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Abstract

Image understanding is the enterprise of automating
and integrating a wide range of processes and repre-
sentations used for vision perception. It includes tech-
niques not only for geometric modeling but also for
inference and reasoning. In this paper, we look at the
issue of inductive inference in digital image under-
standing. Many goals in both low-level and higl-level
image analysis can be formulated generally as a pro-
blem of inferring object-properties from image data,
having assistance of a priori knowledge. This process
of information processing would be called image in-
version, as the desired information about the objects
is derived from image data. Based on the inverse pro-
blem theory, we provide a sound theoretical basis for
determination of generalizations, descriptions, rules,
and laws, from a set of raw data, observations, featu-
res or facts. To demonstrate this approach, we present
its application in the limited domain of surface recon-
struction from multiple images.

1 Introduction

Computer Vision includes techniques not only for geo-
metric modeling but also for inference and reasoning.
Many of its tasks require the ability to create explicit
representations of knowledge from implicit ones and
they can be therefore formulated as problems of infe-
rence drawing. Drawing inference from image data is
only plausible as the available information is incom-
plete or inexact and it is inadequate to support the
desired sorts of logical inferences.

Plausible inference is a basic issue, of which we are
all aware through our own experience in research on
many vision problems, including feature extraction,
image and boundary segmentation, object reconstruc-
tion and image interpretation. In these cases, problem
solvers have to reason with inconsistent and incom-
plete information on the basis of beliefs, not only true
(or false) facts.

In this paper, we think of inference drawing from di-
gital images as an inverse process which we call di-
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gital image inversion (Zheng, 1990). Drawing plau-
sible inference is therefore solving ill-posed inverse
problems. Although this kind of problems have been
considered for a long time almost exclusively as ma-
thematical curiosities, it is now clear that many in-
verse problems have ill-posed nature and their solu-
tions are of great practical interest (Herman, 1980;
Fawcett, 1985; Poggio et al., 1985). To deal with ill-
posed inverse problems, one has to deal with several
questions including: What is the nature of inverse pro-
blems? How about their solvability? How to integrate
a priort knowledge to deal with the ill-posedness of
inverse problems? And how to evaluate the quality of
solutions?

We begin by introducing a paradigm for digital image
inversion, which has three steps of representation, for-
ward modeling and inversion. Then, we discuss the
theory of inductive inference and inverse problems.
Based on the Maximum A Posteriori (MAP) we des-
cribe a framework for integrating ¢ priori knowledge
to solve the decision problem in the ill-posed inverse
process. Next, we formulate the problem of surface
reconstruction from digital images within this fra-
mework. We then demonstrate shortly the result of
our implementation and experiment results using real
image data.

2 Digital Image Inversion

Generally, vision can be regarded as an inference pro-
cess in which a description of the outside world is
inferred from images of the world, having the aid of
a priori knowledge about the world and about ima-
ging process. Here, three kinds of information have to
be dealt with, i.e. the desired information about the
outside world, the available information contained in
images, and the a priori information of image inter-
preters.

Now, let S represent a physical system (for instance
the earth’s surface, or an object in an image). Assume
that we are able to define a set of model parameters
which completely describes S, to some extent. These
parameters may not all be directly measurable. We




can operationally define a set of some observable pa-
rameters ) whose actual values hopefully are relata-
ble to a set of the model parameters X'. To solve the
forward problem is to predict the values of the ob-
servable parameters Y € ), given arbitrary values of
the model parameters X € A'. To solve the inverse
problem is to infer the values of the model parame-
ters X from given observed values of the observable
parameters Y (cf. Tarantola, 1987).

Obviously, many problems in computer vision can
be formulated as such inverse problems (a particu-
lar kind of inference process called induction). The
scientific procedure to solve these inverse problems
distinguishes the following three steps:

1. Representation (parameterization) of System
S: Designing a language to represent the cha-
racteristic features of S. That is, establishing a
minimal set of model parameters X whose values
completely characterize the system (from a given
point of view).

. Forward modeling: Identification of the phy-
sical laws (constraints) which, for given values
of model parameters X, allow predictions as to
the results of measurements on some observable
parameters Y.

