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Abstract We develop a two-stage edge based region growing technique. The first stage consists of 
a half plane edge detector, that acts as a predictor to group pixels into regions. In a subsequent stage 
adjacent similar regions are merged. Since the method is edge based, edges are located accurately, 
which is an obvious improvement compared with the common region growing technique such as split­
and-merge that tend to dislocate boundaries. Common edge detection techniques find fragmented 
boundaries; our method has the apparent advantage to trace closed boundaries. The method is 
extensively described and many experimental results are presented. One of the immediate application 
area's we see, is the highly desirable improvement of multispectral classification. 
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1 Introduction 

Our ultimate aim is to arrive at an automation of the up­
dating of topographical databases. This problem can be 
readily approached as an image understanding problem us­
ing GIS knowledge as a priori information source (Lem­
mens, 1990). One of the main problems to be tackled is 
the segmentation problem. That means, the partioning of 
an image into meaningful segments that are relevant with 
respect to object space and task domain. It is generally 
recognized that segmentation of natural images is a severe 
problem that is far from being solved, although a plethora 
of segmentation scheme's are developed last decades. 

We present a new segmentation method based on (1) 
a prediction stage where a half plane edge operator, exam­
ines each pixel on the presence of an edge and (2) a merging 
stage. The method is entirely based on statistical reason­
ing, assuming (limited) a priori knowledge about the image 
noise. If the predicted value and the actual value are suf­
ficiently close together, the pixel is assigned to the region 
under examination. If the pixel doesn't fit into any of the 
surrounding regions, a new region starts. The result of the 
prediction stage is a set of homogeneous regions. However, 
they are not maximal homogeneous. For that a subsequent 
stage is required, where adjacent regions that show suffi­
cient similarity are merged. 

One of the immediate application area's we see is the 
highly desirable improvement of multispectral classification 
of satellite images. The Bayesian MSC classifiers presently 
commonly used by the remote sensing community classify 
an image only on a pixel-by-pixel base without incorporat­
ing neighbourhood information. Consequently, these meth­
ods are severely prone to error. Aggregation of these pixels 
into regions highly improve the classification accuracy (cf. 
Lemmens and Verheij, 1988; Janssen et al., 1990). 

The paper is organized as follows. First we consider re­
gion growing. Next we treat some smoothing filters. Than 
we present the theoretical background of our edge based 
region growing method. In section 5 we discuss the com­
puter implementation, illustrated by an extensive example. 
Section 6 gives experimental results. 
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2 Region Growing 

Conceptually, region growing concerns: 

1. The splitting of a region RJr" that doesn't fulfil a pre­
scribed homogeneity measure, into two or more re­
gions; 

2. The grouping or merging of neighbouring regions Rk 
and Re, that fulfil a predefined similarity measure, 
into larger regions. 

A common measure for the homogeneity of Ric is the 
adjusted grey value variance u~, and for the similarity the 
absolute difference of the mean grey values of Ric and Re. 
The thresholds of the decision rules are usually determined 
by trial-and-error. 

One of the most well-known region growing scheme's 
is the split-and-merge technique of Horowitz and Pavlidis 
(1974), (see also, e.g. Ballard and Brown, 1982; Pavlidis, 
1977). The scheme is based on a quad tree representation 
of the image function. A square image segment is split into 
four new square segments if its elements violate the ho­
mogeneity condition. If for any four appropriate adjacent 
regions the homegeneity condition is fulfilled, then they are 
merged into a single region. This first stage requires a sec­
ond stage, in which adjacent 'blocky' segments are merged 
if they fulfil the homogeneity condition. One of the conse­
quences of the above approach is that a few grey values in 
the square region that deviate from the trend of the other 
grey values, are smeared out. Also, deviating pixels lo­
cated at the borders of the quad, and which may be due 
to the presence of another region, will not be traced. This 
is the reason for the dislocation of boundaries, which is an 
inherent disadvantage of the split-and-merge scheme. Our 
method doesn't show this drawback. 

