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Abstract 

Image understanding is the enterprise of automating 
and integrating a wide range of processes and repre­
sentations used for vision perception. It includes tech­
niques not only for geometric modeling but also for 
inference and reasoning. In this paper, we look at the 
issue of inductive inference in digital image under­
standing. Many goals in both low-level and high-level 
image analysis can be formulated generally as a pro­
blem of inferring object-properties from image data, 
having assistance of a priori knowledge. This process 
of information processing would be called image in­
version, as the desired information about the objects 
is derived from image dat.a. Based on the inverse pro­
blem theory, we provide a sound theoretical basis for 
determination of generalizations, descriptions, rules, 
and laws, from a set of raw data, observations, featu­
res or facts. To demonstrate this approach, we present 
its application in the limited domain of surface recon­
struction from multiple images. 

1 Introduction 

Computer Vision includes techniques not only for geo­
metric modeling but also for inference and reasoning. 
Many of its tasks require the ability to create explicit 
representations of knowledge from implicit ones and 
they can be therefore formulated as problems of infe­
rence drawing. Drawing inference from image dat.a is 
only plausible as the available information is incom­
plete or inexact and it is inadequa.te to support. t.he 
desired sorts of logical inferences. 

Plausible inference is a basic issue, of which we are 
all aware through our own experience in research on 
many vision problems, including feature extraction, 
image and boundary segmentation, object. reconst.ruc­
tion and image interpretation. In these cases, problem 
solvers have to reason with inconsistent and incom­
plete informat.ion on the basis of beliefs, not only true 
(or false) facts. 

In this paper, we think of inference drawing from di­
gital images as an inverse process which we call di-
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gital image inversion (Zheng, 1990). Drawing plau­
sible inference is therefore solving ill-posed inverse 
problems. Although this kind of problems have been 
considered for a long time almost exclusively as ma­
thematical curiosities, it is now clear that many in­
verse problems have ill-posed nature and their solu­
tions are of great practical interest (Herman, 1980; 
Fawcett, 1985; Poggio et al., 1985). To deal with ill­
posed inverse problems, one has to deal with several 
questions including: What is the nature of inverse pro­
blems? How about their solvability? How to integrate 
a priori knowledge to deal with the ill-posedness of 
inverse problems? And how to evaluate the quality of 
solutions? 

"Ve begin by introducing a paradigm for digital image 
inversion, which has three steps of representation, for­
ward modeling and inversion. Then, we discuss the 
theory of inductive inference and inverse problems. 
Based on the Maximum A Posteriori (MAP) we des­
cribe a framework for integrating a priori knowledge 
to solve the decision problem in the ill-posed inverse 
process. Next, we formulate the problem of surface 
reconstruction from digital images within this fra­
mework. We then demonstrate shortly the result of 
our implementation and experiment results using real 
image data. 

2 Digital Image Inversion 

Generally, vision can be regarded as an inference pro­
cess in which a description of the outside world is 
inferred from images of the world, having the aid of 
a prioT'i knowledge about the world and about ima­
ging process. Here, three kinds of information have to 
be dealt with, i.e. the desired information about the 
outside world, the available information contained in 
images, and the a priori information of image inter­
preters. 

Now, let S represent a physical system (for instance 
the earth's surface, or an object in an image). Assume 
that we are able to define a set of model pa.rameters 
which completely describes S, to some extent. These 
pa.rameters may not all be directly measurable. VVe 



can operationally define a set of some observable pa­
rameters Y whose actual values hopefully are relata­
ble to a set of the model parameters .-1;'. To solve the 
forward problem is to predict the values of the ob­
servable parameters Y E y, given arbitrary values of 
the model parameters X EX. To solve the inverse 
problem is to infer the values of the model parame­
ters X from given observed values of the observable 
parameters Y (cf. Tarantola, 1987). 

