
A 3-D MODEL EXTRACTION SYSTEM 

Robert L. Russell, Richard A. McClain, and B. Patrick Landell 
GE Aerospace Advanced Technology Laboratories 

Moorestown, NJ 08057 

ABSTRACT 

This paper describes PolyFit, a 3-D feature extraction system which allows a user to interactively extract three 
dimensional models from photographs with little apriori information. PolyFit's algorithm for simultaneously 
determining the camera parameters and scene geometry is a nonlinear least squares optimization. The computed 
geometry and camera information enables photographic texture extraction from the source imagery and subsequent 
rendering of the scene geometry from arbitrary view points. The PolyFit user interface provides tools which 
streamline the model building process as well as means for model inspection and exploitation. PolyFit has been 
shown to provide a 10 to 1 productivity improvement over previous manual methods. 

Keywords: Computational geometry, 3D Feature Extraction, computer image generator (CIG), photo-texture 
extraction, camera modeling, object and scene modeling, mensuration. 

1. INTRODUCTION 

Training through computer image generation, 
systems today are challenged to provide the most 
photo-realistic renditions of real life environments [1]. 
The systems which provide high speed photo
realistic rendering require accurate models of the 
world accompanied by precisely registered photo
texture. The cost, however, of developing the 
databases required for this realism can be 
staggering. This high cost is a direct result of the 
time and manpower currently needed to generate a 
database of any significant scale [2,4]. This long 
database construction time also limits the use of 
simulation systems for applications such as mission 
planning or rehearsal because timely use of recent 
photo-reconnaissance imagery is not generally 
achievable [3]. 

One aspect of database development which is 
particularly tedious is the modeling of architecture 
within the gaming area. In the past this has been 
accomplished by manual photointerpretation 
techniques. Modelers would attempt to extract the 
geomet~y of ~ given building by trial and error using 
the available Imagery as reference and inputting the 
computer description manually. Scale would be 
estimated from visual cues such as the height of a 
doorway or the length of a recognized vehicle. For 
buildings exhibiting simple geometry this technique 
worked well enough. However, as the complexity of 
the building increased, the accuracy of the model 
decreased. Imagine trying to extract the angle 
~etween two edges (other than 90 degrees) in a 2-D 
Image taken from an oblique perspective. 
Furthermore, placing the building in the database 
would require more trial and error by the modeler to 
determine the relative location of this building with 
respect to its neighboring buildings. 

A secondary problem with previous manual 
approaches is that the resulting models are not 
registered to the imagery. Thus, to extract 
ph?togr~phic texture from the image, the computed 
object wlreframe would be interactively manipulated 
to approximate the orientation, position and scale of 

446 

the object within the image; a very time consuming 
process. 

Previous approaches to speeding this object 
modeling process have often made the assumption 
that the available imagery already has associated 
camera model information registered to terrain 
elevation data. These approaches then attack the 
problem by letting the operator place an object in the 
world by manipulating a wireframe over the image of 
the object. The camera model is used to determine 
the object's scale, though A. Hanson et. al [2] also 
used solar illumination geometry to better determine 
object height for near nadir views. These previous 
approaches are limited because: 1) they can only 
handle simple geometries, 2) they rely on the 
existence of supplementary data and 3) they don't 
optimally fuse the information from multiple images in 
a single 'best fit' of the object. This fusion aspect will 
be further explained in later sections. 

2. POL YFIT OVERVIEW 

The system described in this paper has been 
designed to overcome the above mentioned 
limitations. This system, referred to as PolyFit, 
extracts complex 3-D models from single or multiple 
photos with little apriori information. Image camera 
models, if not provided, are computed along with the 
object models. If maps or control points for the 
images are available PolyFit can locate the models 
precisely in the world, otherwise, the database is 
defined relative to a user definable local coordinate 
system. Furthermore, PolyFit achieves high 
accuracy by fusing the information from all sources 
into one best fit solution. The PolyFit solver uses a 
constraint elimination procedure and the Gauss
Newton algorithm to solve the constrained nonlinear 
optimization. Upon solution the 3-~ models are 
registered within the imagery allowing the photo
texture to be easily extracted and orthorectified for 
convenient access by the CIG. Using PolyFit's own 
rendering capability allows: 1) verification of 
geometry, 2) inspection of photo-texture and 3) 
examination of the model from arbitrary vantage 
points. 



