
HANDLING INTEGRITY CONSTRAINTS OF COMPLEX OBJECTS
IN SPATIAL DATABASES

Hanna H. Kemppainen
Researcher

Finnish Geodetic Institute, Finland

Commission III

ABSTRACT

The study reported in this paper is based on two assumptions about the importance of the consistency of a
geographical database. Firstly, consistency is an important factor concerning the quality of data. Secondly,
consistency of a geographical object requires that the description of the context of the object is a part of the object
definition.

In object-oriented databases, it is possible to model geographical entities as complex object types whose semantics
are captured through constraints on objects and object relationships.This paper examines the modelling of
geographical objects and spatial relationships between them. A geometrical object model for geographical entities
is presented which consists of 1) the structural definition of the objects, and 2) the enforcement of the implicit
structural constraints as object methods. A modelling technique for specifying explicit constraints on spatial
relationships between objects is also presented.

KEY WORDS: Geographical modelling, Integrity constraints, Object-oriented databases

1 INTRODUCTION

1.1 Motivation

Consistency of a geographical database is an
important factor of quality of geographical data. The
description of quality of data provides information
for a user to evaluate the fitness of the data for a
particular use. This study is motivated by the lack of
support for user-defined constraints in commercial
GIS software. As to the author's knowledge, there are
no such systems where the user might specify
arbitrary constraints on the database. The purpose of
this paper is to present issues related to the
consistency of the data in the database, what is the
meaning of constraints of the database and what the
constraints on geographical database might be. These
issues are handled in order to show what could be
required from a software system that manages a
geographical database as far as the consistency of the
data is concerned.

The specification and enforcement of integrity
constraints in object-oriented databases is studied also
in this study. This is done to show the possibilities of
high level data models to capture semantics of data,
which capability is lacking from conventional, record
based data models. The significance of high level data
modelling lies in the understandability of the
concepts to the end-user of the system, and hopefully
also as a programming work simplifying agent.

A database is a representation of some portion of the
real world, according to the requirements of the
application that the database is going to support with
its data. The requirements for data are specified in the

456

database design phase, and they are formalized in the
database schema. The database schema is an instance of
some data model. The database schema is the
definition of the correct, allowable types of data, whose
instances may be stored in a particular database. The
schema thus constrains the instances of data types to
some pre-defined structure. The requirements that
cannot be presented in the schema are presented
outside the schema, for example, in application
programs. The contents of the database is constrained
in much the same way by these two types of
constraints; only their specification is different.

Consistency is probably the most important criterion
for the use of the database once its usability has
otherwise been demonstrated. As a database serves as
an information-providing element in an information
system, the user of the database has to be sure that he
can trust the image of the real world the database is
offering. Therefore, the user of the database has to
know the semantics of the constraints put on the
database and the processes by which the constraints are
enforced; he also has to understand the results of the
constraint enforcement.

An example of an integrity constraint referring
specifically to a geographical database is that a location
occupied by an object representing a house may not be
occupied by an object representing a lake. Integrity
enforcement automatically relieves the user from
checking the database by hand, or rather, by eye, that
every lake in the database is free from houses. The

specification of integrity constraints is application
dependent; it is the aimed use of the database that
determines the constrained objects and the way they
are constrained.

1.2 Previous studies and outline of this study

The importance of consistency is emphasized in for
example (NCDCDS, 1987, part III, pp.5-6). Description of
consistency tests is proposed as a part of the quality
report of the data. The description of consistency is
thus a part of metadata describing a geographical
database. In (White, 1984) questions regarding the
consistency of a multipurpose geographic data system
are represented. In (Laurini & Milleret-Raffort, 1991),
correct geometric construction of spatial objects is
emphasized, and in (Molenaar, 1991) rules are listed
which can be used to check the consistency of a
database.