Obviously, many problems in computer vision can 
be formulated as such inverse problems (a particu­
lar kind of inference process called induction). The 
scientific procedure to solve these inverse problems 
distinguishes the following three steps: 
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1. Representation (parameterization) of System 
S: Designing a language to represent the cha­
racteristic features of S. That is, establishing a 
minimal set of model parameters X whose values 
completely characterize the system (from a given 
poin t of view). 

2. Forward nlodeling: Identification of the phy­
sical laws (constraints) which, for given values 
of model parameters X, allow predictions as to 
the results of measurements on some observable 
parameters Y. 

3. Inversion: Use of the actual results of some mea­
surements of the observable parameters to infer 
(estimate) the actual values of the model para­
meters. 

Inductive Inference 

The term inference refers generally to effective pro­
cedures for deriving new facts from known ones. To 
draw an inference is to come to believe a new fact on 
the basis of other information. There are many kinds 
of inference. The best understood is deduction, which 
proceeds from a set of assumptions called axioms 
to new statements that are logically implied by the 
axioms. The deductive inference is logically correct as 
deduction from true premises is guarant.eed t.o result 
in a true conclusion. The standard way to chara.cte­
rize deduction is by using a systf'1ll callp,d predicat.e 
calculus which consists of a language for expressing 
propositions and rules for how to infer new facts (pro­
positions) from those we already have. To deduce new 
facts from the axioms, we use one or more so called 
rules of inference. 

A second kind of inference, on t.he other halld, is cal­
led induction, which is a calculus for inferring gene­
ralizat.ions from particular observations. This induc­
tive inference process could be thought of as having 
the form" from: if (X -->. Y) and Y, infer: X " and 
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Variables Pre1nises Conclusions 
X Y X --+ },.. -,y X -,X 
T T T F T F 
T F F T T F 
F T T F F T 
F F T T F T 

Table 1: Truth table used to draw inference 

it performs abstraction, producing generalities from 
specifics. The inductive inference can be illustrated 
using a simple example of geometrical reasoning from 
which we wish to answer a question: 

Given a set of geometrical points P = 
{Xi, yil, i = 1, ... , n. Infer if this set of points 
depicts a straight line. 

To answer this question, we can use some statements 
that express information during inference: 

If P represents a straight line, then y = 
a X + b is valid for all poin ts of P, where 
a and b are two constants. Some points of P 
do not fulfill y = a X + b. Does P depicts a 
straigh t line? 

In order to express these statements, we have to agree 
on a suitable set of atomic propositions like: 

• X: P depicts a straight line. 

• Y: y = a x + b is valid for all poin ts of P. 

The original statement,s expressing information du­
ring inference are called premises and can be descri­
bed as follows: 

X --+ Y, -,y 

So, the question would be answered if we could prove 
the proposition X from the premises, or alternatively 
if we could prove -,X. Since t.his is a small problem, 
we can easily employ an exhaustive examination of 
all possible assignments of truth values to the pro­
positions X and Y to check for t.he validity of either 
possible conclusion. Using the so called truth table 
(cf. Tab. 1) we can list all the possible combinations. 
Let us first c.heck t.he validity of X as a conclusion 
by examining every row in which all two premises are 
trut.h. In this example there is only one row ,vhere all 
premises are t.ruth (the bottom row). It is intuitive 
t.hat t.he potential conclusion X is false here whereas 
-,X is true and this corresponds to the correct ans­
wer: P does not. depict a straight line. 



The reasoning method just illustrated is called per­
fect induction. Here, the available information which 
is necessary to support the desired logical inference is 
perfect. This means that all the statements only have 
two values for their validities, either true or false, and 
we are able to check exhaustively all the possible com­
binations. Unfortunately, in many practical problem­
solving situations, especially in image analysis and 
understanding, the available knowledge is inCOl~plete 
or inexact. The coordinates of the points in P, for ex­
ample, may contain measure-errors and only from the 
fact that some poin ts of P do not fulfill y = a x + b 
we can not come to the conclusion that P does not 
depict a straight line. So, the validity of Y (or ..,Y) 
is not binary and not easy to prove if we do not have 
knowledge about measure-errors. In cases like this, we 
need reasoning methods in making just decisions. 

