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ABSTRACT 

In our feature-based matching approach, zero-crossings are matched and represented in 3-D object space by a sequence of 
densely spaced points. These spatial curves form the basis for reconstructing the surface. Since edges are likely to correspond 
to object boundaries, the 3-D curves also serve as an important input for object recognition. In this paper we address the 
problem of segmenting the contours in straight lines and regular curves. We compare different methods, such as split-and­
merge and a 3-D version of the 'I/J - S method. 
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1 INTRODUCTION 

One of the goals of digital photogrammetry is to automat­
ically recognize and extract man-made objects from aerial 
images. An essential step toward this goal is to extract 
features and to match them. We have adopted this ap­
proach and described it in several papers, e.g., (Schenk, 
1989, Schenk et. al, 1991a, Zong et. aI, 1991). A similar ap­
proach is also accepted by the computer vision community 
(e.g., Grimson, 1985). 

The features detected in the images are discontinuities 
of gray values, or edges. In our current implementation, 
the images are convolved with the Laplacian of a Gaus­
sian (LoG) operator (Marr and Hildreth, 1980). The re­
sulting zero-crossings are the edges. In the automatic ori­
entation module, which is the first stage of our system, the 
zero-crossings are matched for determining conjugate points 
(Schenk et. aI, 1991b, Stefanidis et. aI, 1991, Zong et. aI, 
1991). Once the orientation parameters are established, 
the images are resampled to epipolar geometry (Cho et. aI, 
1992). Now we begin to reconstruct surfaces where many 
edges are matched (Zong and Schenk, 1992), resulting lists 
of densely spaced points in object space (3-D edges) 

The feature-based matching approach offers two major 
advantages: 

.. Surface discontinuities are most likely to show up as 
edges in the image. By detecting these edges, break­
lines can be found and the surface reconstruction pro­
cess (Schenk et. aI, 1991a, Schenk and Toth, 1992) 
becomes more robust. 

.. In many of the cases, edges correspond to object 
boundaries. Therefore, once the location of edges is 
known, they serve as building blocks for a symbolic 
description of the object space. Such descriptions can 
be matched with symbolic representations of "world" 
objects, stored in a library. 

In order to use the edges for the symbolic description of 
the object space, we must segment and group them. In this 
paper, we focus on the segmentation aspect. The goal is to 
decompose the 3-D curves into primitives which are more 

explicit than a list of densely spaced points. Specifically, we 
want to segment the 3-D curves into straight lines, regular 
curves (circular arcs in our current implementation) and 
natural lines. 

The curve segmentation problem has been addressed ex­
tensively in computer vision literature. A popular segmen­
tation method is the Hough transform (Ballard and Brown, 
1982). This method tries to find straight lines from a sparse 
set of points. In our application points are already orga­
nized along edges; Thus, the Hough transform would un­
necessarily increase the computational complexity. Ramer 
(1972) presents a simple algorithm to approximate planar 
curves by polygons. He based his approximation on a max­
imum offset criterion. We have adopted this criterion in 
our approach. Pavlidis and Horowitz (1974) use a least­
squares algorithm to fit straight lines to portions of the 
curve, and then iterate a split-merge procedure to refine 
the initial segmentation. Grimson and Pavlidis (1985) find 
the breakpoints of a curve by comparing the original and 
a smoothed version of the curve. Discontinuities are then 
easily detected, and regular curve fitting is performed only 
between discontinuities. Fischler and Bolles (1986) describe 
two methods, one of them passes a "stick" of a certain 
width and length over the curve, and the other looks at 
the curve from different "views" followed by a selection of 
breakpoints according to the maximum votes obtained from 
these views. Both methods are based on segmenting the 
curve over different scales, and on perceptual organization. 
Grimson (1989) suggests an approach which is a combi­
nation of split-and-merge and 'I/J - s algorithms. Wuescher 
and Boyer (1991) describe an algorithm based on a constant 
curvature criterion . 

Except for the Hough transform, all the proposed meth­
ods consider a plane curve as the input for the process. 
Grimson (1989) mentioned that the segmentation can also 
be performed in 3-D, but did not elaborate it any further. 
While curve segmentation in 2-D may be sufficient for many 
applications, it has some disadvantages: 
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.. Features which appear in one image only are also 
segmented, although they do not lend themselves to 
edges in the object space. 