3 Noise Reduction 

Noise and textures may impede severely the performance 
of segmentation. So, we need methods to effectively reduce 
noise and textures without affecting relevant segments. 



One obvious way to reduce noise is by weighted (e.g. 
Gaussian) or unweighted (i.e. box) moving averaging. Al­
though the image noise is effectively reduced the apparent 
disadvantage is that also the edge strength is reduced. 

To reduce noise without affecting seriously edges, edge 
preserving (non-linear) smoothing filters are required. Three 
examples are: 

The Median Filter The grey value of the center pixel 
of a w x w window, w odd, is not replaced by the (weighted) 
mean, but by the median of the grey values in the win­
dow. Median filters effectively reduce noise while preserv­
ing edges. However, thin structures are removed; e.g., one 
pixel thick lines in 3 x 3 windows disappear. Additionally 
at corners anomalies are introduced. 

The Conditional Average Filter is a modification of 
the box filter. Only those values within the window, that 
don't deviate too much from the present value of the centre 
pixel are involved in the averaging process. A prescribed 
threshold is required which defines the allowed difference. 

The Kuwahara Filter is also a modification of the 
box filter. Four w x w windows are placed around the 
pixel such that it is located in one of the four corners. The 
variance of the grey values in each window is computed. 
Next the mean of the window with the lowest variance is 
assigned to the pixel. If the pixel is located at or nearby 
a ramp edge, the windows that cross the edge have a high 
variance, while the windows that occupy only one region 
have low variance. The unweighted averaging is performed 
over the low variance window, resulting in edge preserving 
properties. We have also implemented a modified version, 
in which a fifth w x w window is centred around the pixel. 
Now, on pixels within a homogeneous region, a standard 
box filtering is carried out. We call this filter the extended 
Kuwahara filter. 

4 Edge Based Region Growing 

4.1 Background 

Consider an image to be a two-dimensional curved surface 
in 3-D space. Consequently, we may look at it as a land­
scape, much in the same way as a digital elevation model. 
Suppose that we have traced a homogeneous region in that 
landscape, e.g. a part of a plane. Now the idea is to pro­
ceed from that initial region step-by-step, pixel-by-pixel, 
until one collapses against a mountain. 

Measures are required whether a mountain is reached. 
Our method predicts the grey value of each pixel, adjacent 
to a region of grouped homogeneous pixels. If the predicted 
grey value shows sufficient similarity with the observed one, 
the pixel is added to the region. If not and neither with one 
of the other surrounding regions, a new region is formed, 
consisting initially only of the concerning pixel. Rejection 
is due to the following properties of the concerning pixel: 

- The pixel belongs to a new region; 
- The pixel contains impulse noise; 
- The pixel is a mixed pixel, i.e. located at a boundary; 
- The pixel belongs to a previous region. 

If the pixel belongs to a previous region that is not 
connected with the present pixel, a new region is created. 
Where the ungrouped pixels encounter the grouped pixels 
of the same region, phantom edges are created. 

So, the above prediction procedure requires a second 
stage, to remove noisy clusters, elongated mixed pixels re-

gions and phantom regions. In principle, this second stage 
is equivalent to the second stage in the split-and-merge 
paradigm. 

4.2 Stage I: Prediction 

Let us characterize each homogeneous image part, R k , con­
sisting of a collection of pixels gk(i,j) as a random field 
where the grey value of each individual pixel can be pre­
dicted from the grey values of the pixels that have been 
previously examined to be part of Rk 