4 Inverse Problems 

Mathematically, the inverse problem can be described 
as follows. Given a mapping f from set .l' int.o set. y, 
i.e. f : .l' -+ y. The solut.ion of the inverse problem 
consist.s in the interpretation of dat.a Y E Y in order 
to recover the original image X E ,l'. This is exactly 
the same goal as that of an inductive inference men­
tioned above. 

Let us now consider a linear mapping A : .1:.' -+ y. 
The inverse problem is to identify X from the data 
Y: 

AX=Y. (1) 

The solvability of this inverse problem could be dis­
cussed as follows: 

• If A is bijective and A -1 is stable one can easily 
get an unique solution X = A -1 Y. 

• If A is injective but not surjective, the inverse 
problem is overdetermined and has no solution. 
One can, however, get an unique pseudo solu­
tion through minimizing the norm of the residual 
IIVII = IIY - AXil· 

• If A is not injective, t.he inverse problem is under­
determined and there is an unique pseudo solu­
tion X = A + Y, where A + is the so called Moore­
Penrose Inversion, which, unfortunately, is only 
stable if the domain of A is closed in Y. 

So, it is quite clear that the ambivalent non-injective 
inverse problem is practical not solvable through a. 
numeric process, as any few errors in Y can destroy 
the solution totally. 

Schematically, there are two reasons for the ill­
posedness of inverse problems: intrinsic lack of data, 
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and observation uncertainties. With additional infor­
mation, for instance some a priori assumptions on 
model parameters X or an additional data set, many 
such problems can be reformulated into well-posed 
solvable problems. Now, the main question is how to 
integrat.e a priori knowledge to solve ill-posed inverse 
problems. vVe need criteria to impose constrains on 
the solution space and a framework to integrate a 
priori knowledge in order to select an unique solution 
(the so called best solution) for given data. Intuit.i­
vely, the best solution exists only in connection with 
criteria which are~. of course, strongly task dependent. 

5 The MAP Criteria 

The first criterion which we would int.roduce in this 
section is the so called "Maximum A Posteriori (MAP) 
crit.erion which is based on probability theory (Geman 
and Geman, 1984 ). It selects as the best solution the 
model parameters X that maximizes the conditional 
probability of X given the data Y: P(X I Y), subject 
to the inverse problem (1). The MAP criterion leads 
to three important estimation methods, namely the 
bayesian estimate method (BE), the ma.ximum like­
lihood method (l\JL) and least squares method (LS) 
(cf. Tab. 4), which are widely used in data processing. 
Using Bayes' theorem gives 

P(X I Y) = PCY I X)P(X)j P(Y), (2) 

where P(Y I X) is the conditional probability of get­
ting data Y given the model parameters X, P( X) are 
the prior probability of X. The relation (2) shows how 
the prior probability P(X) changes to the posterior 
probability P( X I Y) as a result of acquiring new infor­
mation Y. Intuitively, the MAP criterion will choose 
X that maximizes 

P(Y I X)P(X), (3) 

if P(Y) is constant. This is t.he principle of the 
Bayesian estimation. Further, under the specification 
that t.he prior probabilities P(X) are all the same, 
i.e. P(X) is constant, the MAP criterion leads to 
the simpler maximum likelihood principle of selec­
ting that X which maximizes P(}' I X). If the ran­
dom variables to which the data Y refer are normally 
distribut.ed, the maximum likelihood estimation will 
give t.he same result.s as t.he least. squares estimation 
which has widely been used in different. branches of 
scienee and engineering for over a century and a half. 
If V is t.he vector of observational residuals, for which 
E(V) = 0, and which is assumed to be normally dis­
tribut.ed, and E is t.he cova.riance ma.trix of t,he distI'i­
bution, then we have 



criterion expression supposition 
MAP P(X I Y) -l- max 
BE P(Y I X)P(X) -l- max * 
ML P(Y I X) -l- max ** 
LS Vll,';-l V -l- m,in *** 