In this study, emphasis is on object-oriented modelling
of geographical entities, that is, definition of
geographical object types in object-oriented databases,
and enforcement of their integrity. Geometrical object
model is presented which can be used in describing the
geometrical structure of real world entities. The
structural features of the object model capture the
geometry of an object, while the procedural features of
the model enforce the structural integrity of an object.
Additionally, a technique is proposed by which user
defined constraints may be specified to a geographical
database.

The concepts of object-oriented programming and
databases are not explained in this paper. The author
things that the concepts such as class, attribute,
method, inheritance etc. are generally quite well
known. An earlier paper by author (Kemppainen &
Sarjakoski, 1990) is a review of concepts of object
oriented programming and databases, and their
application to the development of geographical
information systems.

In the next section (2), the relationship between
integrity constraints and 00 data modelling is
discussed in general. Section 3 briefly reviews
geographical modelling and object-oriented modelling.
Section 4 gives an object-oriented data model for
describing the geometrical structure of geographical
entities. Section 5 is a proposition for geographical data
modelling based on the model of section 4, along with
a study of a possible integrity constraint in geographical
application. The ideas of this paper are summarized
and the future research is outlined in section 6.

1.3 Some definitions

The use of concepts such as geographical information
and geographical database, spatial database,
geographical and spatial objects, etc. is not always very
consistent in the litterature. The meaning of some of
these concepts is explained next, the way they are used
in this paper.

Geographical database is a data storage, in which data
about real world entities is stored. The two concepts,

457

'geographical database' and 'spatial database' are used
interchangeably in this paper. Geographical entity is a
real world entity, which is represented by a
geographical object class in the database. The notion of
geographical modelling is understood here as a process
of describing geographical entities by describing their
geometrical and thematic properties.

2 INTEGRITY CONSTRAINTS OF A DATA MODEL

By database semantic integrity is meant the techniques
used to keep the database in a consistent state with
respect to the constraints specified on the database
(Elmasri & Navathe, 1989, p.589). In order to prevent
an inconsistent database state, whenever an update is
applied to the database, the semantic integrity checking
part of the system determines if the update will cause a
constraint violation. The term integrity is used to
cover semantic integrity and transaction integrity.
Semantic integrity emphasizes the meaning of the
integrity constraint, while transction integrity is related
to concurrency control and database recovery
techniques. This paper focuses on the semantic
interpretation of the concept.

Integrity constraints constitute a set of rules that say
what the allowable states of individual objects in the
database are, and thus what the allowable states of the
whole database are. In a database system, the
specification of data types is presented in the database
schema as a description of the data content in the
database. This specification of data in itself constrains
the database: when an update operation is performed
in the database, be it insert, delete or change of some
instance of a data type, the instance is constrained to be
correct according to the data definition. This is implicit
integrity constraint of a data model, i.e. constraint that
is included in the schema. For example, when in a
relational schema some relation attribute is specified
as a key attribute, a check is made during database
update operations that no two tuples having the same
key attribute value are inserted into the database. Other
example of ' implicit relational model constraints is
referential integrity, i.e. tuple value that is not stored
in the database cannot be referred to. Unfortunately,
many of the relational model implementations do not
enforce this constraint according to (Elmasri &
Navathe, 1989, p.145).

What is not implicit in the data model has to be
specified explicitly, outside the database schema. In
other words, what you can't specify using the schema
constructs, you have to program yourself. For example,
in the information system built up above a relational
database the before mentioned referential integrity
constraints have to be enforced in the application
program. The semantics of the data is thus embedded
in code that is not part of the database, meaning that it
is not managed, that is protected from inconsistencies,
as other data on a real-world entity. The problem is
that several different integrity constraints might be
specified to the database, and it is up to the application
programmer to be sure that no two conflicting
constraints are specified.

The inability of the relational data model to represent
semantics on data is one reason why other ways of
modelling geographicat and other highly structured,
data types have been considered during the last ten
years. What is needed in application areas of this kind
are data models which support higher level concepts
than a simple relation. Higher level data models
represent more types of constraints implicitly than
lower-level data models (Elmasri & Navathe, 1989,
p.596). Thus the semantics of data are embedded in the
database schema, not in the application program
handling the data in the database.