(1) 

where gk(i,j) is an arbitrary prediction of gk(i,j) and nk(i,j) 
is another random field such that Eq.(l) realizes the co­
variance properties of Rk (d. Jain, 1989, p. 207). Let 
nk(i,j) be a signal-independent, indentically-distributed, 
region-independent, Gaussian white noise field, that means 
n(i,j) = nk(i,j) '" N(O,(7~I). Consider the random field 
to be homogeneous or wide-sense stationary than the mean 
value: 

and the covariance function: 

are spatial invariant. Suppose that the covariance function 
is region-indepen-dent, or in other words, each region has 
the same covariance function, i.e. Ck(p, q) = C(p, q). A re­
alistic image covariance function is the circularly symmetric 
or isotropic exponential function: 

( ,~ C(p, q) = (72exp -V ~ ) (2) 

where (72 represents the variance of the random field. Let 
(72 = (7~ with (7~ the variance of the additive noise field 
n(i,j). Than the prediction function to obtain gk(i,j) such 
that the random field has covariance function according 
Eq.( 2) is: 

r(p, q) = exp ( - .. r2:t ) (3) 

Fig. 1 illustrates the sampling of Eq.( 3) for use on a regular­
spaced grid. The coefficients of the weight function should 
sum up to 1: :EP,qERk r(p, q) = 1. Consequently, the weight 
coefficients r(p, q) are divided by :Ep,qERA: r(p, q). Since it is 
our aim to test whether pixel (i,j) is part of region k, we 
have to check the hypothesis 

than (i,j) is part of region k, against the hypothesis 

Using the prediction equation Eq.( 3) under the restric­
tion :EP,qERk r(p, q) = 1 the prediction gk(i,j) of gk(i,J'), 
becomes: 

with prediction variance: 
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And the variance of the estimatel:l.gk(i,j) becomes since 
according Eq.( 3) r(O,O) = 1: 

A 2(' ') _ 2 (. ') 1 + I:P,qERk r2 (p, q) 
ak '/,,) - an 1,,J ( ( ))2 

1 + I:P,qERk r p, q 
(5) 

We apply the standard z-score to test whether the hypoth­
esis that pixel (i,J') is part of the region R k , which leads to 
the null-hypothesis l:l.gk(i,j) = 0. 

l:l.gk(i, j) 
Z = ak(i,J') (6) 

where l:l.gk(i,j) = IUk(i,j) - gk(i,j)1 and aHi,j) as defined 
in Eq.( 5). 

Remark: During our experimentation we got the ex­
perience that the estimated prediction variances of larger 
regions is becoming rather small, and consequently the deci­
sion that the pixel (i,j) under consideration doesn't belong 
to region k is taken too easily. In order to avoid this disad­
vantage, we do not involve the original number of pixels, but 
their square root. The rationale guiding this approach is 
based on the fact that the pixels are scattered over a plane, 
i.e have a two-dimensional extension. To bring them back 
to one-dimensional proportions, the square root is taken. 
The implementation of this rationale resulted in a consider­
ably improvement of the performance of Stage I and, since 
the same considerations had to be applied to Stage II, a 
considerably improvement of the final performance. 

According the above considerations the estimation of 
the prediction variance becomes now: 

A 2 (' ') _ 2 [ 1 + I:P,qERk r2(p, q) ]1/2 (7) 
a k 1,,) - an ( ( ))2 

1 + I:P,qERk r p, q 

So, the final decision rule becomes: IF 

minkEU (~gk(i,j)) < Zotan 2: (8) 
rk 

THEN assign pixel (i,)') to region Rk for which l:l.gk(i,j) is 
minimum ELSE start a new region. 

U is the set of adjacent regions of pixel (i,j) a is the 
probability that pixel (i,J') is wrongly assigned to region 
Rk, and 

2: = [ 1 + I:P,qERk r2 (p, q) ]1/4 

rk (1 + I:P,qERk r(p, q))2 
Before entering Stage I, the image may require noise reduc­
tion by one of the smoothing scheme's of section 3. 

