one for each geometrical figure (a braced quadrilateral or a 
central polygon) instead of four or more conditions. 

A computer program using the "Basic language" has been devised for such treatment with two different applications for the two common 
figures, together with a comparison with the current procedure applied, until now, even in the most advanced and newest treatises on the 
subject. 
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INTRODUCTION 

Conventionally, objects in the field ar~ lo~ated i~ the horizo~tal 
position by angles, dIstances, or a combm~tlon of Doth. A pomt 
can be located in relation to two other pomts by measurmg !WO 
uantities: either a direction from. each of the two pomts 

Ctriangulation) or a direction and a dIstance from one of the t~o 
oints (traver;e) or a distance from each of the two pO.mts 

Ztrilatcration) [1]: Thus in Fig.1, if.A and B are too fixed pomts 
with known plane rectangular coordmates, and c;: and D are new 
points whose coordinates are to be determmed.. then four 
measurements are therefore necessary and sufficIent for the 
determination of the unknown points. These measurements could 
be: 
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(a) angles DAB, DBA, CAD and C D A 
(b) distances AD, B D, A C, or 
(c) angles A B D, CAD and distances B D, A C, or any other 
suitable combination of four measurements. 
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However, if only four measurements are made, there will be 
no independent check, and there will be the possibility of an 
undetected mistake or blunder in the measurements. 
If additional measurements are taken as checks, they can also be 

used to obtain better estimates of the unknowns. 

In the Framework of Fig.1 a, there are eight interior angles 
and five distances (AB is assumed fixed) giving thirteen possible 
measurements to determine four unknowns, i.e., nine "redundant 
measurements" while in Fig. lb there are nine interior angles and 
five distances giving fourteen possible measurements to determine 
four unknowns, Le.,ten redundant measurements. Whether or 
not all thirteen (fourteen) measurements are made is a matter to 
be decided taking into consideratiom the time taken to make the 
additional measurements and also the time necessary for 
computation (although this is not now of primary importance due 
to the introduction of large electronic computers, except for 
saving of storage). 

For such "overdetermined" problems, the most probable 
values (MPV) of the unknowns can be found from the 
measurements by using either the so-called direct method 
(condition equations), or the indirect method (observation 
equations or variation of parameters). Both methods make use of 
the Least Squares principle (LS), and both can be applied to the 
same measurements to obtain the same unknows. 

TRILATERA TION 

The usual method of fixing points C and D (Fig.1) has long 
been the triangulation method, where the eight (nine) interior 
angles are measured by a theodolite. In this case, we have four 
(five) redundant measurements ending with four (five) condition 
equations. d' 'bl t The introduction of EDM instruments ha~ ma e.lt pO.SSI e. 0 
replace this usual ground triangulation by tnlateratlOn, In WhICh 
case five distances are measured, namely, AC, AD, BD and CD 
(AB is assumed fixed) for the fixation of points. C and D. 'P:us 
we have one redundant measurement ending WIth one c~mditIOn 
equation, whic~ has to ~e satisfied before computIng the 
horizontal coordInates of pomts C 
and D. 

Laurila, - 1983, seems to be the only geodesist who r~alized 
this fact in the adjustment of a trilatera.ted braced. quadnlate~al 
(Fig.l a). However, his treatment for thIS one condItion equatIOn 
turned to be a geometrical relation between the four corner 
angles BAD, ADC, DCB, CBA, which he computed from the 
measured sides. 

All other geodesists adjusted the tril.aterated quadrilat~ral 
either as a triangulated quadrilateral WIth four geo~etncal 
conditions relating the computed angles of the quadnlateral 
(Moffitt,1975.) or by the method of variation of parameters 
(Mikhail, 1981)[A] 



The New Treatment For Trilateration Adjustment 

'J!le "one g~metrical condition" connecting the lengths of the 
sIqes and dIagonals of a plane braced quadrilateral ABCD 
(F~g.l b) ~r the ~ength of the. sid~s of a triangular central polygon 
(Flg.lb) IS obtamed by muitiplymg by rows the two matrices. 
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where (x r,y r), r = 1,2,3,4 are the cartesian coordinates of the 
points A,B,C,D respectively. 

Since the number of columns in each matrix is less than the 
Humber of rows, the determinant resulting from multiplication 
must vanish identically (F errar, 1941). 

