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ABSTRACT 

Systems that capture digital cartographic data from maps usually require raster-to-vector 
conversion. The speed of modern computers makes it possible to vectorize large data sets of 
run-length encoded cartographic linework in a reasonable time. Thinned cartographic linework 
can be vectorized in one pass through the raster data followed by one pass through the 
resultant vectors. Software written in the C language provides a raster-to-vector conversion 
that is fast and portable. Simple rule-based techniques in the design provide software 
flexibility, which allows software tuning for particular applications. 
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INTRODUCTION 

Rotating-drum raster scanners provide an efficient 
means of capturing digital cartographic data from 
maps. Vector data formats allow digital 
cartographic data to be structured and stored 
efficiently. Converting digital data from raster 
to vector format is therefore required in most 
digital cartographic production systems. 

This conversion has historically been a problem. 
Because high-resolution cartographic data sets can 
be extremely large, the conversion of raster data 
to vector data requires large computers, long 
processing times, or both. 

Peuquet (1981) says that raster-to-vector 
conversion can be divided into three basic 
operations. First is skeletonization or line 
thinning. Second is line extraction or 
vectorization. Third is topology reconstruction. 

This paper deals with the second of these 
operations. Vectorization is the process of 
identifying a particular series of data entities 
or coordinates that constitute an individual line 
segment as portrayed on the input document. 

Commercial systems that scan and vectorize 
linework are readily available today, but the 
algorithms used by these systems are usually 
proprietary. Commercial software also precludes 
fine tuning the vectorization for particular 
applications. For example, there are several 
reasonable ways to define the vectorization 
behavior at the intersection of lines with 
different attributes. 

This study implemented in software a flexible and 
reasonably fast vectorization algorithm. The 
software was designed specifically for 
cartographic data. High priorities were given to 
producing software that would (1) operate on large 
data sets and (2) be portable to different 
computers. 

METHODOLOGY 

This investigation focused on sequential 
processing solutions to the line extraction part 
of the raster-to-vector problem. Prototype 
softw~re, written as part of the study, tested 
algor~thms and data representations. A cycle of 
software development and testing was used to 
refine the algorithms and improve the 
implementation. 

Sequential processing 

Manr useful functions in image processing perform 
a s~ngle operation on each point in the image. 
For example, the contrast of pictures can be 
smoothed or sharpened by altering the value of 
each pixel as some function of the values of the 
ne~g~boring pixels. In such operations, only 
or~g~nal values are used as input, and. the 
sequence in which the pixels are processed is 
therefore irrelevant. The operations are 
essentially performed in parallel. 
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Parallel algorithms can be conceptually simple 
but they can be inefficient on se'quential ' 
processors. For small data sets this is not a 
problem. But most useful cartographic data sets 
are not small. 

~or.sequential operations the order of processing 
~s ~mportant. Suppose that the points in a 
digital image are to be processed row by row 
beginning at the upper left. As soon as a 
particular point is processed, its new value, 
rather than the original value, is used in 
processing any succeeding points. 

Figure 1 illustrates the terminology of sequential 
processing. At any given time there is one 
current pixel (a .. ). This pixel has eight 
neighbors, four b~ which have already been 
processed (prior pixels) and four of which have 
not yet been processed (successor pixels). 
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Figure 1 Terminology of local sequential 
processing. 

Rosenfeld and Pfaltz (1966) show that "any picture 
tra~sformation that can be accomplished by a 
ser~es of parallel local operations can also be 
accomplished by a series of sequential local 
operations, ~nd conversely." Further, they show 
that sequent~al processing on a sequential 
computer is always faster than parallel processing 
on a sequential computer. (Parallel processing on 
a parallel computer is faster yet.) 

A,raster data set of cartographic single-pixel 
l~nework can be vectorized in one sequential pass 
through the raster data (Peuquet, 1981). That is 
eac~ ~ixel is a current pixel exactly once. A ' 
dec~s~on about the treatment of the current pixel 
can be made by looking at its state and the states 
of its eight neighbors. This decision may alter 
the state of the current pixel, and that altered 
state is used for any subsequent processing that 
involves the pixel. 



Raster representation and processing 

Raster cartographic linework is often stored using 
run-length encoding to compress the data. 
Run-length encoding is a good storage format, but 
a poor processing format. Sequential processing 
software must use internal data representations 
that simulate an uncompressed raster format. 

Each pixel in the current neighborhood has a color 
(or attribute). This color either is the same as 
the current pixel or is not the same as the 
current pixel. These two possibilities can be 
designated "1" and "0." The state of the 
neighborhood can, therefore, be represented in a 
single byte. Each bit shows the state of one of 
the pixels in the eight-member neighborhood. This 
one-byte coding of the neighborhood can be called 
the neighborhood state. This is a meaningful 
concept only if the current pixel is linework. 

