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ABSTRACT: 

A method combining unsupervised clustering and supervised nonparametric classification of multispectral 
image data will be described. The creation of sufficiently representative training sets for supervised 
classification may be a serious problem - it is difficult to find training samples, which cover the whole 
feature space. Therefore results of unsupervised classification are used for completion of terrestrial 
investigation. Then the training data are verified using generalized entropy measure and mutual 
information. Finally the principles of nonparametric Bayesian decision based on Parzen windows are applied. 
Nonparametric methods have been shown to yield excellent results in applications other than remote sensing 
for the present. These methods are suitable especially when there is a poor knowledge about real 
probability densities or about their functional form. Unfortunately, they require storage and computation 
proportional to the number of samples in the training set. 
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1. INTRODUCTION 

Gathering of information on the land use belongs to 
the main goals of remote sensing methods. This task 
is of special importance in regions with 
complicated structural zoning, e.g. in urban 
aglomerations and their surrounding. At present, 
Thematic Mapper (TM) data are frequently exploited 
for these purposes. A great attention has also been 
paid to the development of their automatic 
interpretation (classification). There are two 
principal approaches to the classification: 
supervised and unsupervised one. 

Any computer classification that will lead to 
a ground-cover thematic map is based on the ground 
truth data gathered from selected area. The choice 
of training samples has to be representative, but 
random. However, the creation of sufficiently 
representative training sets may be a serious 
problem. Satellite images cover some hundreds km2 
nevertheless it ;s difficult to find suitable 
training samples, which cover the whole feature 
space. Therefore results of unsupervised 
classification are used for completion of 
terrestrial investigation when significantly 
different spectral classes are determined. The 
unsupervised classification enables to reduce the 
extent of subsequent supervised classification to 
a selected subset of spectral classes. 

The notion of unsupervised classification will be 
presented in Section 2. The interpretation of 
clustering results in terms of mutual information 
will be proposed in Section 2.1. The practical 
aspects of nonparametric classification methods and 
various approaches are discussed in Section 3. 

2. UNSUPERVISED CLASSIFICATION 

The clustering method ISODATA has been used to 
analyze satellite data (Charvat, 1987a). Using this 
method approximately 50 % sample of pixels in the 
scene is clustered. In the k-means ISODATA method 
the pixels are placed in k groups (clusters) 
according to the similarity of digital features. 
The cluster centres are established during the 
iterative clustering. Then all pixels are mapped 
onto the original spatial domains using the nearest 
neighbour classifier. To avoid the excessive CPU 
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time requirements, a threedimensional histogram is 
used when all samples in the feature space with the 
same feature values are represented with a specific 
histogram cell. The clustering process is realized 
in the reduced feature space only. A feature 
reduction technique is necessary for this reason -
usually three new synthetic features (images) are 
computed. 

2.1 Feature reduction 

There are two basic reasons for incorporating the 
feature reduction procedure into the classification 
process. The ISODATA method uses threedimensional 
histogram, so the maximal number of features is 
three. A color composite production is the second 
reason for transformation of all disposable 
spectral bands into the three ones. The color 
composite created on the basis of the three 
uncorrelated features preserves great deal of 
spectral information from all original spectral 
bands. The method used improves the contrast of the 
color composite significantly. The color composites 
seems to be a useful tool for collection and 
verification of training samples as well as for the 
visual verification of classification results. 

The use of "Tasseled Cap" transformation (Crist, 
1984a) or the principal component method for this 
purpose has been described. A method based on 
neural networks can be utilized successfully 
(Charvat, 1990) when the back propagation algorithm 
(Hinton, 1987) is used. The neural net proposed 
consists of three layers. Input and output layer 
has the same number of nodes (neurons) equal to the 
number of spectral bands, the middle layer has 
three nodes in our case. Each node in the middle 
layer is connected with all nodes in preceding and 
succeeded layer. The neural net can be described by 
a unidirectional graph where nodes (neurons) bear 
some value. A certain weight is assigned to every 
connection. In the course of adaptation the feature 
values of selected samples are assigned to the 
nodes in the input layer and the values Xi in the 
middle and output layer are computed according to 
the expression 

Xi = S (L w; j • Xj ) , 
jeJ 

(1) 



where J is a set of neurons from previous layer and 
S is usually a sigmoid function. The weights of 
connections are changed using the back propagation 
algorithm until all node values in the input and 
output layer are approximately the same. Then the 
corresponding values in the middle layer can be 
considered as the effective comprimation of the 
original information. Finally the new features are 
computed for all pixels when the original feature 
values are introduced to the input layer of 
"instructed" network. The synthetic images computed 
may be used as R, G, B components of additive color 
composite. The technical details and description of 
adaptation process are beyond the scope of this 
paper and has been discussed by several authors 
(Fahlman, 1988). 