* P(Y) =constant 
** P(X) =constant and * 
*** V "-' N(O, l,';) and ** 

Table 2: The MAP criterion and its progenies 

where C is constant. It is to see that the least squares 
criterion is to minimize VTl,';-l V which is equivalent 
to using a maximum likelihood estimation to maxi­
mize P(Y I X). 

So far, we have discussed the MAP crit.erion and its 
progenies. Obviously, each criterion has its own sup­
position (cf. Tab. 4). The LS criterion which is so wi­
dely used in data processing as a general framework 
for problem solving is, for instance, only suitable for 
dealing with over-constrained inverse problems. For 
under-constrained inverse problems the MAP crite­
rion is more appropriate as it provides a flexible fra­
mework to integrate a priori knowledge to restrict 
the solution space and one can take the probability 
behavior of both the data and the desired solutions 
into account. There are many problems in compu­
ter vision, especially in the low-level image proces­
sing, including edge detection, spatial-temporal ap­
proximation, image segmentation, image registration, 
and surface reconstruction (cf. Poggio et a1.,1985), 
which are unfortunately of under-constrained nature 
and whose solutions demands on new inference tech­
niques beyond the LS estimation. 

6 Restricting Solution Space 

The MAP criterion provides a general approach to 
handle the inverse problem in an uncertain environ­
ment. It gives a mechanisms to restrict the solution 
space and to integrate a priori knowledge by specify­
ing the appropriate prior probabilities P(X). Howe­
ver, the MAP criterion doesn't tell how to construct 
P(X). In this section we look at this issue. 

The parameter set X, as men tioned\' earlier, represent.s 
a physical system and can be considered as a parame­
ter space. In principle, every point X E .l' represents 
a possible solution. It can be easily imagined t.hat not 
all points in the solution space are meaningful. Our 
job is to explore the solution space to find an appro­
priate point (solution). So, the first problem is how to 
measure the appropriateness of a solution and how to 
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describe the solution space. A general way to do this 
is to define a probability distribution of the solution 
space P(X) (Tarantola, 1987). 

Let X be a set of parameters representing the 
state of a Markov random field. According to the 
Hammersley-Clifford theorem (cf. Geman and Ge­
man, 1984; Chou and Brown, 1988), this random field 
can be described by a probability distribution of the 
Gibbs form: 

P(X) = ~ exp [-~£(X)] , X EX, (5) 

where C is a normalizing constant, T is the so called 
temperature of t.he field that controls the flatness of 
the distribution of the configurations X and £(X) is 
the energy of X which consists of the sum of the local 
potential 

£(X) = I: Ve(x). (6) 
xEX 

The relation (5) suggest.s that the point in ...1:' with a 
higher energy occurs less likely. 

Now, let us look at the ill-posed inverse problem (1). 
According to the the least squares criterion (cf. Tab. 
4), one can get an unique pseudo solution through 
minimizing VTl,';-l V, with respect to 

V=AX-Y. (7) 

This leads to solving the normal equation 

(8) 

Certainly, the normal matrix N = ATl,';-lA is regu­
lar only if the problem (1) is overdetermined. This 
suggests that the least squares criterion can only be 
used to deal with overdetermined ill-posed inverse 
problems. For underdetermined ill-posed inverse pro­
blems, which emerge so often in image understanding, 
the least squares criterion can not help us to find a 
satisfying solut.ion, as it does not. have a mechanism 
to restrict the solution space. 