The technique of object-oriented (00) data modelling
is based on the concept of object, coming from object
oriented programming (Booch, 1986, Kim, 1990, pp.7-
11). With a single object, it is possible to present both
structural and procedural data about a real world
entity. Object class definition presents an abstraction
which has been made about a real world. The
abstraction might be an association or an aggregation of
classifications made before (Sowa, 1984, pp. 103-123,
Nyerges, 1991, pp.76-82). Other abstraction techniques
are generalization and specialization, which broaden
or lessen (respectively) the meaning of an existing
abstraction. These are the techniques for getting more
semantics into the database schema, and which
simplify the application programming. An object
oriented model is implicitly a constrained description
of a real world, making it easier to understand the
semantics of data.

This does not mean, however, that the problem of data
modelling can be forgotten. 00 databases offer
modelling concepts that are richer in semantic content
than those of relational model, and the specification of
data types might be more convenient, but the
underlying problem still remains: What is the
geographical knowledge that has to be captured in a
particular problem area, that is, what are the
geographical objects.

3 OBJECT-ORIENTED GEOGRAPHICAL DATA
MODELLING

What can be required of a geographical data model? It
should automatically provide answers to questions
that can be answered by visual inspection of a map
image (White, 1984, p.16). This requirement implies
that the data model should provide concepts similar to
the user's experiences of the world (Mark & Frank,
1989), such as object, collection, part-whole, link,
containing, near-far, etc. Geographical data modelling
is a process whereby these experiental model concepts
are mapped as mathematically defined concepts.

The experiences described above can be formally
modelled using concepts of geometry. The geometry of
a map requires three geometrical base objects (O-cells,
I-cells, 2-cells), two relations (0-1 incidence, 1-2
insidence), and metrical descriptions of the objects
(coordinates and shape) (White, 1984, p.16). The
topological portion of a map geometry consists of base
objects and incidence relations between them. The
insidence relations constrain the touching of base

458

objects and, further, provide concepts with which the
relationships between the base objects can be described.
The concepts of the topological interior and boundary
of a geometrical base object are derived from the
incidence relation betWeen the objects. For example,
the boundary of a 2-cell is defined as a set of incident
I-cells to the 2-cell. The mathematical formulation of
the topological interior and boundary concepts has
been discussed in (Egenhofer & Franzosa, 1991). The
geometrical view of geographical modelling
emphasizes the topological properties of geographical
entities; the coordinates and shape of the base objects
are metrical properties of these objects.

Geographical data modelling is a process whereby an
abstraction is made of a real world entity so that the
geometrical properties of the entity are emphasized,
and semantics are given to the geometrical abstraction
by naming the abstraction and characterizing it with
attributes. The neighbourhood of an entity, i.e.
associated entities are modelled using concepts that
emphasize the meaning of the neighbourhood. For
example, neighbourhood inferred from the geometry
of an entity might be modelled using the incidence
relation, while other kinds of neighborhoods might be
modelled as sets or tuples.

Object-oriented geographical data modelling is defined
here as a description of some portion of geographical

.reality using the concept of an object, as defined in the
preceding section. Thus a geographical entity, along

with its neighbourhood entities, can be described as a
single object, resembling the conceptualizations
humans make about reality.

4 AN OBJECT-ORIENTED DATA MODEL FOR
SPATIAL DATA

This section gives an object-oriented data model for
describing the geometrical structure of geographical
entities. The model emphasizes the geometrical
properties of geographical entities. Certain geometrical
object classes are defined, which are then used as
modelling primitives for geographical object types.
The geometrical objects are independent of any
application domain, and describing only the geometry
of a geographical object. For example, line string is a
geometrical object class, which can be used to define
the geometry of a geographical object, say, a river, or a
boundary line of a river. Geometrical object classes are
structural primitives of the model. Spatial
relationships between geometrical objects are modelled
using the concepts of topological interior and
boundary.