2.2 Interpretation of clustering results 

The ISODATA method produces clusters that can be 
bounded by a hypersphere or by a hyperel1ipsoid. 
Therefore it is necessary to group the data into 
more clusters than is the number of spectral 
classes. Some of the classes are broken into 
a several clusters. Higher number of clusters 
brings problems in subsequent interpretation of 
classification results. The theory of information 
gives us an efficient tool for solution of this 
problem (Charvat, 1990). 

If P(x) denotes probability distribution of random 
variable X in some discrete space, the Shannons 
entropy H(Px) is defined as follows: 

H (Px) ::: - ! P (x) . log P (x) . (2) 
x 

When pex,y) is a probability distribution of 
a composed variable (X;Y) and P(x), P(y) are the 
marginal distributions, then mutual information 
between variables X and Y is defined as follows: 

P(x,y) 
I(X,Y)::: ! P(x,y). log ---- (3) 

x,Y P(x) • P(y) 

The mutual information I(X,Y) can be considered as 
a general dependency measure between the variables 
X and Y. 

The result of unsupervised classification may be 
interpereted easily when using the mutual 
information. Number of resulting clusters even 
after removing of nonsignificant ones is usually 
high. It is necessary to join several classes in 
the resulting image. Let P( Wi, Wj) ;s 
a probability that the classes VJi and ~j occur in 
the neighbouring pixels and P(VJi), P(~j) are 
aposteriori probabilities of classes (areal 
extents). Then the spatial dependency between 
individual classes may be described using the 
mutual information by the expression: 

! P( Wi, <..oJ j) . log 
i,j P( Wi). P( Wj) 

(4) 

It is the mutual information computed in the image 
space. For every two classes the value of loss of 
this mutual information is computed if they are 
joined. The system recommends to join such two 
classes for which this loss of information is 
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minimized. The procedure is repeated until a 
satisfactory result is reached. 

A preliminary unsupervised classification and 
interpretation yields the approximate areal extents 
of the cover classes. They can be used as estimates 
of aprior; class probabilities when supervised 
classification is applied. The resulting cluster 
domains and color composite map are used to route 
the terrestrial investigations when main landcover 
classes are delineated. 

3. SUPERVISED CLASSIFICATION 

3.1 Verification of training samples 

When the supervised classification is used for 
satellite image data interpretation, the gathering 
of suitable training samples creates the main 
problem. It is necessary to test the separability 
of classes and verify labeling of training 
polygons. Some methods solving these problems for 
normally distributed data have been already 
investigated (Charvat, 1987b). They are based on 
the statistical comparisons of mean vectors and 
covariance matrices. 

The mutual information can characterize the 
separability between classes. Let the training sets 
are collected for every class eJ1, for 
j = 1, ••• ,M (M is a number of classes), x will be a 
random vector of feature space t which represents 
the multispectral image. The probability 
distributions P(UJi), P(x) and P(x, ~i) can be 
estimated on the ground of training samples. In the 
case of absolutely separable classes the mutual 
information I(X,~ and entropy H(~) of probability 
distribution of classes are equal. It follows: 

I(X,A)/ H(P.n.) = 1 , 

where 

P(x, Wi) 

I(X,A)::: ! P(x, Wi) • log -----
x,i P(x) . P( tV;) 

and 

H(P )::: - I P( OJ;) . log PC Wi). 
~ ; 

(5) 

(6) 

(7) 

The algorithm for verification of training samples 
;s based on this idea: 

1) Class identifiers are assigned to every 
training polygon - every polygon is considered 
as a temporary spectral class. 

2) The mutual information I(X,J1) and entropy 
H(P Sb ) are computed using the estimates of 
P(x), P((Wi), P(x, ~;). The method of Parzen 
windows which will be described is used for 
this purpose. 

3) If 1 I(X, )/H(P f.. then the 
algorithm stops. 

4) For every two temporary classes the loss of 
I(X,Jb) is computed if they are joined. 