4.3 Stage II: Merging 

The result of Stage I is that homogeneous regions are cre­
ated. Although Stage I tends to trace edges at the correct 
location, many phantom edges are introduced, due to de­
pendency on the scan direction of the predictor as explained 
before, Further, also noisy image parts and mixed pixels 
boundary regions are traced as separate homogeneous re­
gions. The aim of Stage II, is to remove: 

a) phantom regions; 
b) small regions, and 
c) mixed pixels boundary regions. 

4.3.1 Stage IIa: Removal of Phantom Regions 

Statistical formulation whether two adjacent regions Rk and 
Re are homogeneous requires information about the means 
and variances of Rk and Re. 
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As in Stage I we could use the variance of the image 
noise (I~, However, in Stage I, the value of a~ is not critical. 
Since in real images the noise is not isotropic distributed 
over the image, we need a better estimate for Stage II. We 
estimate the variance of the noise for each of the Stage I 
regions individually. Consequently, we have to replace the 
z-score by the t-score. 

Let Rk and Rl be two adjacent regions, each being ho­
mogeneous. Let (J-lb an and (J-ll, (Ii) be the mean grey value 
and variance of Rk and Rl , respectively: 

1 
J-l(.) = - 2: gi; 

n(.) iER(.) 

Where (.) = k,l. Than the t-score becomes: 

where: 

t = J-lkl - J-lkl(hIlP) 

akl 

J-lkl = IJ-lk - J-lli 

J-lkl(hIlP) = 0 
a~l = a;/nk + a;/ne = a;(nk + nd/nknl 

(10) 

Where a;, the pooled variance, is obtained by a weighted 
averaging of the variance estimates of the two regions Rk 
and Rl , with the weights based on their respective degrees 
of freedom: 

(11) 

If we may assume that nk and nl are large: nk ~ nk - 1 
and nl ~ ne - 1, than 

As in Stage I, it is our experience that larger regions are 
prevented from merging, due to the low joined variance es­
timate a~l for large regions. Employing the same rationale 
as in Stage II we replace nk and nf. by .Jnk and .;ni., re­
spectively. The final decision rule becomes now: IF 

(12) 

THEN merge region Rk and Rl . 

Where ex is the probability that two similar regions are 
wrongly not merged and v = .Jnk + .;ni. - 2 the degrees 
of freedom of the t-score. To avoid that similar regions are 
wrongly not merged ex should be rather small. 

Remark: Since the mean and variance are affected 
by the tail parts of the noise and by textures, inevitably 
present in aerial and satellite images, but which we have 
not modelled within our present approach, we have in our 
implementation, the means of the regions replaced by their 
medians. (The median is an estimate for the average which 
is robust against heavy tailed noise). To avoid influence of 
the deviating grey values on the computation of the region 
variances, we preprocess the original image before entering 
Stage II by a 3 x 3 median filter, resulting in removal of 
small clusters of deviating grey values. Extensive experi­
mentation have shown the feasibility of our approach. 

4.3.2 Stage lIb: Removal of Small Regions 

The aim is simply to remove regions due to small noisy 



clusters. A small region is grouped with its most similar 
neighbour expressed by the t-score according Eq.( 12). 

4.3.3 Stage lIe: Removal of Insignificant Regions 

The aim of Stage IIc is to remove elongated regions which 
are due to mixed pixels at the region borders. Removal of 
regions solely based on size is insufficient to perform this 
task. In Lemmens (1991) it is shown that an appropriate 
measure to describe the significance of a sliver polygon is 
the quotient of the area size A of the region and the stan­
dard deviation of the area UA, which is a z-score. Accord­
ing a one-sided z-test a 97.5% confidence leads to the test 
statistic: A ::; 1.96 UA, to accept the assumption that the 
region is insignificant. The size of a region is here simply 
the number of pixels. 

