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ABSTRACT: 

The mathematics of information theory may be used to visualize 
the metrics of information embodied by digital multispectral 
imagery. These visualizations are analogous to the processing 
which occurrs at the retinal level of biological visual systems. 
The utility of the visualizations lies in their ability to reveal 
subtle nuances of phenomena in satellite remote sensor imagery, 
and in their shared mathematical foundations with theoretical 
studies of systems, complexity and diversity. 
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Introduction 

The traditional model of digital imagery 
is that of a record of spatially unique, 
instantaneous physical measurements within 
selected intervals of the electromagnetic 
spectrum. From the perspective of 
conveyed information at a point, all 
points on the image are regarded as 
equivalent. Variations on this model 
include measurements of deviations from a 
datum, such as terrain elevation or 
atmospheric pressure. 

At a different level of abstraction, an 
image may be regarded as an integrated set 
of pure information, mathematically 
defined. In the integrated model, each 
instantaneous value on an image is a 
function of all other instantaneous values 
over the entire image field. The 
abstraction of an absolute physical 
measurement at a point is superseded by 
the abstra~tion of information conveyed at 
a point relative to an organized system. 
This is the model which best describes the 
retinal stage of biological imaging 
systems. 

A robust mathematical definition of 
information was first articulated by 
Claude Shannon, extending and adapting the 
mathematics of classical thermodynamics 
(Shannon, 1949). The theory was 
originally conceived to solve the problem 
of optimizing electronic communications in 
the presence of noise over limited carrier 
bandwidths, but has since been accepted as 
a rigorous mathematical foundation for 
broadly applicable metrics of system 
organization and diversity. 

Organization and diversity are fundamental 
characteristics of natural systems, 
possessing strong associations with system 
behavior, resiliance and adaptability to 
change. Information theory has fascinated 
researchers with its potential as a 
paradigm integrating within a single 
conceptual and mathematical framework the 
diverse fields and scales of inquiry into 
systems. The theory has also been 
criticized as being frequently 
overextended or misapplied to areas where 
the mathematical justifications for its 
use are tenuous, and the interpretations 
of its results questionable. These 
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criticisms are well founded, and rigorous 
mathematical prerequisites for the 
application of the theory must be met. 

Discrete Markoff Processes and Ergodic 
Sources 

A fundamental concept of information 
theory is that of a discrete Markoff 
process. The general case of a discrete 
Markoff process is that of a system with a 
finite number of discrete states Sl, 
S2 .•. Sn. For each state of the system 
there must exist a .set of transition 
probabilities Pi(j) which describe the 
probability that a system in state si will 
transition to state Sj. A discrete 
Markoff process becomes an information 
source by producing a measurement at each 
transition from one state to another. 
Among possible Markoff processes, 
information theory concerns a distinct 
class known as "ergodic" processes. An 
ergodic Markoff process is a process which 
generates sequences of values which share 
the same statistical properties. As the 
length of a sequence from an ergodic 
Markoff process increases, the sequence 
statistics will cluster around limits 
characteristic of that ergodic Markoff 
process. Such clustering will exist even 
though every sequence may be unique and it 
may be impossible to predict the next 
state of any sequence from preceding 
states. Shannon equates the ergodic 
property with "statistical homogeneity." 
All human languages are examples of 
discrete ergodic Markoff processes. The 
phenomenon of "texture" may likewise be 
considered an expression of discrete 
ergodic Markoff processes in the spatial 
domain. Finally, the superposition of 
ergodic Markoff processes is itself an 
ergodic Markoff process (Moles, 1967), as 
is the case with music. 

It is a necessary assertion that a 
multispectral imaging scanner viewing the 
earth meets the definition of a discrete 
Markoff process, and that a digital 
multispectral image may be regarded as 
record of a discrete Markoff process. 
This assertion follows from the 
observation that transitions of 
instantaneous physical measurements from 
one state to another in space may be 
described by a finite set of transition 



probabilities. Likewise, transitions of 
instantaneous physical measurements from 
one state to another across spectral 
channels may be described by a finite set 
of transition probabilities. This concept 
is fundamental to the application of 
information theory to multispectral 
imagery. 