5) Such two classes for which is the loss 
minimal are found and joined. The current set 
of features cannot be probably used for 
discrimination of these classes. The algorithm 
goes back to the step 2). 



Usually a number of well separable spectral 
cathegories is received. It is possible to compare 
the results with the real identifiers of target 
classes (considering the order in which temporary 
classes are joined) and to correct the unperfectly 
labeled training polygons. 

3.2 Nonparametric supervised classification 

The principles of Bayesian decision are frequently 
applied to the classification of remotely sensed 
multispectral data. The use of Bayesian strategy 
supposes the identification of the probability 
density function of each spectral class in order to 
determine the decision function that minimizes the 
probability of missclassification. 

Classified pixels (vectors x) are assigned to one 
of the classes according to P(u)jlx) - probability 
that class W j occurs at vector x. Using the 
Bayes theorem we fi nd w; so that 

P(Wi) • P(xlw;) = max P(Wj) . P(xIWj), (8) 
j 

where P(tvi) is an apriori probability of class 
UJi (extent of the class in the image) and 
P(XI~i) is a conditional probability density. 
A set rj = {X1 j , •.. , Xn j } of nj observations of 
x for every class Wj is available. Let r = U rj 
be the set of all training samples. To estimate the 
density P(xl~j) at random vector x the analyst can 
use the parametric or nonparametric methods. 

Parametric classifiers are based on the assumption 
that all vectors come from a certain type of 
statistical distribution. The assumption of 
Gaussian distribution is very often used. Then the 
mean vectors and covariance matrices may be 
estimated from the sets r j . The parametric methods 
are very time consuming for the application on 
large area. There are some improvements possible 
(Feiveson, 1983). But - what is more important the 
data do not fulfil the presumption of normality. 
The landuse classes have usually complex decision 
boundary, especially in high-dimensional feature 
space. However, the classifier decision is 
influenced most heavily by the samples close to the 
decision boundary. 

That is why many authors suggest nonparametric 
density estimations (Skidmore, 1988), (Cervenka, 
1990). Nonparametric classifiers make no assumption 
about the shape of the data distribution. Such 
techniques are based on the concept, that the value 
of density P(xltJj) at the point x can be estimated 
using the tralning samples located within a small 
region around the point x. The Parzen windows 
(Parzen, 1962) are very often used for the density 
estimations : 

N= dim (X), 

where the function F(Y) is widely used in this 
functional form (so called uniform kernel): 

2- N if IYll j hn !!f 
F(Yjhn) = < 

o otherwise. 

1= 1, ••• ,N 

(10) 
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Usually, hn3 = nrCIN , where C will be within the 
interval (0,1). In fact, numbers of samples from 
rj within a hypercube centered at x are computed 
in practical applications. Such a function can be 
evaluated easily - individual features can be 
tested one by one, and many samples can be 
eliminated quickly. Then the classification using 
(8) can be applied. 

The nonparametric methods require a large number of 
computations. Common classification problems 
consist in the classification of millions vectors 
into 10 - 20 classes using 3 - 7 features. However, 
the decision of nonparametric classifiers is based 
on the small subregion of the total feature space. 
Several authors propose efficient solutions of this 
problem. Fukunaga (Fukunaga, 1975) suggests a 
decomposition of the original training set into 
hierarchically arranged subsets. Then the whole 
training set is represented by a tree structure, 
where the succeeded nodes create a decomposition of 
the preceding node. The root corresponds to the 
whole set r. The clustering method ;s used for the 
decomposition of the training samples. The cluster 
analysis is subsequently applied on the individual 
nodes. Following information;$ recorded for 
every node p: mean vector Mp of all samples in the 
node p (this set ;s denoted Sp), minimal and 
maximal values of individual features and the value 
rp of maximum distance between Mp and xieSp. The 
distance of all samples to the corresponding sample 
mean are saved at the final tree level. The 
classification of any vector x corresponds to the 
tree search. All vectors sufficiently near to the 
vector x are sought. With the help of informations 
which are saved in the tree nodes most of the nodes 
can be eliminated. The given tree structure can be 
used for nonparametric classification methods. 