Inversion: Use of the actual results of some mea-
surements of the observable parameters to infer
{estimate) the actual values of the model para-
meters.

3 Inductive Inference

The term inference refers generally to effective pro-
cedures for deriving new facts from known ones. To
draw an inference is to come to believe a new fact on
the basis of other information. There are many kinds
of inference. The best understood is deduction, which
proceeds from a set of assumptions called axioms
to new statements that are logically implied by the
axioms. The deductive inference is logically correct as
deduction from true premises is guaranteed to result
in a true conclusion. The standard way to characte-
rize deduction is by using a system called predicate
calculus which consists of a language for expressing
propositions and rules for how to infer new facts (pro-
positions) from those we already have. To deduce new
facts from the axioms, we use one or more so called
rules of inference.

A second kind of inference, on the other hand, is cal-
led induction, which is a calculus for inferring gene-
ralizations from particular observations. This induc-
tive inference process could be thought of as having
the form “ from: if (X — ¥) and Y, infer: X ” and
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Variables Premises Conclusions
X Y X =Y |-Y [ X =X

T T T F T F

T F F T T F

F T T F F T

F F T T F T

Table 1: Truth table used to draw inference

it performs abstraction, producing generalities from
specifics. The inductive inference can be illustrated
using a simple example of geometrical reasoning from
which we wish to answer a question:

Given a set of geometrical points P
{z;, i}, i =1, .., n. Infer if this set of points
depicts a straight line.

To answer this question, we can use some statements
that express information during inference:

If P represents a straight line, then y =
a z + b is valid for all points of P, where
a and b are two constants. Some points of P
do not fulfill y = a # + b. Does P depicts a
straight line?

In order to express these statements, we have to agree
on a suitable set of atomic propositions like:

e X: P depicts a straight line.

e Y:y=aax + bis valid for all points of P.

The original statements expressing information du-
ring inference are called premises and can be descri-
bed as follows:

X = Y, -y

So, the question would be answered if we could prove
the proposition .\ from the premises, or alternatively
if we could prove —.X. Since this is a small problem,
we can easily employ an exhaustive examination of
all possible assignments of truth values to the pro-
positions X and Y to check for the validity of either
possible conclusion. Using the so called truth table
(cf. Tab. 1) we can list all the possible combinations.
Let us first check the validity of X' as a conclusion
by examining every row in which all two premises are
truth. In this example there is only one row where all
premises are truth (the bottom row). It is intuitive
that the potential conclusion .X is false here whereas
=X is true and this corresponds to the correct ans-
wer: P does not depict a straight line.




The reasoning method just illustrated is called per-
fect induction. Here, the available information which
is necessary to support the desired logical inference is
perfect. This means that all the statements only have
two values for their validities, either true or false, and
we are able to check exhaustively all the possible com-
binations. Unfortunately, in many practical problem-
solving situations, especially in image analysis and
understanding, the available knowledge is incomplete
or inexact. The coordinates of the points in P, for ex-
ample, may contain measure-errors and only from the
fact that some points of P do not fulfill y =a z + b
we can not come to the conclusion that P does not
depict a straight line. So, the validity of ¥ (or -Y)
is not binary and not easy to prove if we do not have
knowledge about measure-errors. In cases like this, we
need reasoning methods in making just decisions.

4 Inverse Problems

Mathematically, the inverse problem can be described
as follows. Given a mapping f from set A into set Y,
ie. f: X — Y. The solution of the inverse problem
consists in the interpretation of data Y € Y in order
to recover the original image ;X € X'. This is exactly
the same goal as that of an inductive inference men-
tioned above.

Let us now consider a linear mapping A : X' — Y.
The inverse problem is to identify X from the data

Y:
AX =Y. (1)

The solvability of this inverse problem could be dis-
cussed as follows:

o If A is bijective and A~! is stable one can easily
get an unique solution X = A~1Y.

If A is injective but not surjective, the inverse
problem is overdetermined and has no solution.
One can, however, get an unique pseudo solu-
tion through minimizing the norm of the residual

Vil =1y - AX].