The model also includes operations on object classes,
which change the structure of an object or derive a
new object from an existing object. These operations
are called object methods. For example, the method
named boundary defined for a particular object class is
a procedure that extracts the topological boundary of an
object.

COMPONENT
DOMAIN

COMPONENT

AGGREGATION
OBJECT

COMPONENT
DOMAIN

COMPONENT

(D...-----J;
.::t.

ASSOCIATION
OBJECT

outer CONNECTED

?~:~;;>, sp i(.:E :qAREA
\ ,.{ '~ STRING Al'!
,j<: ~ ep ip .. ; .. ll:/' /

L--..J .. //.

/ I < :::~~~ DISCo,.:~CTED
.. /;;,/ "

......................... :::::,
AREA

PARTITION
....•...•..•...•..••..•..•.

•..•......•.•
•.....•.•.•..•..•.....•..........

.. :
;::> ••.••.••

.- ,/r"',~/"'''',/

Figure 1. Geometrical object classes.

As mentioned before, the concepts of the model, or
modelling primitives, and operations on them are
chosen so that they do not imply any semantic content
which cannot be described formally. The semantics of
objects are captured in the application specific database
schema by naming the geometrical objects and
characterizing of them with attributes. It is up to the
database designer to decide which concepts of the
model he wants to use, depending on the processing
requirements of the application. For example,
geographical reality could be modelled as a collection
of isolated geometrical objects, with no spatial
relationships between them, or the relationships could
be taken into the model, thus permitting information
on the context of an entity to be captured.

4.1 STRUCTURAL FEATURES OF THE MODEL -
OBJECT CLASSES

The geometrical object model is represented
graphically in Figure 1. In the figure, only the
structural features of the model are shown, the
operations, that is, methods of object classes are

459

described in a later section. The following conventions
are used in the figure. Circles represent abstract classes,
and rectangles represent stored attribute values. The
ISA relationships between objects are shown by
unlabelled arrows. Labelled arrows denote attributes of
an object class. Multivalued attributes have double
arrowheads. As far as the instantiation of the model is
concerned, note the two types of values of an attribute:
the value may be stored as a simple value (rectangle),
or it may be another object, that is, its identification.
Grey arrows indicate the domain of the attributes.

The model consists of abstract object classes, and
operations, that is, methods defined for them. There
are two types of classes in the model 1) Classes that
serve for definitional purposes, which by themselves
do not describe the geometry of an object. These classes
provide a general abstraction mechanism.
AssociationObject and AggregationObject are such
classes. 2) Geometrical objects, that are subclasses of the
classes mentioned above.

I

OBJECT CONSTRAINTS ON AN OBJECT

LINE STRING not intersecting itself

CONNECTED area boundaries are closing line strings,
AREA not overlapping, and with ordering property

DISCONNECTED component areas non-overlapping
AREA

AREA PARTITION
set of non-overlapping areas
with covering property

Figure 2. Additional constraints on some geometrical objects

AssociationObject and AggregationObject are both
aggregations of ComponentDomain and Component.
The Component attribute of each classes is constrained
by the ComponentDomain, in which the possible
components of the class are listed. ComponentDomain.
provides a grouping mechanism for the objects that are
the only possible building blocks of the aggregate.

Geometrical objects of the model consist of geometrical
base objects and geometrical complex objects. The
geometrical base object classes are Point, LineString
and ConnectedArea. Higher level geometrical objects,
which are called geometrical complex objects, are
formed by aggregating or associating the base objects.
The geometrical base objects are aggregates themselves,
for example, point is an aggregate of two or three
coordinate values forming a tuple. In this modelling
scheme, a distinction is made between the base objects
and the complex objects is made to give an idea of the
logical connection of this model to the geographical
modelling conventions in general. Geometrical
complex objects of the model are DisconnectedArea,
AreaAssociation, LineAssociation, and AreaPartition.