When using the Parzen windows with uniform kernel, 
the test is performed at every tree level, if there 
is an intersection between the window and the 
parallepiped which contents all samples from the 
tested node. Minimal and maximal feature values in 
the node are exploited in such a case. These tests 
are repeated for succeeded nodes in an affirmative 
case only. At final level individual training 
samples are tested if they fall within the window 
centered at the classified sample. The features can 
be checked one by one. In most cases (when the 
training sample fall outside the window), it is not 
necessary to check all features. From this point of 
view it is advantageous to check the features with 
greater entropy at first. 

3.3 Nearest neighbours method 

The k nearest neighbours (k-NN) method is based on 
similar (local) principles as nonparametric 
Bayesian classifiers. They find k nearest 
neighbours to given sample x in the training set r. 
The sample x is assigned to the class U)j, if the 
majority of its k - nearest neghbours belongs to 
that classwj. Ties may be broken arbitrarily using 
some heuristics. These classification methods have 
been proposed by many authors (Cover, 1967)~ 
(Tomek, 1976). One of the most important 
theoretical results is, that these methods have 
good behaviour in the asymptotical sense (Wilson, 
1972). For large values of nj the expected 
probability of error pe is bounded as follows: 

P* !!f pe !!f A. P* , (11) 

(A=2 for k= 1) . 



P* is the Bayes probability of error, i. e. the 
probability of a possible error when the true 
apriori probabilities and density functions are 
known. If the value of k rises the coefficient 
A becomes much smaller. Wilson has shown, that 
editing of sample set improves the performance of 
nearest neighbours rule. 

Now, the process of finding the nearest neighbour 
to the vector x will be described. The procedure 
can be simply extended for k - nearest neigbours 
method. The tree is searched through and tested, if 
the nearest neighbour could occur in any node or in 
its successors. The branch and bound algorithm is 
applied during this process. Two basic rules are 
used (B is the distance to the current nearest 
neighbour of x). If the inequality 

B + rp < d(x,Mp) (12) 

(d(x,y) is a distance of vectors x, y) 

holds, then (from the triangle inequality) follows 
that any nearest neighbour of x cannot be situated 
in the node p. The search for corresponding branch 
can be cut in such a case. Second rule concerns the 
individual samples Xi at final level of the tree. 
If the inequality 

B + d(x; ,Mp) < d(x,Mp) (13) 

holds, then the sample Xi cannot be the nearest 
neighbour of x. The distances d(xi,Mp) are saved 
during the creation of the tree, so that most of 
time consuming computation can be eliminated. 
During the search the distances d(x,Mp) are 
computed and stored for the nodes p at every level. 
Then the inequality (12) is tested. If it does not 
hold the node p is placed into the list of active 
nodes at the relevant level. There is a possibility 
at present that this node contents the nearest 
neighbour of x. If the active list is not empty, 
the nearest node to x is chosen and the procedure 
is repeated for its successors. After the final 
level 1s reached, the nearest node q is chosen 
again. Then, all samples Xi in the node q are 
tested ;n accordance with the rule (13). If this 
inequality holds, the tested sample cannot be the 
nearest neghbour. Otherwise the distance d(x,x;) to 
the tested sample Xi is computed. If d(x,xi) < B, 
the value of B is updated and the new nearest 
neighbour is saved. 

When all samples in q are processed, remalnlng 
nodes in the active list at final level are 
searched (the test (12) is applied at first). If 
the search through all possible nodes at some level 
is finished, the procedure backtracks to the higher 
levels and tests remaining nodes in active lists 
(with updated - usually much smaller value of B). 

3.4 Modifications of basic algorithms 

This contribution suggests another improvement 
which speeds up the seeking of nearest neighbours 
as well as the nonparametric density estimates. At 
every tree level only one node (the nearest node to 
x) is chosen. The search is realized exclusively 
within the range of successors of the node having 
been chosen at preceding level. At the final level 
the nearest node q is determined (so called 
terminal node). The nearest neighbours to X or the 
samples within the Parzen window are found in the 
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terminal node as well as in its neighbouring nodes. 
These nodes are determined in the course of 
creating the tree structure. All nodes at final 
tree level, to which the samples from q are 
classified using the nearest neighbour method, are 
included to the neighbourhood of node q. Thus, for 
every sample from the node q the nearest neighbour 
among other terminal nodes (being represented with 
their mean vectors) is found. 

If the nearest neighbours to the sample x are 
found, the rules (12), (13) are applied during the 
search in the neighbourhood of node q. When using 
the nonparametric density estimates, the same 
tests, as used in basic algorithm, are performed. 
However, the volume of computation is much smaller. 