(Ibid) further shows that if we may assume that all co­
ordinates are uncorrelated, than: 

U! = ~u~ t {(Yi-l - YHd
2 + (XHI - xi_d 2

} (13) 
i=l 

where {(xi,Yi),i = 1, .. ,n} are the coordinates of the 
border pixels of the region and u; the variance of the co­
ordinates of the border pixels, which should be known a 
priori. In Stage IIc we have implemented the above ap­
proach. It has to be emphasized that the variance of the 
coordinates should not be interpreted here as a physical 
meaningful measure, but as a measure that expresses the 
desired minimal extension of the regions. 

5 Implementation Considerations 

5.1 A Feasible Computer Implementation 

Here we treat an implementation that uses no a priori 
knowledge about initial regions. We start examining the 
image in one of its corners, in particular the left-upper cor­
ner, but any other corner would be appropriate. Conse­
quently the left-upper corner pixel (1,1) is the first, initial 
region, receiving label 1. So, we have to predict iii (1,2) 
from g(l, 1) according Eq.( 4). If the prediction gl(l, 2) is 
sufficiently close to the actual value g(l, 2), then pixel (1,2)' 
receives labell, else it receives label 2. Suppose label 1 is 
assigned to pixel (1,2). Next, pixel (1,3) is predicted from 
pixels (1,1) and (1,2). In this way the predictor moves over 
the image with step size of one pixel. 

.5 

i - 4 i - 3 i - 2 i - 1 

Fig. 1 Samplr:ng and truncation of the predictor r(p, q) = 
exp[ - ((p2 +q2) /2w 2)1/2] The function is truncated after i-3, 
s£nce there the weights are becoming insignificantly small, gi 
is estimated from gi-l, gi-2 and gi-l, according the sampled 
weights. 
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Fig. 2 Kernel of the predictor for w = 1. 

The prediction elements r(p, q) of Eq.( 4), can be pre­
computed and stored in a half plane kernel, as shown in 
fig. 2. The kernel is truncated if its elements are becoming 
insignificant small, e.g. etrunc = 0.01, which is 1% of the 
maximum value of r(p, q) : r(O, 0) = 1. The values of the 
elements of the predictor are entirely determined by wand 
the predictor size by etrunc. Note that the kernel in fig. 2 is 
just an example. 

w < 1 yields a small predictor, making the prediction 
sensitive to local grey value anomalies. The grey value of 
the same cbject may change gradually, when moving from 
the one side to the other side. A large predictor is not able 
to handle such gradual grey value changes. Our experi­
ments showed that the value of w may vary freely whitin 
the range [1.5 - 5], without affecting the final segmentation. 

To remove phantom, small and insignificant regions pro­
duced by Stage I, in Stage II iteratively two regions are 
compared on similarity, according the t-score Eq.( 10). The 
merging of two regions, affects the statistical properties of 
the joined region and hence the t-score of the new region 
and its adjacent regions. To make the merging process or­
der independent, first the t-scores of all adjacent regions 
are determined. Next the two regions which have the low­
est t-score are merged. The statistics of the new region are 
computed and for all the former neighbours of the former 
two regions t-scores are computed. Next the table is traced 
from the beginning to the end again to find the smallest 
t-score. This process is repeated until no t-score exceeds 
the critical value anymore. 

5.2 Example 

We demonstrate our procedure by an example. Fig. 3 shows 
a scene with six regions. This scene is recorded as a 162 

image in the grey value range [0 - 100]. Fig. 4 shows a 
part of it. Additionally, for orientation purposes the region 
boundaries are drawn and the predictor is superimposed to 
predict pixel (8,11). 

5.2.1 Stage I: The Prediction Stage 

The four adjacent pixels (8,10), (7, 10), (7,11) and (7,12), 
all are part of different regions, 8,5,6 and 3 respectively. 
The variance of the noise is estimated from the rectangle 
with corners (2,11) and (6,15) yielding Un = 2.26. The pre­
diction equation Eq.( 4) results in the figures summarized 
in table. 1. 

k !l(.)(8, 11) I:,.(.) z-score Ho 
8 9.75 0.8196 1.21 accepted 
5 76.71 0.7967 36.49 rejected 
6 89. 0.8532 39.93 rejected 
3 80.15 0.8243 37.12 rejected 

Table 1 
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Fig. 3 A scene consisting of 6 regions. 