Hence the required geometrical condition is: 

0 1 

0 (AB)2 (AC)2 (AD)2 

A:::: (BA)2 0 (BC)2 (BD)2 
=: 0) (1 ) 

(CA)2 (CB)2 0 (CD)2 

(DA)2 (BD)2 (DC)2 0 

where (AB) = (BA),etc. are the lengths of the mutual distances of 
the four points A, B, C, D. Similarly, for the condition 
connecting the mutual distances of five points. 

Because model (1) is implicit in the measurements sr (r 
= 1,2,3,4,5,6), it has to be linearized by applying Mclaurin's 
Theorem of Expansion. Noting that the corrections (S s) applied 
to the measures (s) of the mutual distances of the four points to 
made their lengths satisfy such condition are small so that the 
second and higher order terms in the expansion of (1) can be 
neglected, the conditional equation(l) may be written: 

Ao + L ~~ ~s,.. :::: 0) 

Where Aois the value of as 
estimated by the measured lengths; 
the summation covering all sides. 
Or, 

[g~ 

Which is the form ~ So ::: ~ 

Where B stands for the vector 
[~A ()6,. dO <:>06. 'dA 'd.A] 

().s, '?>:s;: , ~.::sa ) 'C>S4 ' OS$') 'GIS~ 

C stands for the vector [as, ),;'s" > •• ,' asJ 
and K stands for (- b o)' 
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:\ssumi~g that the variance- .covariance matrix of ~ is ~iven by V 
I.e., v :-var~)'Athen accordmg to the least squares cnterion, the 
b~st. e~tI.mates cj of the unknown corrections are obtained b 
mlm~~~mg the quadratic form ~T w ~, where W is the" weighl 
matnx of the measurements defined by W:::, cr..'1. V -I ( ~- ) 

o,:~being the "a periori" variance of a 
measurement of unit weight. 
Differentiating, as usual, the 
quadratic form partially wit~ respect 
to each Cj , equating each result to 
zero, and rear~anging the results, we 
get 

(6) ~ .:. W- I B"i (8 W-' B'r' ~ 

If the measurements are of equal weights, then 

.£ =,BT (f,f>Tfl ~ (7) 
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or, 
(8) 

In or~er to. be able to make a "Basic" computer program for 
~PplYlI~g t:l?-IS me~od, we have to evaluate the determinant and 
Its denvatives WIth respect to the sides as functions of the 
measured lengths. Putting A B - SAC": '" b.. I'. - S 

- " -",t) /ll,J_ 3) 

K, S [) CD S 
8 C = 4 ' B D::: 5 AN -::: 6' 

If, as assumed, AB fixed, then C>A,/;}SI = 0 • 
The ful~ computer prog~am, wr.itten in Basic, is shown in the 

next section. When appbed to dIfferent problems the iterations 
were few showing a rapid convergence ' 