18 The segmentation of edges performed individually in 
both images, does not necessarily produce correspond­
ing breakpoints. Therefore, the identification of the 
same feature in both images becomes a nontrivial 
task. 

18 Although straight lines in the object space are also 
straight lines in all projections, the converse does not 
hold. Circular arcs appear as elliptic arcs, which are 
more difficult to detect. 

To avoid these disadvantages we propose to segment the 
3-D curves in the object space. In the next section we 
present two methods for segmenting a 3-D curve into its 
basic primitives. 

2 METHODS 

Here we describe two methods suitable for segmenting 3-D 
curves. These methods are not necessarily the best curve 
segmentation methods known, rather they demonstrate the 
concept of segmentation in 3-D space. The first method is 
a 3-D version of a split-and-merge concept, based on the 
offset from a straight line. In this method, the curve is 
segmented into straight lines only. The second method is 
an extension of the 'IjJ - s concept (see Li and Schenk, 1991 
for a 2-D description) into 3-D. With this method, straight 
lines and circular arcs are detected. 

The input for both methods are lists of densely spaced 
points of 3-D edges. It should be noted that the points 
are not evenly spaced. They are represented by real 3-D 
coordinates. We are presently investigating another repre­
sentation, where the edge points are resampled into a 3-D 
discrete space (voxels). 

2.1 Split-and-merge method 

As the name indicates, the split-and-merge method consists 
of the two phases split and merge. In the split phase, the 
input data is segmented to assure that each segment fulfills 
a certain condition. In our case, the condition is that all 
the points contained in a segment are likely to correspond 
to a straight line. In the merge phase, redundant break­
points that have been produced during the split phase are 
eliminated. 

The criterion for deciding whether a group of small line 
fragments can be represented as a longer straight line is 
the maximum offset. We have chosen the maximum offset 
and not a least-squares criterion as suggested in (Pavlidis 
and Horowitz, 1974). The reason is that the computational 
cost for applying the least-squares criterion is much higher 
than the one for the maximum offset, especially in the 3-D 
case. In addition, we only perform one split and one merge 
phase because the initial segmentation criterion is strong. A 
refinement of the breakpoints and a fitting of a straight line 
to a list of points can be performed once the segmentation 
has been achieved. In general, the offset criterion is superior 
to other criteria, since it is not very noise sensitive. Other 
criteria, such as the orientation of a line, are quite sensitive 
to noise, as we will see in the next section. 

Let us now define the maximum offset criterion. Con­
sider a string of n small line fragments II ... In which are 
formed by a corresponding set of densely spaced points 
Po . .. Pn· This string of fragments can be considered as one 
longer straight line if the distance from each point PI ... Pn-l 
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Figure 1: Splitting a curve according to the maximum offset 
criterion 

to the straight line connecting Po and Pn does not exceed a 
predefined threshold value. 

The following pseudo code describes the split phase 
of the split-and-merge method. It processes an edge 
E = {Pl' .. Pn} or a part of it. The input to the function 
in the first call is the indices 1 and n of the first and last 
points of the edge. The function works recursively, and in 
general its input is the indices of the first and last points 
of a sub-edge. The set s (which is a global parameter) is 
initialized to contain the numbers 1 and n. 

Split(j,l) 

1. m:= -1 

2. Vi, j ~ i ~ I 

2.1 0:= the offset of point Pi from the line PiPl 

2.2 if 0 > m then m := OJ t := i 

3. if m > MAXOFFSET 

then s := s u {t}; Split(f,t); Split(t,l) 

Once the above algorithm terminates, s contains an 
unsorted list of indices of the potential breakpoints. The 
merge algorithm, as specified in the following pseudo code, 
attempts to merge two neighboring segments, according to 
the same maximum offset criterion described earlier. 

MergeO 

1. Sort the s list by ascending order 

2. k:= the number of breakpoints in s 

3. Vi, 2 ~ i ~ k - 1 

3.1 0:= the offset of point Pa[i] from the line 

Pa[i-l]Ps[i+l] 

3.2 if 0 > MAXOFFSET 

then s := s - {sri]}; k := k - 1 

Figure 1 demonstrates a 2-D curve splitting. The 3-D 
case is similar, except for the calculation of the offsets. 
These are calculated in a 3-D coordinate system. 

Another aspect is the analysis of the segmented line. 
Although the split-and-merge method aims at segmenting 
straight lines, some lines cannot be classified, be it because 
of noise, short segments or simply because no straight line 
segments are present. 