Based on results received from GE's Simulation and 
Control Systems Department (SCSD), which builds 
databases for their COMPU-SCENE line of CIG~ 
Poly~it provides a 10 to 1 speed improvement ov;~ 
prevIous manual methods. The database for which 
SCSD employed PolyFit was later used to 
demonstrate the performance of their COMPU
SCENE VI CIG at the Interservice/lndustry Training 
Systems Conference held in Orlando, Florida in 
early November of 1990. 

In addition to using the database as input to a CIG 
further exploitation of the data can be achieved 
through PolyFit's mensuration capabilities. This 
!acility .allows the operator to query the database 
interactively to extract geometric information useful 
for applications such as mission planning. For 
example, one could request the distance between 
buildings or the height of a window from the ground. 

A future enhancement will perform reasoning on the 
data to compute, for example, the least detectable 
path in moving from point A to point B, given the 
location of likely sentry positions. 

3.0 THE SOLVER 

The essence of PolyFit is to rely on the human to 
surmise the general layout of the scene and to 
designate within the images the locations of the 
scene features, functions for which a human is 
extremely adept, while the computer solves a least 
square error optimization to recover the scene 
geometry with high accuracy, a function best 
performed by the computer. This section describes 
the latter component, 1he PolyFit solver, which 
simultaneously computes the camera parameters 
and scene geometry based on the principle of 
maximum likelihood, treating the measurements of 
the human user as noisy observations. 

The inputs to the solver are the scene topology, 
scene geometric constraints, and for one or more 
images, a list of designated vertex positions in the 
images. The positions and focal lengths of the 
cameras are generally unknown. The problem is to 
recover the scene geometry from the positions of 
features in the images. 

3.1 Scene Model 

The scene model consists of some number of 
objects. The position of each object is represented 
by a coordinate frame consisting of a rotation matrix 
and translation vector. Objects themselves are 
modeled as a constrained polygonal mesh, 
consisting of vertices, lines, and planar faces. The 
polygonal mesh represents the visible side of object 
surfaces. Each object consists of a number of 
vertices: Vj, j = 1, . .. n (3-D vectors). Each face of an 
object is defined by a sequence of vertices 
clockwise around the face when viewed from the 
visible side. Lines connect adjacent vertices on the 
boundary of a face. By introducing another 
geometric entity, direction vectors, constraints can 
be placed on line directions or face normals. 

The information describing the relationships of all the 
geometric entities is stored in a scene structure 
graph. The structure graph consists of a list of 
objects; objects contain lists of vertices, faces, and 

447 

lines; faces contain lists of vertices and lines; etc. 
The structure graph is the topological description of 
the scene. 

The parameters which instantiate the topology into 
completely specified models are the s c en e 
parameters. Each geometric entity in the model is 
defined by some number of parameters, which may, 
for convenience, exceed the minimum number of 
parameters or degrees of freedom (DOF) needed to 
specify the entity. Vertices are defined by a 3 
vector, v. Lines are defined by a line direction 
vector a and a vector offset p. Points satisfying x = 
ka + p for some scalar k lie on the line. Faces are 
defined by a face normal a and any pOint on the 
plane p. Points satisfying a • (x - p) = 0 lie on the 
plane. Direction vectors are represented by vectors. 
Determination of the scene variables (all the 
parameters together) is the crux of the reconstruction 
problem. 

3.2 Scene Geometric Constraints 

Some constraints arise implicitly from the definition of 
object models as a planar mesh because all vertices 
in a face must lie in the plane of the face. This 
constraint is expressed as a • (v - p) = 0 for each 
vertex in a face. 

Additional explicit constraints on the scene 
geometry are needed when the camera model and 
scene geometry are underspecified. For example, 
constraints may be used to fill in parts of a scene not 
viewed in any image. Also the user will often desire 
to force scene models to satisfy particular 
conditions, such as walls being vertical. The current 
system provides four types of constraints: 1) point 
constraint - the user directly specifies the 
coordinates of a vertex, 2) direction constraint - line 
directions or face normals are constrained to lie 
along a particular direction, which can be fixed or 
free to vary, 3) length constraint - the length of a line 
is fixed, and 4) coincidence constraints - a vertex, 
line, or face is constrained to be coincident with 
another vertex, line, or face. 