The object classes are described by their attributes in
Figure 1. Figure 2 gives a listing of the implicit
constraints on the object classes that are not included
in the Figure 1. The implicit constraints on the object
classes determine the implicit integrity of the object.
For example, the boundary line string(s) of a connected
area is constrained to be closing. On the other hand,
the boundary line string is an instance of the
LineString class whose instances are constrained so
that they may not intersect themselves. In this case, the
constraint of the component class propagates to the
owner aggregate.

The most complex object in the model is the
AreaPartition object, whose components are areas and
line strings. The semantics of AreaPartition lies in the
covering property of the object, so that the subareas,
that is, areas constituting the area partition may not
overlap each other. This geometrical object type is used
to define the geometry of a geographical phenomenon
that is known to exist allover the geographical region
to be modelled, for example, land use, or real estate
division. Note the similarity of this geometrical object
type with the consistency principle of a map database
in general, presented in (White, 1984).

460

4.2 OPERATIONAL FEATURES OF THE MODEL -
OBJECT METHODS

The implicit integrity of the geometrical object model
described above is enforced by the methods of object
classes. The methods consist of procedures that
determine whether or not the state of an object is
consistent with respect to the class definition; the
procedure can also affect the state of an object so that it
will reach the consistent state. For example, the
consistency of an instance of the ConnectedArea class
is enforced by a defining a method for the class that
determines whether or not the boundary of a
particular instance is closing.

Constraint analysis is a possible design process for the
object-oriented database design environment (Urban &
Delcambre, 1990). In the process, the constraints on
object classes are first specified using first-order logic
representation, which is then converted to Horn clause
form. The Horn clauses are numbered, and they are
arranged to a graph based the dominating relationship
between two clauses. The authors of the paper
mentioned above propose that the constraint graph
can be used as a help when specifying methods for
object classes.

In this study, the analysis of object methods is based on
the idea of constraint analysis, but the handling of the
problem is different. The analysis of object methods is
performed based on the figure 3 which is a description
of order between geometrical objects. The semantics of
order between objects are the following. If an object
class is defined as an aggregate (or an association) of
other object classes, the aggregate (association) follows
its component classes in the orderscheme. In figure 3,
object B follows object A, if object A is in the head of
the arrow connecting the two objects. For example,
LineString follows Point, because the geometry of a
line string is determined by points. Thus, LineString
class should be provided by a method, that checks that
the components of a line string instance do exist (as
instances of the ComponentDomain of ConnectedArea
class). Methods for the object classes are listed in Figure
4 based on the structural features of the model (Figure
1) and the order between the objects as in (Figure 3).

POINT ~ LINE STRING ~C:::::C~A~~A

AREA

~
LINE • AREA

ASSOC~ ASSOCIATION

AREA PARTITION

Figure 3. Order between geometrical object classes.

ATTRIBUTE THAT
OBJECT METHOD METHOD INPUT METHOD ACTION GETS VALUE BY

THE METHOD

Association CheckCom ponent ComponentDomain Check that component -
is member of Object Component

ComponentDomain

Aggregation CheckCom ponent Component Domain Check that component -
Object Component is member of

ComponentDomain

Point XYZ coordinate values Assign values to x, Y,z
attributes

LineString StartPoint Set of points Assign values to sp, ep, ip
EndPoint (association of attributes

InterrnediatePoint points)
Inte rsectsltself Check that line string does

not intersect itself

Connected Closing Boundary Instance(s) of Determine order outeCboundary
Area OuterBoundary LineString class between boundaries innecboundary

InnerBoundary
Boundarieslntersect

If more than one boundary,
Check that no two

boundaries intersect

Disconnected AreasDisjoint Instances of check that areas componenCarea
Area ConnectedArea are distinct

class

AreaPartition NeighborsForLineString Instances of each ap_line is associated ap_area
NuliArea ConnectedArea or with two ap_areas; ap_line

One Piece DisconnectedArea one null area exists; null_area
class one outer boundary;

Figure 4. The methods that enforce the implicit integrity of object classes.