If we model a digital, multispectral image 
as a record of a discrete ergodic Markoff 
process, no other mathematical, geometric 
or qualitative assumptions of any kind are 
necessary and operations for visualizing 
the metrics of information theory are 
exhaustively defined. Spectral, spatial 
or other statistical components such as 
illumination intensity or angle which are 
integrated over the image field are 
treated identically. 

Uncertainty, Entropy and Information 

The occurrence of a quantization value or 
a sequence of quantization values in an 
image is an event with an associated 
probability. The probability of an event, 
and the uncertainty associated with that 
probability, are separate and distinct 
concepts. Information theory is founded 
upon uncertainty and it's measurement. In 
information theory, the maximum 
uncertainty possible for any discrete 
event is log lIN, where N is the number of 
possible discrete event states. For an 
image with a quantization range of 256, 
the maximum possible uncertainty 
measurable for any discrete quant~zation 
event is log 1/256. For a sequence of 
events in the same image, the maximum 
uncertainty possible for the sequence 
would be L. log 1/256 for the length of the 
sequence. 

The name given the measurement of 
uncertainty associated with a set of 
events is the "entropy." Since maximum 
uncertainty is conveyed by the least 
probable event, the least probable event 
is said to possess the "maximum entropy." 
Entropy and "information" are commonly 
confused, resulting in a famous paradox of 
information theory that only a perfectly 
random source possesses the maximum 
entropy or information content. This 
paradox arises from information theory's 
use of terminology arising from it's 
mathematical roots in classical 
thermodynamics. The paradox disappears if 
we regard entropy as a measure of the 
information required to eliminate the 
uncertainty of an event rather than a 
measure of information, per see In some 
texts, information is referred to as 
negative-entropy or "negentropy" to 
distinguish it from the Boltzmann entropy 
of thermodynamics. This paper adheres to 
Shannon's original terminology, with the 
above caveats in mind. Entropy is a 
relative abstraction devoid of any 
connection with absolute measurements or 
criteria. Though simple to compute, it 
possesses extraordinary conceptual 
subtlety. 
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computing Visualizations of the 
Information content 
of Digital Multispectral Imagery 

The first step in the visualization 
process is to scan the multispectral image 
and compute two histograms; a raw 
occurrence histogram and a conditional 
occurrence histogram. The raw occurrence 
histogram is a count of the number of 
occurrences of each quantization value 
within each spectral channel. The 
conditional occurrence histogram is a 
count of co-occurrences of all 
quantization values across all spectral 
channels. 

The second step in the visualization 
process is the conversion of the raw and 
conditional histograms into tables of 
simple and conditional probabilities which 
represent the simple and conditional 
uncertainties associated with image 
quantization events. It is crucial to 
make the distinction between an absolute 
measure of probability and a measure of 
uncertainty. The maximum uncertainty 
possible for any quantization event in an 
image with 256 possible quantization 
values is 1/256. Therefore, quantization 
probabilities less than 1/256 must be 
converted into measurements of uncertainty 
relative to this probability. For 
example, probabilities of 1/128 and 1/512 
reflect identical uncertainties in an 
image with a quantization range of 256, 
i.e., each represents the same 'amount of 
information relative to the maximum 
possible uncertainty. The uncertainty 
associated with any quantization value is 
a direct function of the quantization 
range. 

The third step in the visualization 
process is to re-scan the image and 
compute visualizations of the metrics of 
information theory across all spectral 
channels at each instantaneous resolution 
element. If spatial entropy is also to be 
visualized, the computation is summed over 
nearest neighbor, multispectral spatial 
samples. Mathematically, visualizations 
of the entropy of any number of registered 
spectral channels may be computed but 
memory and display constraints create a 
practical limit of three or four channels 
on small computers. 

Metrics of Information: Entropy, 
Redundancy and Equivocation 

computation of the simple entropy across 
spectral channels is defined by Theorem 5 
(Shannon, 1949b). The simple entropy 
assumes that probabilities representing 
uncertainties are independent. 

THEOREM 5: Let p(Bi) be the probability 
of a sequence Bi of symbols from the 
source. Let 

Gn = - lIN L p (Bi) log p (Bi) 
i 

where the sum is over all sequences Bi 
containing N symbols. Then Gn is a 
monotonic decreasing function of Nand 



Lim Gn H. 
N->OO 

Once the entropy has been computed, the 
redundancy is defined as one minus the 
ratio of the measured entropy to its 
maximum (Shannon, 1949c), 

Redundancy = (1 - (Gn I MAX». 

computation of the conditional entropy or 
"equivocation" across spectral channels is 
defined by Theorem 6 (Shannon, 1949d). 
The conditional entropy assumes that 
probabilities representing uncertainties 
are conditional upon co-occurring events. 