Using the bayesian est.imate method (BE) (cf. Tab. 
4), we have the following optimizing problem (cf. (3), 
(4), and (5»): 

VTl,';-l V + ~ £(X) -l- min, (9) 

with respect to (7). Intuitively, this criterion, in com­
parison wit.h t.he least. squares criterion, is more po­
werful to deal with underdetermined ill-posed inverse 
problems, as it gives not only a measure for the qualit.y 
of the fHt.ing , through the first term in (9), but also 
a measure for t.he probability of the solution, through 
the second term in (9). So we can integrate our a 
priori knowledge into the inverse process by designing 



the second term in (9) appropriately. Of course, de­
signing £(X) is a skill. One needs knowledge about 
the physical meaning of the solution and the internal 
coherence of unknown parameters. 

Generally, the second term in (9) can be designed to 
have the form 

~ £ (X) = ET ~; 1 E, E = <I> X - W, (10) 

where <I> is an operator, W is a vector, and ~e is a 
matrix. They have to be determined using our a priori 
knowledge. If we, for instance, a priori know that the 
elements Xi EX, i = 1, ... , 111, should have values 
around ai, i = 1, ... ,111, then we can construct 

( 
0-2 0 

o ) 
1 

T 0 0- 2 0 2 
~e =- . , 

2 

0 0 O-?n 

~=U 
0 0 

) ( 
a1 

) 1 0 a2 
,W= (11) 

0 1 am 

where o-i, i = 1, ... ,111, denote the degree of the cer­
tainty of our a priori knowledge. 

Let us solve the ill-posed inverse problem (1) again, 
but using the new criterion (9) which is equivalent to 

VT~-l V + ET~;l E -+ rnin. (12) 

This lead to the new normal equation 

(AT~-l A + <I>T~;l<I» X = AT~-ly + <I>T~;lW. 
(13) 

It is sure that the new normal matrix N = AT~-l A+ 
<I>T~;l<I> is no more singular even for underdetermi­
ned ill-posed inverse problems, if <I> , ~e and <I> are all 
appropriately cons tructed. 

7 Surface Reconstruction 

There are, as indicated above, many problems in com­
puter vision which can be generally formulated as in­
verse problems. We have proposed approaches which 
provide a sound theoretical basis but offer few practi­
cal .computational methods for dealing with concrete 
tasks in computer vision. So, in t.his section, we go 
further int.o the application of the inverse problem 
theory to an elementary problem, i.e. the computing 
of the representation of visible surfaces from multiple 
images. 
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Figure 1: The meaning of the label Iii 

7.1 Representation of Visible Surfaces 

The role of a representation is to make certain infor­
mation explicit at an appropriate point in the problem 
analysis as the abstract information must be expres­
sed by concrete descriptions. Thus, the choice or de­
sign of a representation affects the success of analysis. 
The representation of object surfaces deals with stra­
tegies and techniques for describing their geometrical 
and physical properties in a way appropriate for nu­
merical processing. 

Let S be a set of paramet.ers which describe the geo­
metrical and physical propert.ies of an object sur­
face. An element. S E S can be a concret.e measure, 
e.g. elevation (dept.h), deformation, reflectivit.y, etc .. 
Each element S E S can be mapped ont.o XY -plane 
in a 3D coordinate system and represented mathe­
matically as S = SeX, Y), S E S. For comput.a­
tional reasons, we rather represent S by a grid of 
square 1 x 1 elemen ts, where each elemen t is cen­
tered at the coordinates (Xi, Yi) of the ith element. 
Then, the object surface is described by m x n ele­
ments: Si = S(Xi' 1~), i E I = [1, ... , J], where I 
can be thought of as a vector belonging to the set 
(1, ... , 111) x (1, ... , n) which has totally nl. x n elements. 

Sometimes we may be also int.erested in the spatial 
coherence (continuity) of S. So we introduce a label 
set L whose element lij represents the strength of the 
spatial coherence between two neighbor Si and Sj (cf. 
Fig. 1). The label Iii can be binary: Iii = 1 for con­
tinuity between Si and Sj, lij = 0 for discont.inuity 
bet.ween Si and Sj. lij can also t.ake the value between 
o and 1, i.e. lij E [0,1], for continuously describing the 
coherence strength. 