4.3 SPECIFICATION OF SOME EXPLICIT
CONSTRAINTS ON GEOMETRICAL OBJECT TYPES

The geometrical object model that is represented in
this paper consists of geometrical object classes along
with methods that enforce the structural integrity of
the classes. The model depicted in Figure 1 is static in
the sense that it does not provide modelling constructs
that make it possible to constrain the spatial
relationships between the geometrical object types.
This study is based on the assumption, that in a
geographical database it should be possible to specify
user defined, arbitrary constraints on the object classes.
The fact that some constraints on geographical objects
are heavily application dependent, has the following

461

consequences: It is the application database designer
who knows best what the constraints on database
should be. These constraints don't need to be, or
rather, they should not be included implicitly in the
data model, because all of them might not be needed in
an application, and thus their enforcement would
cause unnecessary processing overhead. Rather,
constraints that are typical to a certain application
should be specified as explicit constraints.

Next, the model depicted in Figure 1 is extended by
modelling constructs that make it possible to specify
explicitly user-defined constraints on object classes
whose semantics are derived from the spatial
relationships between objects. Such modelling
constructs could be modelling methods of the

geometrical object model. Modelling method is a
metalevel concept in the model.

The modelling methods of the geometrical base object
classes are named Boundary and Interior. The action of
these methods is to extract the topological boundary
and interior of the instance of the class. Spatial
relationships between geometrical base objects can be
described formally with these concepts. The
specification of binary spatial relations is given in
(Egenhofer & Franzosa, 1991). According to them, the
binary spatial relationship between two point sets can
be determined by examining the intersection of the
topological boundary and interior of these two point
sets. In the paper mentioned above, the authors
formalize the concepts that describe binary spatial
relationships between two area objects, such as
disjoint, touch, overlap, equals, inside, covered by,
overlap with disjoint boundaries, and overlap with
intersecting boundaries. Formal definitions for spatial
relations are a starting point for the definition of
arbitrary spatial relationships between any two
geometrical objects. What is still needed is the
development of the theories of the previous study to
cover higher level geometrical object types, such as
area partition proposed in this study.

The action of the Boundary and the Interior methods
is to extract the topological boundary and interior of
the object class for which the methods have been
defined. The binary spatial relationship between two
object types is defined by the boundary and interior
points sets of a particular class. An example might
clarify the use of this approach: A user of the system
might define a constraint on two different area types by
help of the Boundary and Interior methods. Suppose
that these two areas represent area type A and area type
B. A constraint could be specified, whose semantics is
the following: area type A must be disjoint from area
type B. The method Is Distinct might enforce this
explicit constraint: the input to the method are to
instances of (for example) ConnectedArea class, and
the method action is to determine whether or not an
instance of a LineString class is shared by the two
ConnectedArea instances.

The constraints of this kind can be enforced by the
sequencing of methods of geometrical base object
classes given in Figure 5.

5 GEOGRAPHICAL MODELLING BASED ON THE
ABOVE MODEL

On the basis of the model of geometrical objects
defined above, the following is proposed concerning
the geographical modelling for object-oriented
databases:

1) The geometrical structure of a geographical entity is
modelled using the geometrical object definitions
above, and other structural characteristics are described
by additional attributes. The result of this modelling
step is a geographical object class definition.