3.3 Constraint Elimination 

Our approach to handling scene geometric 
constraints has been to eliminate them while 
simultaneously reducing the number of scene 
variables. To accomplish this, the variables are 
grouped into subsets, called elements, associated 
with the basic geometric entities of the model: 
coordinate frames, vertex points, lines, face planes, 
and direction vectors. The constraints (point, 
direction, length, coincidence) each define a 
relationship between two elements. As an example, if 
a face contains a vertex, then the face plane and the 
vertex point must intersect. To eliminate this 
coincidence constraint, the symmetry is broken and 
one of the elements is placed as a constraint on the 
other. Either the face is free and the vertex m.ust lie 
in the plane of the face, or the vertex is free and the 
face must intersect the vertex. The constrained 
element has reduced degrees of freedom (fewer 
variables) due to the constraint. Continuing the 
example, if the face is constrained by the vertex, 
then the face is no longer represented by a free 
plane with 3 DOF but by a plane with 2 DOF which 
is attached to a fixed point in space. In effect, the 



constraint disappears from the overall system and is 
submerged into the constrained geometric element. 
In implementing the system, 41 types of geometric 
elements were necessary. 

Eliminating all constraints requires finding an acyclic 
graph, called the dependency graph, which defines 
an evaluation ort1ering of a" elements. The ordering 
is such that if one element is dependent on other 
elements, then it must appear later in the evaluation 
ordering than all of the elements it depends on. In 
addition, individual geometric elements must be 
neither over- or under-constrained. For example, a 
plane cannot be constrained by four points, and 0 
DOF must be allotted to a vertex which is not seen in 
any camera view. 

The solver finds a legal dependency graph with a 
two phase search procedure. The first phase is a top 
down search that establishes basic ordering 
information by determining the minimum depth in the 
dependency graph of each element, while ignoring 
overconstraining elements. The second phase is 
bottom up search that generates the final ordering. 
The trial selection of elements is based on the depth 
number computed in the first phase. During the 
bottom up search, as each element is placed into the 
evaluation ordering, checks are made that all 
constraints are compatible and that no element is 
either over- or under- constrained. The search 
procedure wi" resort to an exhaustive search with 
backtracking to find a compatible ordering, but 
before this begins, the graph is normalized to 
localize the search space. The exponential runtime 
associated with a backtracking search is not a 
problem due to a" the preparations that precede it 
that effectively guarantee that the search time wi" be 
very brief. 

3.4 Solution Formulation 

Let x be the result of concatenating all the scene 
free variables into a single vector, of dimension N = 
the number of degrees of freedom of the scene. The 
positions of the vertices can be extracted from the 
scene parameter vector, hence, let the position of 
the lth vertex be denoted v j(x). The remaining 
variables in the system are the unknown camera 
parameters, denoted by Cj for the j'th of m cameras. 
The predicted image position of the lth vertex in the 
j'th image is obtained from the camera parameters by 
applying a 3D to 2D camera projection function, p 
(vi, Cj). The form of this function wi" depend on the 
type of camera used (frame, panoramic, etc). The 
current implementation assumes a frame camera. 

For some combinations of vertex and image, an 
observation of the vertex in the image will be 
available. The observed 2D position of vertex i in 

o 
image jwill be denoted, iij' and treated as a noisy 

observation with standard deviation aij in both the 
horizontal and vertical directions. The set of i} pairs 
for which an observation is available wi" be denoted 
by the set D. For some vertices, a direct observation 
of its 3D position may be available, generally from a 
map or blueprint. The observed 3D position of the i'th 

vertex will be denoted vf having standard deviation 

448 

aj in each of x, y, and z. The set of ls for which 3D 
control points are available will be denoted by the 
set C. 