7.2 Forward Modeling 

The purpose of forward modeling is to find constraints 
linking elements in S with observations, i.e. image 
densities (intensities), based on physical properties of 
imaging. The relationship between the ima.ge density 



D(x, y) of a photographic image and the exposure 
H [lux· sec] is 

D(x,y) =, log H + Do (14) 

for normal exposure, where x, yare image coordina­
tes of a pixel, , (~ 1) is the gradation and Do is a 
constant. Usually, , depends on the developer, the de­
velopment time and temperature, and the photogra­
phic material. The exposure H depends, first of all, on 
the reflection properties of surfaces. Many natural ter­
rain features roughly approximate diffuse reflectors. A 
Lambertian surface is a perfect diffuse reflector with 
the property that the radiance L [cd. m,-2] is constant 
for any incident angle. 

The relation (14) is very important as it explains the 
physical meaning of image intensities. From (14) one 
can derive the following radiometric constraint (cf. 
Zheng, 1990): 

D(x, y)/,+ 2.log(c2+x2+y2)+rl+'I/!(x, y) = 0, (15) 

where 1] can be considered as a constant for all pixels 
in the same image; but 'I/! is a local parameter which 
changes from pixel to pixel. The physical meaning of 
'I/! in (15) is the logarithm of the luminance intercep­
ted by the lens for a pixel. 

The image coordinates x and y in (15) are functions 
of the object coordinates of the surface element, ac­
cording to the well known projection equation: 

where m is a scale factor, R is the rotation matrix con­
taining three rotation angles (t/J, w, K), (X, Y, Z) are 
the corresponding ground coordinates of the image 
point (x,y), and n = (t/J,W,K,XO, Yo,Zo) are camera 
orientation parameters. Besides, D(x, y) has to be 
re-'sampled from the neighboring digitized pixels by 
using, for instance, a bilinear interpolation 

D = GTL, ( 17) 

where Land G denote a set of intensities of neigh­
boring pixels and a corresponding coefficient vec­
tor, respectively. Thus, for the ground surface point 
(X, Y, Z), the left side of (15) is a function of many 
parameters: 

f ( X, Y, Z, n, L, " 17, 'Ij') = O. ( 18) 

Now, let us look at the problem of surface reconstruc­
tion from multiple images. For the purpose of simpli­
city, we discuss here only the solution of recovering the 
surface profile, 'which is represented using J( discrete 
profile points, from J images, Aij, j E ... 1 = [1, "'j J), 
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Figure 2: Surface reconstruction from image data 

which are taken from different views and depict the 
same surface (d. Fig. 2). Besides, we also suppose 
that the orientation parameters of these images are 
aU known. For the ith profile point, i E'I = [1, .. " [(], 
we can write J constraints like (18). For [( profile 
points in 'I we can write totally J x J( constraints 
like (18). Supposing a Lambertian surface and , ~ 1, 
these constraints can be further simplified (cf. Zheng, 
1990): 

(
ci + xi + yi) D(Xl,yt)+pj D(xj,Yj)+210g 2 2 2 +qj=O, 
cj +Xj +Yj 

(19) 
where Pj = -,1 lij, qj = 171-1]j, j E [2, ... , J], and we 
have a set of new parameters Pj and qj, j E [2, , .. , J], 
which describe approximately the radiometric rela­
tionship of the image Afl with the other images 
!lIj, j E [2, ... , J). Our a priori knowledge about Pj 
and qj is that Pj should be around 1 and qj should 
be around 0. Linearization of these now constraints 
gives 

u V + A D.Z + B D.Q + TV(L, Zo, Qo) = 0 (20) 