2) The neighbourhood of a geographical entity is
modelled by forming associations and aggregations of

462

OBJECT OUTPUT FROM THE OUTPUT FROM THE
BOUNDARY METHOD INTERIOR METHOD

Point Point itself

LineString Start point, End point Line string itself except its
start point and end point

Connected Bounding line strings Area itself except the

Area boundary line strings

Figure 5. Description from the output of the modelling methods. The
specification of output is based on (Egenhofer & Franzosa, 1991).

geographical objects. Associations and aggregations are
defined using the concepts of the topological boundary
and interior of the geometrical objects underlying the
geographical ones. The result of this processing step is
the definition of a named neighbourhood of a
geographical object class.

The two definitions are then used in the
implementation of the system. An example of the
proposed modelling scheme is represented next.

5.1 Example of geographical modelling using the
geometrical object model

The process of geographical modelling based on the
geometrical object model presented in this paper is
described using a simple example. Suppose that an
application needs information on the areal extents of
.three land use classes, viz. mainlands, islands and
water areas, in some study area. The dimensions of the
study area are clearly defined, for example, by
geographical coordinates, and it has been decided that
the boundaries of the land use classes are digitized
from topographic maps on a certain scale, say, 1:100
000. It is now the job of the database designer to design
an appropriate data model for this application, so that
the information on the land use classes is correct with
respect to the geographical reality of the map sheets to
be digitized.

On the basis of the semantics of the land use classes,
the following constraints are put on database:
1) The individual land use classes are represented as
connected or disconnected areas.
2) The three land use classes may not overlap.
3) Every location in the study area must be occupied by
some land use class depicting area.
4) An area object representing mainland cannot touch
(see section 4.3), that is, be the neighbour of an area
object representing an island.

The analysis of these constraints, and the geometrical
object model represented in this paper leads to the
following choices in the schema design. The study area
geometry is defined as a reference to the AreaPartition
class, because of the constraint of non-overlapping
areas, which cover the whole study area. Constraints 1
through 3 are implicit in the geometrical object model.

Constraint 4 has to be specified as an explicit constraint
in the schema, by defining it using the Boundary and
Interior methods of the ConnectedArea class.

Constraint 4 can be enforced by defining a method
FindNeighbor for the Mainland class using the
Boundary and Interior methods defined for the
ConnectedArea class. The neighboring areas for
Mainland are modelled as a MainlandNeighbors class,
which is defined as a subclass of the AssociationObject.
The MainlandNeighbors inherits the properties of its
superclass. ComponentDomain of Mainland
Neighbors is a set of bindings to the instances of
Mainland class, whose instances share common
LineString instance with the Mainland instance under
inspection. The last step in the enforcement of
constraint 4 is to iterate through the instances of
MainlandNeighbors, and check that no instances of
Island class belong to that set.

A list of actions made by the database designer, or
database user, creating a database of the above example
is given next. The list is based on the assumption, that
a software system exists, which is an implementation
of the structural and procedural features of the model
of figure 1. If such an implementation exists, the object
classes of Figure 1 and their methods listed in Figures 4
and 5 can be used as modelling constructs.

1. Define Mainland class and Water class as of
ConnectedArea type. Define Island class as of
DisconnectedArea type.

2. Define Study Area as of AreaPartition type.

3. Store Mainland, Water and Island class names as the
ComponentDomain of Study Area.

4. After the digitization, enforce the integrity of Study
Area instance by activating the methods
NeighborsForLineString, NullArea and OnePiece
(see Figure 4). Result of this step is the values for the
ap_area, ap_line and null_area attributes of the
Study Area instance.

5. Define FindNeighbor method for Mainland class.
Define the method by the Boundary method.

6. For each ap_area belonging to the Mainland class,
create MainlandNeighbors class. Send FindNeighbor
message to Mainland instance. ComponentDomain
of MainlandNeighbors gets its value from the
execution of the method.

7. Iterate each Component in ComponentDomain of
MainlandNeighbor, and check that Component does
not belong to the Island class.