Finding the scene variables and camera parameters 
corresponding to the most likely set of noise samples 
(maximum likelihood estimate) is readily shown to be 
equivalent to the following optimization: 

Minimize f(x,c
1

, ... ,cm) 

= 1: 
ijeD 

2 

+ 1: 
ieC 

o 0 ,2 
vi-vi(x) 

(1) 

This optimization is unconstrained, and can be 
restated in more general terms by concatenating a" 
unknowns into one vector, z; concatenating all 
modeled observations into one vector function, g(z); 
concatenating all observation measurements into 
one vector, gO; and combining the standard 
deviations of observation errors into a diagonal 
weight matrix, W = diag(1/ai). Then, the optimization 
becomes: 

(
g;(Z) - gO) 2 

Minimize f(z) = I Sj 

2 
I w(g(z) - gO) I . 

3.5 Solving the Optimization 

(2) 

Initial Approximation. Solving the optimization 
with the Gauss-Newton procedure requires an initial 
estimate reasonably close to the solution. The 
solver has a procedure to bootstrap from whatever 
apriori information is available (constraints plus 
measured vertex positions) to obtain initial estimates 
of unknown camera and scene parameters. 
Algorithms were developed which could use any 
available control points, or direction constraints, or 
simply corresponding vertices between cameras to 
generate initial estimates that are usually accurate 
enough to allow convergence of the subsequent 
iteration. 

Summary of initialization procedure 

1. Unless already known, assume cameras are 
located infinitely far from the scene. 

2. Initialize orientation, translation, and scale of 
cameras (if possible) using any "knowns" 
visible to the cameras: 

- lines in known directions 
- control points 
- approximated vertex locations from step 3. 

3. Use stereo to approximate vertex locations 
(ignore constraints). 

4. If some cameras are still unknown, go back to 
step 2. 

5. Call each elements initialization procedure in 
an order such that all elements it depends on 
will be called first (always possible for an 



acyclic graph, which can be topologically 
sorted). 

Iterative Improvement to Final Solution. 
Solving (2) is the same as finding the least squared 
error solution to 

Wg(Z) =WgO. 

These nonlinear equations are solved, in a least 
square error sense, using Gauss-Newton's method, 
which iteratively improves an approximate solution 
zn. Each iteration consists of: 

Step 1: Compute Jacobian matrix, g'(zn) = dg/dZ, 
which provides a linearized system of equations, 
valid in the neighborhood of zn : 

Step 2: Solve the linearized system for the least 
squared error differential change, using the 
pseudoinverse * 

d n = -(Wg'(zn)) tw (g(zn) - gO). 

Step 3: Apply the differential change to Zn: 

zn+1 = zn + dn. 

Gauss-Newton's method converges to a local 
minimum mean squares error solution of Wg(z) = 
Wg o. The procedure described in the previous 
section provides an accurate enough starting point 
to allow convergence in most cases. 

For the times when the initial guess is not close 
enough (and convergence is not obtained), an extra 
solve mode has been implemented which essentially 
ignores model constraints (excepting those needed 
to establish a base reference coordinate system) 
and computes camera models by allowing the 3D 
vertices to be unconstrained. A subsequent overall 
solve has converged in all cases where a solution 
has been well defined. 

Computation of Jacobian. Due to the chaining of 
elements in the dependency graph, a single free 
parameter can affect the positions of many vertices. 
In order to develop an automatic procedure for 
computing the Jacobian matrix, a small chain rule 
procedure has been implemented for each of the 41 
geometric elements, which computes the partial 
derivative of the element in terms of the partials of all 
the terms it depends on. 

* The pseudoinverse is computed according to: 
At = (A T Zy-1 AT. In the actual implementation, 
the sparsity of the Jacobian matrix has been 
exploited to provide a fast response. 

449 

With these chain rule procedures in place for all 
geometric elements, the computation of the Jacobian 
matrix proceeds as follows: 

for each free parameter A 
let q = the geometric element associated with A 
initialize dq/dA (to the appropriate unit vector) 
for every element r affected by q 

compute dr/dA using the elements chain rule 
procedure 

In this procedure, in the loop where the partials of all 
affected elements are computed, the partial 
derivative functions are called in dependency 
order. 

4.0 THE USER INTERFACE 

4.1 Design Goals 

The interface was designed with the "assumption that 
the user has a working knowledge and 
understanding of the scene model described in 
section 3.1. As the user builds the scene model, 
textual and graphic feedback is provided to indicate 
each additional feature. Two windows provide 
different types of textual feedback; a left window 
(referred to as the message window) handles 
prompts and error messages while a right window 
(referred to as the model listing window) gives a 
textual description of the complete scene model. 
The model listing window is constantly updated as 
the user- makes changes to the scene model. 
Graphic feedback is provided by a bottom window of 
the interface, referred to as the canvas. The source 
imagery is also displayed on the canvas. As new 
features are added to the scene, model overlays are 
provided here to represent them. Since displaying 
all features simultaneously would cause the canvas 
to be very busy, certai n features, such as 
constraints, are only displayed upon user request. 