If A is not injective, the inverse problem is under-
determined and there is an unique pseudo solu-
tion X = A*Y, where A% is the so called Moore-
Penrose Inversion, which, unfortunately, is only
stable if the domain of A is closed in Y.

So, it is quite clear that the ambivalent non-injective
inverse problem is practical not solvable through a
numeric process, as any few errors in Ycan destroy
the solution totally.

Schematically, there are two reasons for the ill-
posedness of inverse problems: intrinsic lack of data,
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and observation uncertainties. With additional infor-
mation, for instance some a priori assumptions on
model parameters X or an additional data set, many
such problems can be reformulated into well-posed
solvable problems. Now, the main question is how to
integrate a priori knowledge to solve ill-posed inverse
problems. We need criteria to impose constrains on
the solution space and a framework to integrate e
priori knowledge in order to select an unique solution
(the so called best solution) for given data. Intuiti-
vely, the best solution exists only in connection with
criteria which are, of course, strongly task dependent.

5 The MAP Criteria

The first criterion which we would introduce in this
section is the so called Maximum A Posteriori (MAP)
criterion which is based on probability theory (Geman
and Geman, 1984 ). It selects as the best solution the
model parameters X that maximizes the conditional
probability of X given the data Y: P(X |Y), subject
to the inverse problem (1). The MAP criterion leads
to three important estimation methods, namely the
bayesian estimate method (BE), the maximum like-
lihood method (ML) and least squares method (LS)
(cf. Tab. 4), which are widely used in data processing.
Using Bayes’ theorem gives

P(X | Y) = P(Y | X)P(X)/P(Y), @)

where P(Y | 3{') is the conditional probability of get-
ting data Y given the model parameters X, P(X) are
the prior probability of X. The relation (2) shows how
the prior probability P(X) changes to the posterior
probability P(X | Y) as a result of acquiring new infor-
mation Y. Intuitively, the MAP criterion will choose
X that maximizes

P(Y | X)P(X), (3)
if P(Y) is constant. This is the principle of the
Bayesian estimation. Further, under the specification
that the prior probabilities P(X) are all the same,
ie. P(X) is constant, the MAP criterion leads to
the simpler maximum likelihood principle of selec-
ting that X which maximizes P(Y | X). If the ran-
dom variables to which the data Y refer are normally
distributed, the maximum likelihood estimation will
give the same results as the least squares estimation
which has widely been used in different branches of
science and engineering for over a century and a half.
If V is the vector of observational residuals, for which
E(V) =0, and which is assumed to be normally dis-
tributed, and ¥ is the covariance matrix of the distri-
bution, then we have

PY|X)=P(V)=C exp [——%VTE‘IV] , (4




criterion expression supposition
MAP P(X|Y)— maz
BE PY | X)P(X) — maz | *
ML P(Y | X) — maz ok
LS VIE-1V — min FEE

* P(Y) =constant
** P(X) =constant and *
% 1 ~ N(0,X) and **

Table 2: The MAP criterion and its progenies

where C is constant. It is to see that the least squares
criterion is to minimize VT £~V which is equivalent
to using a maximum likelihood estimation to maxi-
mize P(Y | X).

So far, we have discussed the MAP criterion and its
progenies. Obviously, each criterion has its own sup-
position (cf. Tab. 4). The LS criterion which is so wi-
dely used in data processing as a general framework
for problem solving is, for instance, only suitable for
dealing with over-constrained inverse problems. For
under-constrained inverse problems the MAP crite-
rion is more appropriate as it provides a flexible fra-
mework to integrate e¢ priori knowledge to restrict
the solution space and one can take the probability
behavior of both the data and the desired solutions
into account. There are many problems in compu-
ter vision, especially in the low-level image proces-
sing, including edge detection, spatial-temporal ap-
proximation, image segmentation, image registration,
and surface reconstruction (cf. Poggio et al.,1985),
which are unfortunately of under-constrained nature
and whose solutions demands on new inference tech-
niques beyond the LS estimation.

6 Restricting Solution Space

The MAP criterion provides a general approach to
handle the inverse problem in an uncertain environ-
ment. It gives a mechanisms to restrict the solution
space and to integrate a priori knowledge by specify-
ing the appropriate prior probabilities P(X). Howe-
ver, the MAP criterion doesn’t tell how to construct
P(X). In this section we look at this issue.