Since the smallest z-score belongs to region 8 and Z = 
1.21 < 1.96, the critical value at the 95% confidence level, 
pixel (8,11) is grouped with region 8. Now the predictor is 
shifted one pixel to the right to evaluate pixel (8,12) and 
so on. 

The prediction result is shown in fig. 5. Note that phan­
tom regions are created, due to the dependency on the mov­
ing direction of the predictor. The horizontal boundary 
between region 1 and 2 in fig. 3 causes that the predictor 
when crossing the left vertical boundary between 1 and 2, 
will not recognize to step into region 2. Consequentely, a 
new region is created. If the operator encounters the right 
.rertical boundary between 1 and 2, it will cover pixels of 
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Fig. 4 Subz'mage taken from the z'mage of the scene z'n 
Fig. 3. The outline of the predictor is shown z'n the posz'­
tion to est£mate the grey value of pixel (8,11). The four 
adJacent pixels that have received labels in previous steps 
(8,10), (7,10), (7,11) and (7,12) all belong to different re­
gions. Hence, pixel (8,11) is predicted four time. 

the same scene region, although they are divided over two 
image regions. Since the predictor will always choose the 
smallest t-score, the assignment of pixels to one of the two 
regions will be done rather randomly, resulting in ragged 
boundaries which becomes apparently clear for region 11 in 
fig. 5. Further a noise pixel is recognized as a region (region 
6) and also a mixed pixels boundary (region 10). 

5.2.2 Stage II: The Merging Stage 

Stage I results in 12 regions, with 20 possible merging com­
binations. First the t-score of all 20 combinations are com-
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3 4 
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7 8 

10 

12 11 

Fig. 5 Segmentation result after the Stage l. Region 5 
and 11 are typical a result of the scan dependency of the 
predictor. 

puted according Eq.( 10) and stored in a table (for simplic­
ity of this example the mean value instead of the median 
is used). Next we examine the entire table to trace the 
smallest t-score. If this value is smaller than the critical 
value, than the two concerning regions are merged. Here 
we list only the t-scores, which are accepted at the 95 % 
confidence level: 

Rk -Rl t-score v t.95 ,v merging 
1 - 2 1.50 7 2.37 yes 
3-5 1.63 11 2.20 yes 

3 - 11 0.30 10 2.23 yes 
3-4 1.70 9 2.26 yes 

Table 2 

The combination 3-11 gives the smallest t-score (0.30). 
So, 3 and 11 are merged to form region 13, the new statis­
tics of 13 are computed, and the table with t-scores is up­
dated. The new region 13 has 2, 4, 5,6, 7 and 8 as neigh­
bours, so for these combinations new t-scores are computed. 
Again we examine the entire table to find the smallest t­
score. This iterative process is repeated until no regions are 
merged anymore, which is here reached after 4 iterations. 
The final regions after stage IIa are shown in Fig. 6. 

Regions smaller than 3 pixels are removed. Only region 
6 fulfils this condition. It is merged with its best fitting 
neighbour, region 16, forming the new region 17. 

Next the non-significant regions are removed at the 99% 
confidence level, Le. Z.Ol = 2.58, using O"c = 1. Examples: 
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R9 : A = 4,O"A = 1.41,z = 2.8> Z.Ol 

RlO : A = 4,O"A = 2.00,z = 2.0 < Z.Ol 
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Fig. 6 Regions merged after completion of Stage IIa. 
The removed boundaries are represented by dotted lines. Re­
gion 1 and 2 are merged forming region 14, and region 9, 
4, 5 and 11 are merged forming region 16. 