The challenge of designing PolyFit's user interface 
was to provide a convenient direct manipulation 
what-you-see-is-what-you-get (WYSIWYG) envir
onment The goal of the WYSIWYG environment is 
to give the user a clear indication of the current state 
of the scene model in order to minimize user memory 
load, prevent errors, and allow for easy mental 
pacing through the steps of building a model. The 
model listing window, for example, has been found 
to be very effective at reducing user memory load by 
providing a quick way to survey an object's 
complete state. This, combined with the graphic 
display, also helps the operator to readily spot 
mistakes rather than exhaustively search for them. 
The feedback also provides reassurance that user 
requests have been detected and correctly 
interpreted. Finally, the graphic cues can be 
exploited as references for faster user inputs. These, 
as well as other usability heuristics, are more 
formally presented in [5]. Other examples of 
PolyFit's user feedback are described in ensuing 
paragraphs. 



In order to reduce training time and push PolyFit 
toward a walk-up-and-use system the 'Design-for
Successful-Guessing' strategy as presented in [6] is 
employed. This strategy includes design principles 
such as: 1) make the repertory of available actions 
salient, 2) offer few alternatives and 3) require as few 
choices as possible. The effects of this strategy 
mostly concern Poly Fit's main panel. The main 
panel is the window located below the message and 
model listing windows described above and 
contains menus, buttons, toggle switches and 
sliders. The menus reduce the user's alternatives by 
grouping together sets of related choices. The 
buttons most frequently used are located near the 
bottom, nearest to the canvas where the images are 
displayed. Buttons concerning similar actions are 
grouped together and the groups are ordered in a 
hierarchy indicating the basic order of actions 
needed to build a model. The label for each button is 
short, but descriptive, and the exit is clearly marked. 

4.2 Model Building 

The modeler's major task in generating the scene 
model is describing the object topologies. This may 
require first analyzing the imagery to develop a 
mental picture of each object's shape. To aid the 
modeler, PolyFit provides a convenient means for 
quickly surveying the available imagery, thereby 
saving the user from having to remember which 
images contain which views. A palette can be 
brought up which displays a small subsampled copy 
of each image, allowing the user to select the 
pertinent views. Image contrasting facilities are also 
provided to improve image quality through 
interactive adjustment of image brightness. 

The user begins to build the object topology by 
designating the location of object vertices in the 
images with a mouse. Each time a new vertex is 
designated another vertex is added to the object's 
topology and an image icon is generated to show the 
location of the designation. In order to achieve 
subpixel accuracy on the vertex designations, a 
local zoom can be performed on the area around the 
vertex. If a vertex is visible in multiple images the 
user can designate new vertex views for each 
image. Conversely, if a vertex is occluded in one or 
all images it can stili be designated, but, the image 
location of the designation will only be used to 
display an icon, which then can be used to 
interactively access the vertex. 

The object's faces are created by selecting the 
vertices which make up the face, using the mouse 
and the previously deSignated icons. Vertex 
selection is accomplished by clicking the mouse 
near a vertex icon. Traversing the face in an 
outward viewing clockwise order defines the face 
with an outward pointing normal. Lines are 
automatically created for each edge of the face. The 
face is textually described in the model listing 
window by listing its vertices by number. The 
canvas icons for each vertex created during the 
vertex designations mentioned above can be 
converted to their respective numerical value via a 
menu option for comparison with the model listing. 

Once the object topologies are defined, the user can 
then assert constraints on the object geometries. 
The types of constraints available to the user were 

450 

described in section 3. The procedure is to select 
the type of constraint from a menu and then select 
the geometric element to be constrained by selecting 
vertex icons within the image display area. 