The parameter set X', as mentioned‘earlier, represents
a physical system and can be considered as a parame-
ter space. In principle, every point X € X represents
a possible solution. It can be easily imagined that not
all points in the solution space are meaningful. Our
Jjob is to explore the solution space to find an appro-
priate point (solution). So, the first problem is how to
measure the appropriateness of a solution and how to
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describe the solution space. A general way to do this
is to define a probability distribution of the solution
space P(X) (Tarantola, 1987).

Let X be a set of parameters representing the
state of a Markov random field. According to the
Hammersley-Clifford theorem (cf. Geman and Ge-
man, 1984; Chou and Brown, 1988), this random field
can be described by a probability distribution of the
Gibbs form:

P(X) -_—_é_ exp [-%8(}()] S Xex, (5

where C' is a normalizing constant, T" is the so called
temperaiure of the field that controls the flatness of
the distribution of the configurations X and £(X) is
the energy of X which consists of the sum of the local
potential

E(X) =) Vila). (6)

zeX
The relation (5) suggests that the point in X' with a
higher energy occurs less likely.

Now, let us look at the ill-posed inverse problem (1).
According to the the least squares criterion (cf. Tab.
4), one can get an unique pseudo solution through
minimizing VT -1V, with respect to

V=AX-Y. )

This leads to solving the normal equation

(ATL714) X = ATy, (8)
Certainly, the normal matrix N = ATZ~-14 is regu-
lar only if the problem (1) is overdetermined. This
suggests that the least squares criterion can only be
used to deal with overdetermined ill-posed inverse
problems. For underdetermined ill-posed inverse pro-
blems, which emerge so often in image understanding,
the least squares criterion can not help us to find a
satisfying solution, as it does not have a mechanism
to restrict the solution space.

Using the bayesian estimate method (BE) (cf. Tab.
4), we have the following optimizing problem (cf. (3),
(4), and (5)):
Ty—1 2 - ;

Vi V+T8(A)——+mm, 9)
with respect to (7). Intuitively, this criterion, in com-
parison with the least squares criterion, is more po-
werful to deal with underdetermined ill-posed inverse
problems, as it gives not only a measure for the quality
of the fitting , through the first term in (9), but also
a measure for the probability of the solution, through
the second term in (9). So we can integrate our a
priori knowledge into the inverse process by designing




the second term in (9) appropriately. Of course, de-
signing £(X) is a skill. One needs knowledge about
the physical meaning of the solution and the internal
coherence of unknown parameters.

Generally, the second term in (9) can be designed to
have the form

% EX)=ETL;'E, E=®X-7T, (10)
where @ is an operator, ¥ is a vector, and X, is a
matrix. They have to be determined using our a prior
knowledge. If we, for instance, a priori know that the

elements z; € X, ¢ = 1,..., m, should have values
around a;, t = 1, ..., m, then we can construct

a? 0 0
0 o? 0
Ee = —1: . .2 . 3

2 . . :

0 0 ol

10 0 aj

01 0 as

=1 U = , (11)
0 0 1 Am

where oy, i = 1,...,m, denote the degree of the cer-
tainty of our a priori knowledge.

Let us solve the ill-posed inverse problem (1) again,
but using the new criterion (9) which is equivalent to

VIS-V 4+ ETE7YE — min. (12)

This lead to the new normal equation

(ATS 1A+ 872 10) X = ATE 1Y + 07210,
(13)
It is sure that the new normal matrix N = ATEL-14+
®TT;1® is no more singular even for underdetermi-
ned ill-posed inverse problems, if &, ¥, and & are all
appropriately constructed.