~ i~t:\= = = =1 o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

w/pi 

Figure 2: Low-pass filter for the 'I/J - s curve: ImpUlse re­
sponse and magnitude of the frequency response 
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Figure 3: An example of filtering a 1-D sequence by the 
equiripple low-pass filter 

2.2 Segmentation in 'I/J - s domain 

In order to easily detect circular arcs in addition to straight 
lines, the 'I/J-s domain can be used. In this domain, straight 
lines appear as horizontal lines, and circular arcs as arbi­
trary straight lines. Since both straight lines and circular 
arcs appear in the 'I/J - s domain as straight lines, we can 
use the split-and-merge algorithm described in section 2.1 
to segment the 'I/J - s curve and get as a result both the 
straight lines and the circular arcs. 

As described earlier, the input is a list of points in a 
3-D continuous coordinate system. Since this input is de­
rived from a discrete 2-D representation, noise effects that 
were produced during the scanning of the original aerial 
photographs cannot be avoided. The 'I/J - s method is very 
sensitive to noise. A point in the spatial domain that is dis­
placed by approximately the distance between two neigh­
boring points will cause rv 45° "offset" in the 'I/J - s curve. 
Therefore, the original data should be filtered by a low-pass 
filter. Since the breakpoints we try to detect are also high 
frequency phenomena, they will be affected too. In order to 
compromise between noise removal and information preser­
vation, a filter with few coefficients should be used. We used 
the Parks-McClellan equiripple algorithm (Rabiner et. al, 
1975) to design such a filter. The equiripple method mini­
mizes the maximum error between an ideal (infinite length) 
low pass filter and a filter with a truncated number of co­
efficients. By this, an optimal filter can be achieved for a 
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given set of specifications. This set includes the cutoff fre­
quency, the transition band, a weighting function for the 
errors in the pass and the stop bands, and the number of 
coefficients. Recursive or nonlinear filters (Wuescher and 
Boyer, 1991) are alternate solutions to the filtering prob­
lem. The impulse and frequency responses of the filter are 
shown in figure 2. Figure 3 shows a noisy 1-D sequence 
before and after filtering. In the case of 3-D edges, all three 
coordinates are convolved separately with this filter. 

The 'I/J - s domain in 2-D space consists basically of a 
plot of the orientation ('I/J) versus length (s) of the original 
spatial curve. In this representation, the slope of the line 
corresponds to the curvature of the original curve. There­
fore, it can be easily shown that a straight line in the spatial 
domain appears as a horizontal line (parallel to the saxis) 
in the 'I/J-s domain, and a circular arc (which has a constant 
curvature) appears as an arbitrary straight line. The 'Ij; - s 
curve for a nonanalytical spatial curve is constructed by 
computing the directions between points. In order to over­
come some residual noise effects, we calculate the direction 
at a certain point not between the point and its neighbor, 
but between its predecessor and successor. In cases of more 
extreme noise residuals, a larger interval can be used for 
calculations. 

In order to segment the 'I/J - s curve, discontinuities 
should appear only at breakpoints. An artificial discon­
tinuity is present when the original curve orientation goes 
from 360 0 to 0° or vice versa. Hence, after representing 
the curve in the 'Ij; - s domain, this artificial discontinuity 
is eliminated. The procedure is described by the following 
pseudo code, where c is a parameter which compensates for 
the discontinuity: 

Discontinuity_elimination 10 
1. let PI ... Pn be the list of points of the 'Ij; - s curve 

3. Vi, 2 ~ i ~ n 

3.1 'lj;i := 'l/Ji + c 

3.2 if l'Ij;i - 'lj;i-Il ~ 180° then 

• if 'l/Ji > 'l/Ji-l 
then 'l/Ji := 'l/Ji - 360°; c := c - 360° 
else 'l/Ji := "pi + 360°; c := c + 360° 

With this procedure no changes in orientation of more 
than 180° will occur. 

We have extended the 'I/J - s approach to 3-D. A hor­
izontal angle a and a vertical angle <P are used to express 
the spatial direction. Again, a straight line in the spatial 
domain appears as a line which is parallel to the distance 
axis of the 'Ij; - s domain. A circular arc, contained in an 
arbitrary plane in the 3-D space, appears as an arbitrary 
straight line in the 3-D 'Ij; - s space. 