where L and V denote two vectors containing obser­
vations, i.e. intensities of image pixels, and their resi­
duals; Zo and D.Z denote two vectors containing ap­
proximate elevations of profile points in 'I and their 
corrections; Qo and D.Q denote two vectors containing 
approximate values of Pj and qj, j E [2, ... , J] and 
their corrections; and U, A, B, and VV are correspon­
ding coefficient matrices and t.he vector of constants, 
respectively. It is clea.r that (20) is strongly under­
determined as V, D.Z and D.Q are all unknown. The 
total number of unknowns is much larger t.han t.hat of 
the constraints, a.nd one could generally hypot.hesize 
an infinite number of different solutions that would 
meet (20). So, we have to use criteria to restrict the 
space of accepta.ble solutions and t.o find a unique so­
lution which will be a best one to interpret the image 
data. 



7.3 Inversion 

According to Table 4, the MAP criterion would choose 
Z = Zo + /).Z and Q = Qo + /).Q in (20) such that 
the conditional probability P(Z, Q I L) is maximized, 
which is equivalent to maximize peL I Z, Q)P(Z, Q), 
if P( L) is constant. 

As mentioned above, the conditional probability 
peL I Z, Q) can be simply assumed as the probability 
that the observational residuals were produced by a 
normally distributed random variable (cf. (4». The 
problem is, now, how to exploit our priori knowledge 
about Z and Q to constitute t.heir probabilities, i.e. 
P(Z, Q). If Z and Q are statistically independent, we 
have P(Z, Q) = P(Z)· P(Q). 

To construct P(Z) and P(Q), one has to know the 
meaning of Z and Q. The vector Z, for inst.ance, 
represents some elevations of discrete surface profile 
points. So, our priori assumption about Z is the spa­
tial coherence of its elements. This suggests that the 
local potential of the element Zi E Z, i E I can be 
written as 

(21) 

where Ni denotes the set of totally connected sub­
graphs (cliques) with respect to the element Zi, lij E 
[O,lJ is the connection strength between Zi and Zj, 
and (Tz is a normalizing constant. According to the 
Hammersley-Clifford theorem, the energy of Z can be 
computed with 

"'"" "'"" [ Zi - Zj ]2 T-1 feZ) = L...t L...t lij (T = E z I;z Ez (22) 
Z'EZ i~j z 

I jENi 

and 
Ez = ~z Z - 'liz, (23) 

where 

( 
1 -1 0 0 
0 1 -1 0 

<I>z = 
0 0 1 -1 

'liz = 

O'~ 0 0 r;:; 
0 O'~ 0 

I;z = 1;3~ , 

o o q2 

1(1<~)K 
(24) 

Similarly, since we priori know t.hat p should be 
around 1 and q should be around 0, so the energy 
of Q is 

(25) 
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with 
EQ=~QQ-'lIQ' (26) 

where 

~Q = ( 

1 0 0 

), 
P2 

0 1 0 q2 

Q= 

0 0 1 PJ 

qJ 

1 (T2 0 0 0 p 

0 0 (T2 0 0 q 

'lIQ = , I;Q = 
1 0 0 (T2 0 

P o 0 0 0 (T2 q 

(27) 
and (T p and (T q are constants encoding the reliability 
of oura priori knowledge about p and q. 

Considering (3), (4), (5), (22) and (25), the MAP ba­
sed surface reconst.ruction is to solve the optimizing 
problem 