7 Surface Reconstruction

There are, as indicated above, many problems in com-
puter vision which can be generally formulated as in-
verse problems. We have proposed approaches which
provide a sound theoretical basis but offer few practi-
cal computational methods for dealing with concrete
tasks in computer vision. So, in this section, we go
further into the application of the inverse problem
theory to an elementary problem, i.e. the computing
of the representation of visible surfaces from multiple
images.
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Figure 1: The meaning of the label I;;

7.1 Representation of Visible Surfaces
The role of a representation is to make certain infor-
mation explicit at an appropriate point in the problem
analysis as the abstract information must be expres-
sed by concrete descriptions. Thus, the choice or de-
sign of a representation affects the success of analysis.
The representation of object surfaces deals with stra-
tegies and techniques for describing their geometrical
and physical properties in a way appropriate for nu-
merical processing.

Let 8 be a set of parameters which describe the geo-
metrical and physical properties of an object sur-
face. An element S € § can be a concrete measure,
e.g. elevation (depth), deformation, reflectivity, etc..
Each element S € & can be mapped onto XY -plane
in a 3D coordinate system and represented mathe-
matically as § = S(X,Y),S € S. For computa-
tional reasons, we rather represent S by a grid of
square 1 x 1 elements, where each element is cen-
tered at the coordinates (X;,Y;) of the i*® element.
Then, the object surface is described by m x n ele-
ments: S; = S(X;,Y:),i € T = [1,...,1], where T
can be thought of as a vector belonging to the set
(1,...,m)x(1,...,n) which has totally m x n elements.

Sometimes we may be also interested in the spatial
coherence (continuity) of S. So we introduce a label
set L whose element [;; represents the strength of the
spatial coherence between two neighbor S; and S; (cf.
Fig. 1). The label l;; can be binary: l;; = 1 for con-
tinuity between S; and Sj, l;; = 0 for discontinuity
between S; and S;. l;; can also take the value between
0and 1,ie.l; € [0,1], for continuously describing the
coherence strength.

7.2 Forward Modeling

The purpose of forward modeling is to find constraints
linking elements in & with observations, i.e. image
densities (intensities), based on physical properties of
imaging. The relationship between the image density




D(z,y) of a photographic image and the exposure
H [luz - sec] is

D(z,y) = v log H+ Dy (14)
for normal exposure, where z,y are image coordina-
tes of a pixel, ¥ (= 1) is the gradation and Dy is a
constant. Usually, ¥ depends on the developer, the de-
velopment time and temperature, and the photogra-
phic material. The exposure H depends, first of all, on
the reflection properties of surfaces. Many natural ter-
rain features roughly approximate diffuse reflectors. A
Lambertian surface is a perfect diffuse reflector with
the property that the radiance L [cd-m~2] is constant
for any incident angle.

The relation (14) is very important as it explains the
physical meaning of image intensities. From (14) one
can derive the following radiometric constraint (cf.
Zheng, 1990):

D(z,y)/v+ 2-log(c®+2?+y®)+n+y(z,y) = 0, (15)

where 77 can be considered as a constant for all pixels
in the same image; but 1 is a local parameter which
changes from pixel to pixel. The physical meaning of
¥ in (15) is the logarithm of the luminance intercep-
ted by the lens for a pixel.

The image coordinates & and y in (15) are functions
of the object coordinates of the surface element, ac-
cording to the well known projection equation:

z 1 X Xo
y |==RT| Y |+| Yo |, (16)
—C m A Z()

where m is a scale factor, R is the rotation matrix con-
taining three rotation angles (¢,w, k), (X,Y,Z) are
the corresponding ground coordinates of the image
point (z,y), and Q = (¢,w, &, Xo, Yo, Zo) are camera
orientation parameters. Besides, D(z,y) has to be
re-sampled from the neighboring digitized pixels by
using, for instance, a bilinear interpolation

D=GTrL, (17)
where L and G denote a set of intensities of neigh-
boring pixels and a corresponding coeflicient vec-
tor, respectively. Thus, for the ground surface point
(X,Y, Z), the left side of (15) is a function of many
parameters:

(X, Y, Z,Q,L,y,n,¢) = 0. (18)
Now, let us look at the problem of surface reconstruc-
tion from multiple images. For the purpose of simpli-
city, we discuss here only the solution of recovering the
surface profile, which is represented using I discrete
profile points, from J images, M;,j € J = [1,...,J],
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Figure 2: Surface reconstruction from image data

which are taken from different views and depict the
same surface (cf. Fig. 2). Besides, we also suppose
that the orientation parameters of these images are
all known. For the #** profile point,i € 7 = [1, ..., K],
we can write J constraints like (18). For K profile
points in Z we can write totally J x K constraints
like (18). Supposing a Lambertian surface and v ~ 1,
these constraints can be further simplified (cf. Zheng,