APPLICATIONS 

The proposed method was applied to the adjustment of three 
br~ced. quadrilatera!s given in 1:aurila [2], Moffitt [3l,and 
MIkhail [4] respectively. The mput data and the correctiond 
obtained, are shown in the following sheets. 
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10 READ X1,X2,X3,X4,X5,X6 
20 DATA' 1341.785,2775.364,2167.437,1937.887,2173.715,1511.014 
21 Y1=(2*X1*X1*X6*X6)*«-X1*X1)+(X2*X2)+(X3*X3)+(X4*X4)+(X5*X5)-(X6*X6» 
22 Y2=(2*X3*X3*X4*X4)*«Xl*Xl)+(X2*X2)-(X3*X3)-(X4*X4)+(X5*X5)+(X6*X6» 
23 Y3=(2*X2*X2*X5*X5)*«X1*X1)-(X2*X2)+(X3*X3)+(X4*X4)-(X5*X5)+(X6*X6» 
24 Y4=-(2*X1*X1*X2*X2*X4*X4)-(2*X1*X1*X3*X3*X5*X5)-(2*X2*X2*X3*X3*X6*X6)-(2*X4* 
X4*X5*X5*X6*X6) 
25 LPRINT "y1="; Y1 
26 LPRINT "y2="; Y2 
27 LPRINT "y3="; Y3 
28 LPRINT "y4="; Y4 
29 X =Y1+Y2+Y3+Y4 
30 LPRINT "x=";X :PRINT 
31 DA~A 1341.785,2775.364,2167.437,1937.887,2173.715,1511.014 
35 H1 = 0 
40 H2 = 0 
50 B(l,l)= H1+H2 
60 LPR I NT " b ( 1 , 1) ="; B ( 1 , 1) 
70 Al =(4*X2*X5-2*(Xl"2-X2"2+X3"2+X4"2-X5"2+X6"2»-(4*X2"3*X5"2) 
80 A2 =(4*X2*X1~2*X6-2)+(4*X2*X3-2*X4"2)-(4*X2*X1A2*X4-2)-(4*X2*X3"2*X6"2) 
90 B(1,2)= Al+A2 
100 LPRINT " b(1,2)="; B(1,2) 
110 C1=\f.",4*X3*X4" 2* (Xl" 2+X2" 2-X3" 2-X4" 2+X5" 2+X6" 2) ) - (4*X3" 3*X4 A 2) 
120 C2 =.~4*X3*Xl'·' 2*X6" 2) + (4*X3*X2'" 2*X5" 2) - (4*X3*Xl" 2*X5" 2) - (4*X3*X2" 2*X6" 2) 
130 B(1,3)= C1+C2 
140 LPRINT .. b(1,3)="; B(1,3) 
150 Dl =(4*X4*X3-2*(Xl"2+X2"2-X3"2-X4"2+X5"2+X6"2»-(4*X4"3*X3"2) 
160 D2 = (4*)~4*X1- 2*X6" 2) + (4*X4*X2 ," 2*X5 , .. 2) - (4*X4*Xl "2*X2" 2) - (4*X4*X5" 2*X6" 2) 
170 B(1,4)= D1+D2 
180 LPRINT .. b(1,4)="; B(1,4) 
190 E1 =(4*X5*X2"2*(Xl"2-X2-2+X3"2+X4"2-X5"2+X6"2»-(4*X5-3*X2"2) 
200 E2 =(4*X5*Xl-2*X6"2)+(4*X5*X3"2*X4"2)-(4*X5*Xl"2*X3"2)-(4*X5*X4"2*X6"2) 
210 B(1,5)= E1+E2 
220 LPRINT " bP,5)="; B(1,5) 
230 F1 =(4*X6*X1"2*(-X1"2+X2"2+X3-2+X4"2+X5"2-X6"2»-(4*X6"3*X1"2) 
240 F2 =(4*X6*X3"2*X4"2)+(4*X6*X2-2*X5"2)-(4*X6*X2"2*X3"2)-(4*X6*X4"2*X5"2) 
250 B(1,6)= Fl+F2 
260 LPR I NT " b ( 1 , 6 ) ="; B ( 1, 6 ) 
270 FOR I = 1 TO 6 
280 LPRINT Bel,I) 
290 NEXT I 
300 Q =(B(1,1)"2+B(1,2)"2+B(1,3)"2+B(1,4)-2+B(1,5)"2+B(1,6)-2) 
310 LPRINT "q=";Q 
320 FOR 1=1 TO 6 
330 AX(l,I) = -X/Q *B(l,I) 
340 LPRINT AX (1,1) 
350 NEXT I 
35~ READ X(1),X(2),X(3),X(4),X(5),X(6) 
355 DATA 1341.785,2775.364,2167.437,1937.887,2173.715,1511.a14 
360 FOR I = 1 TO 6 
376 FR (1,1)= XCI) +AX(l,I) 
380 LPRINT FRe1,I) 
390 NEXT I 
400 END 
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yl= 1. 8809~~4E+20 
y2= 2. 84212LIE+20 
y3= 7.938321E+18 
Y'1-=.:4 . 3(i~4fI2E+zti 
x= 6.86(l9~)~iE+15 

b(1,l)= 0 
b(1,2)=-3.509649E+17 
b(l,21)= 2.343582E+17 
b(1,4)= 2.795437E+17 
b(1,5)=-2.681028E+17 
b(1,6)= 1.b8588E+17 
(I 

-3.5Cl9649E+17 
2.343582E+17 
2.79543?E+17 

"'2. 681028E+l? 
1.58588E+17 

q= 3.532741E+35 
o 
6.816108E-03 

-4.551481E-03 
-5. 4290~-31E-0~1 

5.206H38E-03 
-3.079946E-03 

1341.7BfJ 
27'75.371 
2167.432 
1937.882 
2173.72 
1511.011 
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