The next logical step in the process is to invoke the 
solver. The solver first determines whether the 
problem set as currently defined by the user's inputs 
is solvable. This determination is made during the 
solver's constraint elimination process. The most 
common condition that causes an unsolvable 
problem set is that the system is underspecified. In 
this situatio~ PolyFit informs the user which vertex, 
line, or face is underspecified. The user then has 
the option of designating more vertices or providing 
additional constraints. Another condition that can 
cause an unsolvable problem set is when 
incompatible constraints have been defined by the 
user. In this situation PolyFit identifies the 
overconstrained element, and the user simply 
deletes incorrect constraints. If the problem set is 
,.solvable, then the system computes the best fit 
camera/model geometry according to the procedure 
described in section 3. 

After the geometry of the model has been solved it is 
important to have a means of verifying its integrity. 
PolyFit on request will overlay a wireframe plot of the 
model on the images used to construct it. The 
wireframe plot can also be interactively manipulated 
to inspect the back side of buildings or check for 
missing faces. When the solver is invoked the 
overlay is automatically displayed at each solver 
iteration to show the progress of the computations. 

4.3 library Objects 

While PolyFit as described thus far significantly 
speeds the construction of architectural models, 
other features of the interface provide further 
productivity improvements. These enhancements 
concern the use of library objects. Library objects 
are designed to relieve the operator of constructing 
much of the topological and constraint information 
associated with a given building. Instead of 
constructing every building from scratch, common or 
previously modeled shapes can be selected from a 
palette of wireframes. Selection of a library object 
allows the system to automatically create all object 
vertices, faces and internal constraints. The 
operator is then left with the task of vertex view 
designations. 

View designations are accomplished by associating 
a wireframe vertex with an image location. The 
wireframe can be translated and rotated in order to 
aid the operator in making the correct association of 
wireframe vertex to object vertex. Not all vertices of 
the wireframe have to be designated; only enough to 
allow the undesignated vertices to be describable in 
terms of the designated vertices and the constraints. 
The effect is to provide the operator with a simpler, 
more intuitive interface, thus reducing training time 
and increasing productivity. 

4.4 Photo-Texture Extraction 

Photo-textured rendering requires the creation of 
texture maps to be applied to each object face. 
PolyFit allows an operator to choose which image to 
extract the photo-texture from for each face. If a face 



is not visible, a texture or color for the face can be 
chosen elsewhere. 

CONCLUSION 

We have presented an interactive technique for 
extracting 3-D models from single or multiple 
photographs. This system does not require 
precomputed camera models, terrain elevation data 
or ground control points. An algorithm was 
discussed which fuses a" input data into an overaH 
best fit for the model. PolyFit outputs polygonal 
mesh polyhedral models and, if not provided, 
camera models. PolyFit also extracts photo-texture 
for each face of the polygonal mesh for realistic 
rendering from new vantage points. The model 
construction process has been streamlined by a 
sound graphical user interface. 

Poly Fit's success comes from its ability to combine 
the human's photointerpretation skills with the 
computer's computational capabilities. Success has 
been demonstrated through extensive use by 
modelling engineers of GE's Simulation and Control 
Systems Department. 

REFERENCES 

1. Economy, R., Bunker, M., "Advanced Video 
Object Simulation," Proceedings of the IEEE 1984 
National Aerospace and Electronics Conference, 
(May 1984), vol. 2, pp. 1065-1071. 

2. Hanson, A., Pentland, A. and Quam, L., 
"Design of a Prototype Interactive Cartographic 
Display and Analysis Environment," Proceedings of 
Image Understanding Workshop, (February 1987), 
pp. 475-477. 

3. Donovan, K, "Mission Rehearsal Database 
Requirements and Technologies", Proceedings of 
the Interservice/lndustry Training Systems 
Conference, (November 1990), pp 157-162. 

4. Biesel, H, "From Source Materials To Data 
Bases: Higher Fidelity at Lower Cost", Proceedings 
of the Interservice/lndustry Training Systems 
Conference, (November 1990), pp 163-171. 

5. Nielsen, J., MOlich, R., "Heuristic Evaluation of 
User Interfaces," Proceedings of Association for 
Computing Machinery's Special Interest Group on 
Computer Human Interaction, (April 1 990), pp. 249-
256. 

6. Lewis, C., Polson, P., Wharton, C. and Rieman, 
J., "Testing a Walkthrough Methodology for Theory
Based Design of Walk-Up-and-Use Interfaces," 
Proceedings of Association for Computing 
Machinery's Special Interest Group on Computer 
Human Interaction, (April 1990), pp. 235-242. 

451 


	S42BW-110041307060