THEOREM 6: Let p(Bi,Sj) be the 
probability of sequence Bi followed by 
symbol Sj and pBi(Sj) = p(Bi, Sj) I p(Bi) 
be the conditional probability of Sj after 
Bi. Let 

Fn = -L p(Bi,Sj) log pBi(Sj) 
i,j 

where the sum is over all blocks Bi of N-1 
symbols and over all symbols Sj. Then Fn 
is a monotonic decreasing function of N, 

Fn NGn - (N - 1) G(n-1), 
N 

Gn lIN L Fn, 
1 

Fn <= Gn, 

and Lim Fn H. 
N->OO 

What Are We Seeing? 

Perhaps the most remarkable aspect of 
visualizations of the metrics of image 
information is the extent to which the 
visualizations are easily recognizable 
images of the natural world. This is in 
spite of the fact that the metrics of 
information are mathematical abstractions 
calculated from tables of uncertainties. 
concepts such as "information," 
"redundant" or "equivocal" do not 
effectively describe what we are seeing 
since these concepts imply complex 
unconscious value judgements which have 
little meaning relative to the 
mathematical abstractions visualized. 
Paradox in the use of familiar language 
and concepts is inevitable. Probably the 
best approach on casual inspection is to 
just view the visualizations as "pictures" 
which reveal the world in a different 
light. 

In visualizations of image entropy, bright 
areas represent the "mathematically most 
interesting" parts of an image, while dark 
areas represent the "mathematically least 
interesting" parts. Another 
interpretation is that bright areas 
delineate regions conveying the most 
information about the image field, and 
dark areas convey the least. 

In visualizations of image redundancy, 
more subtlety of interpretation is 
involved. Redundancy provides a measure 
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of the amount of information which is 
pre-determined by context. For example, 
the redundancy of written English is 
approximately fifty percent, meaning that 
almost half of what we write is 
pre-determined by the structure of the 
language. In a redundancy visualization, 
bright areas represent regions which 
convey the least information relative to 
the image field. In satellite imagery, 
the redundancy is dominated by extremely 
low probability events and is ideal for 
locating point events which may be 
spectrally subtle yet statistically 
prominent, such as fires or hot spots. 
The redundancy is a logarithmic rather 
than a linear inverse of the entropy. 

The equivocation (or conditional entropy) 
requires the most subtlety in 
interpretation. In information theory, 
equivocation is a measure of information 
lost during transmission as a function of 
channel capacity and noise. It represents 
the ambiguity or residual uncertainty 
associated with our measurement. Shannon 
calls it " ... the uncertainty when we have 
received a signal of what was actually 
sent." In an image visualization, the 
equivocation seems to represent the 
coherence of statistical structures. 
Isolated clouds, for example, generally 
have very low to zero equivocation values 
since their multi-spectral statistics are 
generally very specific (unequivocal!) 
relative to those of other image 
components. The equivocation can probably 
best be thought of as an inverse measure 
of "clustering" relative to the 
statistical background. The equivocation 
occasionally reveals structures absent in 
both the entropy and the redundancy. 
Conversely, structures visible in the 
entropy or redundancy may be absent in the 
equivocation. Noise in the imaging 
process is a definite component of the 
equivocation. 

The Entropy Function and Biological Visual 
Systems 

An interesting analog to visualizing the 
metrics of information in digital 
multispectral imagery is the processing of 
the inverted image projected upon the 
retina of biological visual systems. It 
must be emphasized that information theory 
is not a model of retinal processing. 
Visualizations of the metrics of 
information theory do share enough 
characteristics with known retinal 
operations at the cellular level to make a 
discussion of retinal processing relevant 
to their visual interpretation. 