Special attention must be paid when the tangent of a 
circular arc at a certain point becomes vertical. This situ­
ation is described by the following: 

I <Pi I ~ l<Pi-11 ~ 90° 

<Pi ~ <Pi-l 
Careful examination reveals the gradient of <P changes its 
sign leading to a discontinuity of the vertical angle. In 
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Figure 4: Compensation for an artificial discontinuity 

order to eliminate this discontinuity problem, the following 
procedure is added to the transformation of a spatial curve 
into the 'lj; - 8 domain: 

Discontinuity _elimination2 0 

1. let Pl ... Pn be the points of the 'lj; - s curve, c be a 
compensation factor for the horizontal angle, z be a 
zero elevation base for the vertical angle, and s a sign 
factor 

3. Vi, 2::; i ::; n 

3.1 (Xi := (Xi + c; (Pi := cPi + z * 8 

3.2 if (l(Xi - (Xi-ll ~ 180°) & 
(lcPi - zl ~ IcPi-l - zl ~ 90°) & 
(cPi ~ cPi-l) then 

3.2.1. if (Xi > (Xi-l 
then c := c - 180°; (Xi := (Xi - 1800 

else c := c + 180°; (Xi := (Xi + 180° 

3.2.2. if ((cP - z ~ 90°) & (8 = 1)) or 
((cP - z ~ -90°) & (8 = -1)) 
then z := z + 180°; cPi := cPi + 180° 
else z := z - 180°; cPi := cPi - 180° 

Figure 4 shows a case where the compensation is necessary. 
(XI and cPl are corrected angles. 

The disadvantage of this approach is that the restoration 
of the original spatial curve from the 'lj; - 8 curve is no longer 
possible. However, the conversion into the 'lj; - 8 domain is 
done for approximating the location of the breakpoints on 
the curve. We can certainly store the indices of the found 
breakpoints, go back to the original spatial domain, and 
segment the original curve according to these breakpoints. 

Once we have a 'lj; - 8 curve which does not contain 
representation related discontinuities, the simplest way to 
segment it into straight lines is by the split-and-merge algo­
rithm described in section 2.1. The result of this operation 
is a list of straight lines in the 'lj; - s domain. Each of these 
straight lines is examined and classified into one of three 
spatial domain categories, namely, straight line, circular arc 
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(a) (b) 

Figure 5: Synthetic data: (a) clean; (b) noisy 

or "other," i.e., natural lines or noise effects, according to 
the following order of criteria: 

• If the line is shorter than a predefined threshold value, 
it is classified as "other." 

• If the slope of the line is less than a predefined thresh­
old value, it is classified as straight line. 

• The radius, arrow and angle of a circular arc are es­
timated from the slope and first and last points of a 
'lj; - 8 segment. If these parameters are within a pre­
defined interval, the segment is classified as a circular 
arc. 

• In other cases, the segment is classified as "other." 

3 EXPERIMENTAL RESULTS 

Both the split-and-merge and the 'lj; - s methods were im­
plemented and tested with synthetic and real data. Not all 
the experiments have been completed yet, leading to more 
results with real data. 

The synthetic data were produced by combining a set 
of straight lines and circular arcs in 3-D space, which were 
then corrupted by noise that was produced by a pseudo­
random number generator. The magnitude of the noise 
was chosen in a way that mimics the behavior of real data. 
Figure 5 shows the clean and noisy synthetic data as 3-D 
curves. The real data were taken from the results of the 
matching process, consisting oflists of 3-D points. Figure 6a 
shows the left image of the stereo pair which was used for 
the production of these edges. The 3-D edges are shown in 
figure 6b in an orthogonal projection. 

3.1 Split-and-merge results 

The split-and-merge algorithm was implemented according 
to the description in section 2.1. In general, the offset 
threshold can be derived directly from the scale and the 
scanning resolution of the aerial images, and it should be 
larger than the size of a pixel in object space. The aerial 
photographs we used have a scale of approximately 1/4000, 
and the scanning pixel size is approximately 60 /-Lm. There­
fore, a pixel size in object space is ,....., 0.25 m. We selected 
a value which is slightly higher, taking into account also 
other noise effects. The threshold was the same for both 
the split and the merge phases of the algorithm. 