Region 10 is non-significant and must be merged. The 
neighbour yielding the lowest merging t-score is 12. So, 10 
is merged with 12, forming 18. The final result of Stage I 
and Stage II is shown in fig. 7. 

14 

17 

7 8 0 
18 

Fig. '1 Final result of our entire edge based region grow­
ing scheme. In Stage lIb region 6 is merged, due to its small 
size, with region 16, the most similar neighbour, forming re­
gion 17. In Stage IIc region 10, which is due to a mixed 
pixels boundary, is found insignificant and merged with re­
gion 12, forming region 18. 

6 Experimental Results 

We have implemented the procedure within DIGIS, our in­
door developed image processing software package, presently 
running on a SUN 3/60 workstation. The programs are 
written in FORTRAN-77, and consist of two independent 
modules corresponding with the prediction stage (Stage I) 
and the merging stage (Stage II). 
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6.1 The Test Images 

We have tested our method on a number of artificial and 
real images. We use two artificial images, see fig. 8 and 
fig. 9. The contrast !:l.g between background gb and object 
go is uniformly set to 100; gb = 75 and go = 175, for both 
SB and PV1. Notice that the border pixels of PVl are re­
ally mixed pixels, in contrast with common synthetic test 
images, which makes our test images much more realistic. 
The images are contaminated by a zero-mean Gaussian dis­
tributed pseudo-random noise field generated by computer, 
with Un = 10,20, and 50, resulting in a signal-to-noise ratio 
S N R = !:l.g2 / O'~ = 100,25, and 4, respectively. We use two 
real images, see fig. 10 and fig. 11. 

To reduce the noise, the image may be preprocessed by 
several types of smoothing filters (see section 3). Each filter 
has window size 3 x 3 and is applied non-iteratively. The 
threshold of the conditional average filter is set to 30. 

6.2 Artificial Images 

SB images To demonstrate the entire experimentation, 
the SB image is treated in length. Fig. Sa gives the ideal SB 
image. Fig. 8b is the image after adding a Un = 50 noise 
field, and fig. 8c shows the result of the 3 x 3 extended 
Kuwahara filter on fig. 8b. This is the input image for 
Stage I. 

e 

Fig. 8 SE image, size 642, a) ideal image; b) ideal 
image corrupted with a Un = 50 noise field; c) result of 
extended Kuwahara smoothing on bi d) result of Stage I, 
the prediction stage; e) final result of Stage II, the merging 
stage; f) outline of the regions. 
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Fig. 9 PV1 image, size 128 x 256 consisting of a num­
ber of signals in different sizes and orientations. The image 
£s heavily corrupted by a computer generated Un = 50 noise 
field, yielding a S N R = 4. The lower .,:mage shows the 
outlines of the detected regions after passing the entire pro­
cedure. 

The parameters of the predictor are: w = 1.5, trunca­
tion factor = 0.01, resulting in a half plane filter size of 6 
x 11. The confidence levels are, Stage I: 95%, Stage IIa: 
99.9% and Stage IIc: 99.9%. In Stage IIb regions smaller 
than 3 pixels are removed; U e = 1. 

Stage I yields 239 regions, represented in fig. 8d, where 
each region is shown with different grey value. Stage IIa 
merges 230 of the 239 regions. In Stage IIb two regions are 
smaller than 3 pixels. They are merged with their most 
similar neighbours. In Stage IIc no insignificant regions 
are traced. The result of the entire procedure, where each 
region has received a grey value, is shown in fig. 8e. Fig. 8f 
displays the region outlines. 

Smoothing of the SB images corrupted by Un = 10 or 
20 doesn't improve the final result, since the predictor has 
already a smoothing effect. Heavy noise Un = 50 needs 
smoothing in Stage I and Stage II. Best performance in 
Stage I shows the extended Kuwahara filter and next best 
the Gaussian filter. The conditional filter shows worst be-
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haviorj the median and box filter lie in between. Our ex­
periments confirmed out earlier considerations that the me­

dian filter in Stage II gives best results, since it removes the 
tail parts of the noise enabling a more reliable decision on 
merging. 