1 VT -1 VIET -1 1 ET 'r'-1 E . 2 I; + T z I;z Ez + T Q LJQ Q -+ mtn, 

(28) 
with subject to (20), (23) and (26). Surely, the sur­
face Z which is inferred in t.his way is dependent on 
r = (E, ~z, 'liz, I;z, <I>Q, 'lIQ, I;Q) and they should be 
determined using a priori knowledge, before the in­
version process takes place. The quality of Z is so­
metimes not satisfying if our knowledge is not good 
enough to ensure an appropriate determination of r. 
So, a very interesting question is how to enlarge our 
knowledge and how to adapt r during the inversion 
in order to improve the quality of Z. Information pro­
cessing systems that improve t.heir performance or en­
large t.heir knowledge bases are said to " learn" . This 
ability would clearly have value in digit.al image inver­
sion. Using paramet.er est.imation technique, we can, 
for instance, adapt E, I;z, and I;Q in (28) iterati­
vely during the inversion so that. t.he result is robust 
against image noises with different. properties, against 
surface discontinuit.ies, and against different. reliabili­
ties of our a priori knowledge (d. Zheng and Hahn, 
1990). 

8 Examples 

To demonst.ra.te the feasibility of t.he methods for 
the purpose of surfa.ce reconstruction an algorithm 
has been developed based on the MAP criterion (cr. 
Zheng, 1990). It. was test.ed on a variety of dat.a sets 
including synthetic and real image dat.a. 



Figure 3: A stereo pair of digital images 

Figure 4: The computed surface and its a posteriori 
accuracy 

Let us firat look at a stereo pail' of digital aerial 
images shown in Figure 3. They represent a piece of 
steep and rough wilderness with rock-debris. Each of 
them has 240 x 240 pixels. The image scale is about 
1 : 10000. This image material was also used to test 
the feature based and least squares matching a.lgo­
rithms and is regarded as the hardest one wit.hin three 
selected projects (cf. Hahn/Forstner, 1988). 

Figure 4 shows the automaticly generated surface field 
and its posteriori accuracy. It contains 30 x 30 lat­
tice points with 1 x 1 m2 lattice size. All surface 
heights of the same lattice points (900 points) was 
also manually measured on an analytical measuring 
device Planicomp C 100 as reference (cf. Fig. 5). 
The precision of the manual measurements is about 
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Figure 5: The same surface measured manually 

MEAN: -0.313 en SDEV: 0.207 en 

0 200 400 500 800 

Figure 6: The difference between t.wo surfaces 

0.22 m (~ 0.14 0
/ 00 offiying height). Figure 6 illustra­

tes the difference between t.he automatically and the 
manually generated surface fields. This difference can 
be characterized by its mean (bias) and its standard 
deviation against the bias. Taking the a posteriori ac­
curacy of the automatically generated surface (cf. Fig. 
4) into account, the results are: 

:MEAN DIFF: -0.313 m (bias), 

SDEV: 0.207 rn (~ 0.13 0/00 of flying height), 

where the precision of the surface reconstruction using 
our algorithm is about the same as observed by the 
operator. 

Finally, we look at the image pair "House" (cf. Fi­
gure 7), which is one of the twelve image pairs for the 
test on image matching of the working group III/4 
of International Society for Photogrammetry and Re­
mote Sensing (cf. Gulch, 1988). This image pair has 
been classified by the test organizer into the group 
of high complexity for image matching, as it contains 
almost all troubles, including discontinuities, occlu­
sions, shadows, and corruptions. Each image has a 



Figure 7: The image pair "House" 

size of 240 x 240 pixels and the image scale is about 
1 : 3000. In Figure 8, we show the computed surface 
field, by means of a perspective view and a contour 
map. 

9 Conclusion 

In this work, we concentrate our attention on in­
ference processes in computer vision and formulate 
many of its goals in a general manner as a ill-posed 
problem of image inversion. Based on MAP criteria, 
we have introduced a theoretical framework for dea­
ling with ill-posed inverse problems. We have shown 
how the surface reconstruction from images can be 
solved under this theoretical basis as an application. 
Of course, this is only a limited domain of its app­
lications. So, among the goals of future work will be 
1) the introduction of a learning mechanism to im­
prove and adapt the a priori knowledge during the 
inverse process, 2) the application of neural network 
technology to developing parallel algorithms for sol­
ving optimizing problem mentioned above, and 3) the 
extension of the application range of the approach. 
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