Synthetic data: Testing the split-and-merge proce­
dure on the synthetic data did not present any troubles in 
the segmentation, just as we anticipated. The straight lines 



(a) 

(b) 

Figure 6: Real data: (a) left stereomatej (b) 3-D edges in 
orthogonal projection 

Figure 7: Results of applying the split-and-merge method 
to the synthetic data 
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Figure 8: Results of applying the split-and-merge method 
to the real data (orthogonal projection) 

were extracted completely, and the circular arcs were seg­
mented into small straight lines. The results are shown in 
figure 7 

Real data: The results of the split-and-merge segmen­
tation for the real data are shown in figure 8 as an orthog­
onal projection of the 3-D segments received. These results 
are very encouraging. Many straight segments were de­
tected. The noisy parts of the curves, which are interpreted 
as such also by a human observer, remained unchanged. A 
comparison between the results and the image shows corre­
spondence between straight lines and man-made features. 

3.2 ~ s results 

The ~ - s segmentation algorithm was implemented ac­
cording to the description in section 2.2. The selection of 
threshold values is more crucial than it is for the split-and­
merge case. The main reason for this problem is the fact 
that we deal with angular parameters, while the real physi­
cal perturbations are linear. Therefore, the threshold value 
for a certain line length will not necessarily be suitable for 
other lengths. Despite this, we used values which are ac­
ceptable for the synthetic data, as described below. The 
offset threshold for the ~ - s curve was set to 10. We 
also limited the accepted circular arcs radii to the interval 
2 - 200 m. We have not limited the arc angle and arrow at 
this stage. 

Synthetic data: The results of executing the ~ - s 
algorithm with the synthetic data are presented in a 3-D 
view in figure 9. The results need some explanations. 

1. Longer segments (either straight lines or circular arcs) 
were segmented into shorter ones. However, it can be 
seen that most of the segments were classified cor­
rectly. 

2. Small segments, which were characterized as noise ef­
fects were created near the discontinuity points. 

The phenomenon of breaking an expected segment into 
a small number of shorter segments can be resolved in the 
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Figure 9: Results of applying the 'Ij; - 8 method to the 
synthetic data: straight segments are represented by dashed 
lines, circular arcs by solid lines, and noise effects are not 
presented. The breakpoints are represented by squares. 

spatial domain. For example, the second arc in the syn­
thetic example was detected as two smaller arcs and a noise 
segment. In the spatial domain, these shorter arcs can be 
combined into a larger arc by applying a least-squares· ad­
justment, and eliminating possible blunders. The noise ef­
fects near the breakpoints can be resolved as well. If we 
eliminate any "short" phenomena, we can intersect neigh­
boring longer phenomena, and by that close the gaps pro­
duced by the elimination of the short segments. 

Real data: Experiments with the 'Ij; - s method were 
also performed with real data. We found that the limita­
tions of the 'Ij; - s method, in terms of predefined thresholds, 
are quite critical. The selection of the threshold values is 
application dependent, i.e., the approximate size of features 
should be known. 

4 SUMMARY AND CONCLUSIONS 

The paper describes curve segmentation in 3-D object space. 
Although the two methods described for that purpose are 
not necessarily the best available segmentation methods, 
the results are encouraging and show that 3-D segmenta­
tion is possible. 

The split-and-merge method segments the data into 
straight lines only. Circular arcs are segmented into a list 
of short straight line segments. The offset criterion used 
reduces the sensitivity to noise. In other words, the split­
and-merge method is quite robust and detects line segments 
even if they are very noisy. 

The'lj; - s method offers the advantage of representing 
circular arcs as straight lines. This property allows detec­
tion of circular arcs by using the split-and-merge approach. 
However, determining threshold values becomes a crucial 
issue. Due to noise effects, it is dependent on the lengths of 
lines to be classified. The noise is reduced significantly by a 
proper filtering of the original data. However, filtering also 
blurs the breakpoints. Current research focuses on a 3-D 
Freeman code (Freeman, 1974) representation. That is, the 
object space is discretized, thus reducing some of the noise 
caused by the scanning process. 

The experience gained leads to the following conclu­
sions: 

1. Since the 'Ij; - s method allows easy detection of cir­
cular arcs, it can be used for a rough segmentation 
of the 3-D curve into straight lines and circular arcs. 
Once such approximations exist, other methods can 
be used to refine the segmentation. 
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2. Other segmentation methods should be investigated 
and eventually extended to 3-D. 

The segmentation of the 3-D curves is an important clue 
for man-made features, which are usually composed of 3-D 
straight lines and other regular curves that provide informa­
tion which is much more explicit than the original densely 
spaced points resulting from stereo matching. 
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