1990):
) +q; =0,

(19)
where p; = —71/7;, ¢ = m—n;, j €[2,...,J],and we
have a set of new parameters p; and ¢;, j € [2,...,J],
which describe approximately the radiometric rela-
tionship of the image M; with the other images
M;, j €[2,..,J]. Our a priori knowledge about p;
and g;j is that p; should be around 1 and ¢; should
be around 0. Linearization of these now constraints
gives

cf + i+t
D(z, D(z;,y:)+21 1 1 1
(2,1 y1)+pj (wj Y; )+ og (C? +.’L’]2 +ng

UV+AAZ+BAQ+W(L,Zo,Q0) =0 (20)

where L and V' denote two vectors containing obser-
vations, i.e. intensities of image pixels, and their resi-
duals; Zo and AZ denote two vectors containing ap-
proximate elevations of profile points in 7 and their
corrections; Qp and AQ denote two vectors containing
approximate values of p; and ¢;, j € [2,...,J] and
their corrections; and U, A, B, and W are correspon-
ding coefficient matrices and the vector of constants,
respectively. It is clear that (20) is strongly under-
determined as V, AZ and A(Q are all unknown. The
total number of unknowns is much larger than that of
the constraints, and one could generally hypothesize
an infinite number of different solutions that would
meet (20). So, we have to use criteria to restrict the
space of acceptable solutions and to find a unique so-
lution which will be a best one to interpret the image
data.




7.3 Inversion

According to Table 4, the MAP criterion would choose
Z = Zo+ AZ and Q = Qo + AQ in (20) such that
the conditional probability P(Z,Q | L) is maximized,
which is equivalent to maximize P(L | Z,Q)P(Z,Q),
if P(L) is constant.

As mentioned above, the conditional probability
P(L| Z,Q) can be simply assumed as the probability
that the observational residuals were produced by a
normally distributed random variable (cf. (4)). The
problem is, now, how to exploit our priori knowledge
about Z and @ to constitute their probabilities, i.e.
P(Z,Q).If Z and @ are statistically independent, we
have P(Z,Q) = P(Z)- P(Q).

To construct P(Z) and P(Q), one has to know the
meaning of Z and @. The vector Z, for instance,
represents some elevations of discrete surface profile
points. So, our priori assumption about Z is the spa-
tial coherence of its elements. This suggests that the
local potential of the element Z; € Z, i € T can be

written as
2
W%52)

where N; denotes the set of totally connected sub-
graphs (cliques) with respect to the element Z;, l;; €
[0,1] is the connection strength between Z; and Z;,
and oz is a normalizing constant. According to the
Hammersley-Clifford theorem, the energy of Z can be
computed with

i — &
Ve(Zi) =Y .
iR
JEN;

(21)

Zi—7;1?
&z)=Y_ > [I,:j — ’] =EL £;' Ez (22)
2:€Z i#i
JEN;
and
EchDZ Z—‘I’Zy (23)
where
1 -1 0 0 Z:
0 1 -1 0 25
bz = .. . . , £ = . ,
d 0 1 —.1 Zx
0 0 0\
2
0 0 gz 0
= . |, =] | ™
; Lo :
0 0 l(R—))K )

(24)
Similarly, since we priori know that p should be
around 1 and ¢ should be around 0, so the energy
of Q is

£(Q) = E} 3" Eq, (25)

494

with
Eg= Qg Q- ¥, (26)
where
10 0 bz
0 1 0 7
Qo= . . L] @= SN
0 0 1 pJ
qJ
1 s 0 0 0
0 0 03 0 0
Yo=1 1|, Ze=] 1 :
1 0 0 0'; 0
0 0 0 0 0'3
(27)

and o, and o, are constants encoding the reliability
of oure priori knowledge about p and q.