6 DISCUSSION AND CONCLUSION

A geometrical object model for the definition of the
geometry of geographical entities has been given in
this paper. With this model, the author has tried to
demonstrate two things. Firstly, what are the possible
object definitions of geographical entities, when the
concept of object is understood in object-oriented
programming and databases. Secondly, the
enforcement of implicit and explicit integrity of the
object classes is studied. The author proposes that the
integrity enforcement of object classes is put into effect
by object methods.

463

A model of this kind offers a way to describe complex
geographical phenomena using a few well-defined
concepts, instead of being compelled to code the
semantics of phenomena in application programs. It is
also proposed in this paper, that the user should be
provided by modelling constructs, that can be used in
specifying explicit constraints on spatial relationships
between objects.

The ideas of this paper have developed from the
author's interest in object-oriented modelling in
general, and also from the inability of existing
commercial software to offer modelling constructs by
which any constraint could be put on a database. The
author thinks that such ability is needed when creating
consistent databases, where the description of the
context of a geographical entity is an important factor
affecting the integrity of a database.

This paper has represented some modelling constructs,
and an outline for the definition of spatial
relationships between the constructs. What still needs
developing is the object modelling of hierarchies
between area partitions, and how their integrity is
enforced as methods of objects. The modelling of
spatial relationships between complex geometrical
object types also demands further studies.

ACKNOWLEDGEMENT
This study has been carried out in Finnish Geodetic
Institute, in the Department of Cartography. The
author would like to thank Prof. Tapani Sarjakoski,
who has given motivation for this work. The
discussions with him have greatly contributed to my
understanding of the problem area.

7 REFERENCES

Booch, G. 1986. Object-oriented Development. IEEE
Trans. Software Engineering, SE-12 (2) : 211-221.

Egenhofer, M.J. & Franzosa, RD. 1991. Point-set
Topological Spatial Relations. Int. J. Geographical
Information Systems,S (2) : 161-174.

Elmasri, R & Navathe, S. 1989. Fundamentals of
Database Systems. The Benjamin/Cummings Pub!.
Co, Redwood City, California.

Kemppainen, H. & Sarjakoski, T. 1990. Object-oriented
GIS A Review and a Case Study. The
Photogrammetric Journal of Finland, 12 (1) : 93-107.

Kim, W. 1991. Introduction to Object-oriented
Databases. The MIT Press, Cambridge, Massachusetts.

Laurini, R & Milleret-Raffort, F. 1991. Using Integrity
Constraints for Checking Consistency of Spatial
Databases. GIS/LIS '91, Atlanta, Georgia, pp. 634 -642.

Mark, D.M. & Frank, A.U. 1989. Concepts of Space and
Spatial Language. AUTO CARTO 9. Ninth
International Symposium on Computer-Assisted
Cartography. Baltimore, Maryland, pp. 538-556.

Molenaar, M. 1991. Formal Data Structures, Object
Dynamics and Consistency Rules. In: Ebner, H., Fritz,
D. & Heipke, C. (Eds). Digital Photogrammetric
Systems. Wichmann, Karlsruhe, pp. 262-273.

NCDCDS, 1987. Issues in Digital Cartographic Data
Standards. Report #8, A Draft Proposed Standard for
Digital Cartographic Data. National Committee for
Digital Cartographic Data Standards, Columbus, Ohio.

Nyerges, T.L. 1991. Representing Geographical
Meaning. In: Buttenfield, B.P. & McMaster, RP. Map
Generalization: Making Rules for Knowledge
Representation. Longman Scientific & Technical, Bath
Press, Avon, pp. 59-85.

Sowa, J.F. 1984. Conceptual structures. Information
processing in mind and machine. Addison-Wesley
Publ. Co.

Urban, S.D. & Delcambre, L.M.L. 1990. Constraint
Analysis: A design Process for Specifying Operations
on Objects. IEEE Trans. Knowledge and Data
Engineering, 2 (4) : 391-400.

White, M.s. 1984. Technical Requirements and
Standards for a Multipurpose Geographic Data System.
The American Cartographer, 11 (1) : 15-26.

464