In the human visual system, information 
which reaches the visual cortex in the 
brain has already been subjected to 
extensive information processing by the 
time it leaves the eye. This processing 
occurrs in the retina, a thin membrane 
lining the back of the eyeball. The 
retina is an extension of the neural 
architecture of the brain and consists of 
two types of photoreceptors (rods and 
cones) and several layers of specialized 
neurons. This layering of distinct neural 



structures is a characteristic repeated in 
the visual cortex (Hubel and Wiesel 
1979). It is believed that each la~er of 
specialized neurons performs specific 
spatial information processing functions 
and that it's output propogates in conce~t 
with the functioning of adjacent layers. 
Visual information processing is an 
example of what may be called a "cascade" 
or "pipeline" process, with the retinal 
transform representing the earliest 
stages. 

Due to the complex spatial interaction 
among underlying neurons, every 
photoreceptor in the retina forms the 
center of a receptive field where light 
striking the photoreceptor tends to 
increase the activity of its associated 
neurons. The activity of these neurons 
te~ds to.dampen the activity of 
nelghborlng neurons associated with other 
photoreceptors. The effect is mutual 
resulting in a phenomenon known as ' 
"lateral inhibition." The degree of such 
spatial interaction between photoreceptors 
varies inversely with distance but there 
is no limit at which it may be'regarded as 
zero. It has been hypothesized that the 
retina compresses the bandwidth of visual 
information by suppressing the constant 
attributes of the visual field while 
enhancing deviations from the background 
defined by the whole scene (Mahowald and 
Mead, 1991). 

Visualizations of the metrics of 
information theory share several 
interesting similarities with retinal 
functioning. In both, each instantaneous 
field of view is a function of the entire 
visual field as well as stimulation at a 
point. Both functions replace the 
bandwidth occupied by the amplitude of 
stimuli with representations of the 
relevance of stimuli to a statistical 
background defined by the entire visual 
field. Both tend to radically enhance any 
variation relative to the statistical 
background. Finally, neither depicts the 
visual space in an absolute metric. 
?utput remains constant despite variations 
lntegrated over the field of view. 
Conversely, changes in the reference field 
of view, or of specific structures within 
it, will result in changes in the 
representation of everything in the visual 
field, even things which have otherwise 
remained constant. This explains how the 
sudden appearance of subtle events in an 
otherwise monotonous visual experience can 
startle us. The retinal function 
s~crifices the physical objectivity of the 
vl~ual world by emphasizing those aspects 
WhlCh reveal the most information about 
the environment. This is the primary 
strength which the information theoric 
visualization attempts to exploit. 

The utility of Visualizing the Metrics of 
Information 

Frequently, visualizations reveal coherent 
structu:es w~ich are absent or barely 
perceptlble ln untransformed imagery. 
These structures are aspects of the 
natural world which are being revealed, 
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however nothing more can be inferred about 
the structures beyond their relative 
mathematical "interest" and their spatial 
structure. Since the mathematical 
"interest" of an area is a function of the 
entire image, any change in the spatial 
context of the image, or any change in the 
image contents (such as clouds) will 
potentially change the brightness 
signature of the structures revealed 
within it. This extreme relativity can be 
unnerving for those seeking repeatable, 
quantitative measurements. since the 
structures are real phenomena, their 
spatial form and location remains 
constant. 

An unfortunate liability with the approach 
as it now stands is frequent encounters 
with "granularity," "waves," and 
"streaking" which arise as the result of 
noise in the scanner-based imaging systems 
which contaminates image statistics. Even 
visually "clean" imagery can contain 
significant levels of noise which becomes 
visualized along with other subtle 
components of the image information field. 
Noisy imagery can be immediately 
recognized due to the above effects and 
inferences derived from the imagery 
subjected to deserved scrutiny. The 
potential of this technique with 
relatively noise-free imagery is an 
exciting prospect. 

Conclusion 

A system has been described which enables 
digital, multispectral imagery to be 
viewed via the metrics of information 
theory. Such images possess utility by 
revealing subtle environmental structures 
in satellite imagery, and their ability to 
reveal distortions of the image 
acquisition process. The images possess a 
theoretical richness extending from the 
realm of visual psychophysics to that of 
the study of natural systems from space. 
Often useless, occasionally startling and 
always intriguing, the images reveal the 
world from the perspective of a seamless 
mathematical model which begins at the 
imaging system in space and ends in the 
brain. They allow us to approach an 
understanding of the visual and natural 
world on terms other than a static, 
cartesian grid of calibrated measurements. 
These techniques hold exciting research 
potential into natural systems. 
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