The PVI Images (fig. 9a) shows signals in a number 
of sizes and orientations, contaminated by a Un = 50 noise 
field. Predictor parameters: see SB image. The results 
of Un = 10 and Un = 20 images are good, even without 
previous smoothing. Smoothing of the Un = 50 image by 
extended Kuwahara or Gaussian, showed, according our 
previous observation, the best results in Stage I. In Stage 
II the median filter shows best performance. 

Experiments on setting the confidence levels yielded: 
Stage I: 95%, Stage IIa: 99.9% and Stage IIc: 95%, as best 
options. Fig.9b shows the outlines of the regions obtained, 
where the extended Kuwahara in Stage I and the median 
filter in Stage II is applied, using the above best options. 
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Fig. 10 The blue band of a scanned aerial photograph of 
an urban area, size 2562

, pixelsize 1.60m. The lower image 
shows the outlines of the detected regions after passing the 
entire procedure. 

6.3 Real Images 

Aerial Photograph (fig. lOa). Smoothing doesn't im­
prove the results, due to the inherent removal of details by 
smoothing. Predictor parameters: see SB image. Exper­
iments on setting the confidence levels yielded for Stage I 
the range [95% - 99%]; for Stage lIa 99.9% was the only 
reasonable setting and for Stage lIc 95% was a good option. 
Final region outlines are shown in fig. lOb. 
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Fig. 11 Landsat TM image of the Dutch Flevo Polder, 
size 1282 , obtained by summing up band 3, 4 and 5, and 
rescaling the result to fit into the range (0-255]' The lower 
image shows the outlines of the detected regions after pass­
ing the entire procedure. 

Landsat TM Image (fig. 11 a). Predictor parameters: 
see SB image. Optimal confidence level settings are: Stage 
I 95%; Stage lIa 99% and Stage lIc 95%. Note that in 
Stage lIa, the confidence level is 99%. A confidence level of 
99.9% yields too much merging of regions, due to the low 
grey value differences between many parcels. 



7 Conclusions 

We have developed a new approach to region growing, based 
on an edge prediction stage and a merging stage. The 
method assumes (limited) a priori knowledge about the im­
age noise. 

Over the split-and-merge method, our scheme has the 
advantage of not dislocating edges. Due to the inherent 
smoothing abilities of the predictor, for most natural im­
ages, noise smoothing is not necessary. Images contami­
nated by heavy noise, should be preprocessed; in Stage I 

by the extended Kuwahara filter or the Gaussian filter and 
in Stage II by the median filter. Further, in Stage II, not the 
mean but the median of the grey values should be taken to 
characterize the region grey value average. The rationale is 
that regions may be corrupted by all types of noise and tex­
tures. By taking the median and applying a median filter 
a priori to the computation of the variances, small clusters 
of deviating grey values will much less affect the decision 
about merging. 

The size of the half plane predictor is not very critical. 
In Stage I it is much better to accept that an edge is present 
than accepting wrongly that no-edge is present. Edges that 
are uncorrectly traced are easily removed in Stage II. How­
ever, a non-detected edge will never be discerned in a later 
stage. Consequently, a, the probability of rejecting wrongly 
a non-edge may be set rather large. However, there is a 
trade-off between choice of a and computation time, since 
a large a yields many regions resulting in a heavy compu­
tational burden in Stage II. In Stage II wrong not-merging 
of regions should be avoided, so a should be rather small. 

Since our method is based on a notion about image 
noise, we arrive at a better insight into the setting of the 
thresholds, than is usually achieved with heuristical thresh­
old settings, since noise is physically appealing. A priori 
knowledge about the noise is only necessary in Stage I, and 
there the noise estimation is not critical. To avoid that 
edges are missed, one should estimate the noise optimisticly, 
i.e. better too low than too high. 
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