This procedure uses certain heuristic. It does not 
guarantee, that all nearest neighbour of sample 
x or all training samples from corresponding Parzen 
window are precisely found. However, this procedure 
works successfully in the majority of reasonable 
cases. 

3.5 Supervised classification using lookup table 

A serious disadvantage of classification algorithm 
mentioned is the fact, that many samples with 
absolutely identical feature values are 
individually classified many times. This problem is 
solved by means of lookup tables where all previous 
classifications (the feature values and 
corresponding classification result) are recorded. 
A certain key is computed for every sample at 
first. This key defines a position in the lookup 
table. If this position is occupied, all feature 
values are compared. If there is an agreement in 
all dimensions, further computations are 
unnecessary. The sample is classified into the 
class having been found out in the table. If the 
value of any feature does not agree, various 
solutions may be used. If such a situation occurs 
rarely, it is possible to classify these samples in 
a usual way. 

The choice of the key (hashing function) seems to 
be a critical problem. This function should be 
economic - a huge number of possible keys cannot be 
implemented easily on small computers. On the other 
hand, the set of possible keys cannot be too small, 
because of key collisions with different samples. 
An application of any orthogonal linear 
transformation (dimension reduction) seems to be a 
suitable solution. The method of principal 
component (Karhunen - Loeve's transformation) or 
"Tasseled Cap" transformation preserves a great 
deal of data variability. When using three 
principal components (the intrinsic dimensionality 
of TM data is aproximately three (Crist, 1984b»), 
it is easy to assign the key to every sample. The 
sample has the same position as in the 
three-dimensional array where coordinates 
correspond to principal components. The computation 
of the principal components and table position can 
be combined effectively. Considering the TM data 
the range of feature values in every principal 
component is over one hundred. The lookup table 
must have 1.5 - 2 millions of entries from this 
reason. 

But, even the reduced feature space is not filled 
completely. There are some regions where only few 
samples are located. However, there is a method 
enabling to reduce the storage requirements which 
uses the proposed hierarchic decomposition of a 
training set. A certain part of the lookup table is 
assigned to every terminal node q of the tree. It 



is a space saving information about some small 
area of feature space which cover the sample set 
Sq. Every part of the table corresponds to the 
three-dimensional array again. But the range in 
every dimension is much smaller. During the 
classification of certain sample the appropriate 
terminal node is found and the key is computed. But 
this key serves as an entry to the "local" lookup 
table. It ;s necessary to estimate the average 
space needed for every part of main lookup table. 
This space can be estimated after the creation of a 
tree structure. All training samples from the 
corresponding terminal node are used and the range 
in every principal component is determined. 

4. CONCLUSION 

The methods described have been succesfully applied 
at the Earth Remote Sensing Centre (Institut of 
Surveying and Mapping) in Prague, especially for 
the classification of TM data. Several thematic 
maps from the Northeast Bohemia and Prague region 
have been produced. 

The CPU times requirements depend on the number of 
spectral classes as well as on the number of the 
training samples. In fact, the performance of the 
proposed algorithms depends upon the spatial 
configuration of the data set in the feature space. 
The influence of the number of classified pixels 
can be substantially reduced when using the method 
described in 3.5. 

The average number of pixels was approximately 400 
for every landuse cathegory in Prague region. The 
number of spectral cathegories was 12. Then the 
time requirements on IBM PC 386 personal computer 
for 106 pixels when using the 6 TM bands (the 
thermal band has not been included) were: 

- nearest neighbour (1-NN) classification - 15 min. 
- 5 - nearest neighbours classification - 60 min. 

(both nearest neigbours classifiers were 
implemented according to the part 3.4) 

- Bayesian nonparametric classification 
(basic algorithm) - 88 min. 

- Bayesian nonparametric classification 
(algorithm according to the part 3.4.) - 51 min. 

- Bayesian nonparametric classification 
using lookup table - 46 min. 

The probability estimates of correct classification 
were similar for all methods (using the 
resubstitution method) and exceed 90 %. 

In certain situations it is desirable not to 
classify samples which cannot be assigned with 
sufficient certainty. Such samples are marked as 
nonclassified. This "reject option" can be 
implemented with the classifiers using the 
nonparametric probability estimates easily. If the 
extent of nonclassified areas is too large, it ;s 
necessary to complete the training sets and to 
repeate the classification process. 
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