Considering (3), (4), (5), (22) and (25), the MAP ba-
sed surface reconstruction is to solve the optimizing
problem

1

- 1
TEg 2;' Ez +

TES 251 Eg — min,

(28)
with subject to (20), (23) and (26). Surely, the sur-
face Z which is inferred in this way is dependent on
I'=(%Z,02,03,53,%q,¥g,Xq) and they should be
determined using a priori knowledge, before the in-
version process takes place. The quality of Z is so-
metimes not satisfying if our knowledge is not good
enough to ensure an appropriate determination of I'.
So, a very interesting question is how to enlarge our
knowledge and how to adapt I' during the inversion
in order to improve the quality of Z. Information pro-
cessing systems that improve their performance or en-
large their knowledge bases are said to “ learn”. This
ability would clearly have value in digital image inver-
sion. Using parameter estimation technique, we can,
for instance, adapt ¥, Xz, and g in (28) iterati-
vely during the inversion so that the result is robust
against image noises with different properties, against
surface discontinuities, and against different reliabili-
ties of our a priori knowledge (cf. Zheng and Hahn,
1990).

%VT2-1V+

8 Examples

To demonstrate the feasibility of the methods for
the purpose of surface reconstruction an algorithm
has been developed based on the MAP criterion (cf.
Zheng, 1990). It was tested on a variety of data sets
including synthetic and real image data.
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Figure 4: The computed surface and its a posteriori
accuracy

Let us firat look at a stereo pair of digital aerial
images shown in Figure 3. They represent a piece of
steep and rough wilderness with rock-debris. Each of
them has 240 x 240 pixels. The image scale is about
1: 10000. This image material was also used to test
the feature based and least squares matching algo-
rithms and is regarded as the hardest one within three
selected projects (cf. Hahn/Forstner, 1988).

Figure 4 shows the automaticly generated surface field
and its posteriori accuracy. It contains 30 x 30 lat-
tice points with 1 x 1 m? lattice size. All surface
heights of the same lattice points (900 points) was
also manually measured on an analytical measuring
device Planicomp C 100 as reference (cf. Fig. 5).
The precision of the manual measurements is about
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Figure 5: The same surface measured manually

MEAN: —~0.313 rm SDEV: 0.207 m

200 400 800 800

Figure 6: The difference between two surfaces

0.22 m (a2 0.14 °/ o, of flying height). Figure 6 illustra-
tes the difference between the autornatically and the
manually generated surface fields. This difference can
be characterized by its mean (bias) and its standard
deviation against the bias. Taking the a posteriori ac-
curacy of the automatically generated surface (cf. Fig.
4) into account, the results are:

MEAN DIFF: —0.313 m (bias),
SDEV: 0.207 m (& 0.13 °/,, of flying height),

where the precision of the surface reconstruction using
our algorithm is about the same as observed by the
operator.

Finally, we look at the image pair “House” (cf. Fi-
gure 7), which is one of the twelve image pairs for the
test on image matching of the working group I11/4
of International Society for Photogrammetry and Re-
mote Sensing (cf. Giilch, 1988). This image pair has
been classified by the test organizer into the group
of high complexity for image matching, as it contains
almost all troubles, including discontinuities, occlu-
sions, shadows, and corruptions. Each image has a




Figure 7: The image pair “House”

size of 240 x 240 pixels and the image scale is about
1:3000. In Figure 8, we show the computed surface
field, by means of a perspective view and a contour
map.

9 Conclusion

In this work, we concentrate our attention on in-
ference processes in computer vision and formulate
many of its goals in a general manner as a ill-posed
problem of image inversion. Based on MAP criteria,
we have introduced a theoretical framework for dea-
ling with ill-posed inverse problems. We have shown
how the surface reconstruction from images can be
solved under this theoretical basis as an application.
Of course, this is only a limited domain of its app-
lications. So, among the goals of future work will be
1) the introduction of a learning mechanism to im-
prove and adapt the a priori knowledge during the
inverse process, 2) the application of neural network
technology to developing parallel algorithms for sol-
ving optimizing problem mentioned above, and 3) the
extension of the application range of the approach.
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