Figure 2 shows the decimal and binary values of 
each neighboring pixel. The neighborhood state is 
calculated by summing the values of all linework 
pixels. This coding scheme is taken from Greenlee 
(1987), who credits the idea to Golay (1969). 
Greenlee uses this neighborhood coding to reduce 
storage space. The current study uses it to 
reduce search times. 
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Figure 2 Coding the neighborhood state. 

There are 256 possible neighborhood states (28). 
This number is small enough to treat each one 
individually. In the worst case, no more than 256 
rules are needed to define the vectorization of 
all nine-pixel squares. 

The raster data set is examined left to right and 
top to bottom. Each pixel is the current pixel 
only once. When the current pixel is part of the 
map background, no action is taken and the scan 
continues to the next pixel. 

When the current pixel is not background, the 
pixel must be assigned to a line. There are three 
factors that affect this decision: 

1. The neighborhood state. 

2. A rule set that dictates how specific 
neighborhood states are handled. 

3. Information about the line membership 
of the four predecessor pixels. 

These factors are applied in the order listed. 

The first factor is the neighborhood state. This 
is evaluated, and the result causes an appropriate 
rule to fire. 

The second factor is a vectorization rule set. 
Sixteen rules are adequate for all 256 
neighborhood states. Table 1 summarizes these 
rules: 
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I 1 0 Do nothing 

II 2 2 Make a node 

III 3 1 Make a node 
Close line of NE pixel 

4 32 Make a node 
Close line of W pixel 

5 64 Make a node 
Close line of NW pixel 

6 128 Make a node 
Close line of N pixel 

IV 7 5 Extend line of NE pixel 

8 34 Extend line of W pixel 

9 66 Extend line of NW pixel 

10 130 Extend line of N pixel 

V 11 33 Connect line of W pixel 
with line of NE pixel 

12 65 Connect line of NW pixel 
with line of NE pixel 

13 160 Connect line of W pixel 
with line of N pixel 

VI 14 37 Make a node 
Close line of W pixel 
Close line of NE pixel 

15 69 Make a node 
Close line of NW pixel 
Close line of NE pixel 

16 162 Make a node 
Close line of W pixel 
Close line of N pixel 

Table 1. Rule set for sequent~al vector~zat~on. 

Column A: The 16 rules fall into six 
categories. These categories are not 
present in the software implementation of 
the rules, but are useful to understanding 
the system. For example, the four rules in 
category IV can be generalized to "if there 
is exactly one predecessor pixel, extend the 
line containing that pixel to include the 
current pixel." 

Column B: Rule numbers. 

Column C: The one-byte decimal code of the 
first (lowest-numbered) neighborhood state 
to which the rule applies. Most rules apply 
to more than one neighborhood state. 
Table 2 relates all neighborhood codings to 
the 16 rules. 

Column D: A brief statement of the rule. 

The beginning and end of each line is flagged with 
a node. The term node in this context does not 
imply topologic structure. The raster processing 
pass creates a node when two different vectors 
meet or when a vector ends. Because the 
processing is sequential, and because the 
processor views only nine pixels at a time, large 
numbers of temporary nodes are created. For 
example, a node will be created wherever there is 
a local maximum or minimum in a line (Figure 3). 
These temporary nodes must be removed during 
subsequent processing. A node-line list and a 
line-node list are constructed during the pass 
through the raster data to aid vector processing. 

The third factor to the vectorization decision for 
the neighborhood is knowledge about the states of 
other pixels in the neighborhood. The most 
important piece of information is whether or not 
any of these pixels are nodes. The words "close," 
"extend" and "connect" in table 1 mean different 
things for nodes than for pixels. 



Rule Neighborhood states to which rule applies 
no. 

1 0 

2 234 678 10 11 12 14 15 16 18 19 20 22 
23 24 26 27 28 30 31 

3 1 21 

4 32 42 43 46 47 48 56 58 59 60 62 63 96 
106 107 110 111 112 120 122 123 124 126 
127 

5 64 74 75 78 79 82 83 84 86 87 88 90 91 92 
94 95 

6 128 129 131 135 138 139 142 143 146 147 
148 149 150 151 154 155 158 159 192 193 
195 199 202 203 206 207 210 211 212 213 
214 215 218 219 222 223 

7 5 9 13 17 25 29 

8 34 35 36 38 39 40 44 50 51 52 54 55 98 99 
100 102 103 104 108 114 115 116 118 119 

9 66 67 68 70 71 72 76 80 

10 130 132 133 134 136 137 140 141 144 145 
152 153 156 157 194 196 197 198 200 201 
204 205 208 209 216 217 220 221 

11 33 49 97 113 

12 65 

13 160 161 176 177 

14 37 41 45 53 57 61 101 105 109 117 121 125 

15 69 73 77 81 85 89 93 

I 16 162-175 178-191 224-255 
Table 2. Ne~ghborhood states related to 
vectorization rules. 

Vector representation and processing 

The sequential pass through the raster data set 
associates each linework pixel with a vector line 
string (except for cases where rule 1 is applied). 
That is, the coordinates of the current pixel are 
added to the coordinate list of some vector. 

connects to one 
line string 

connects to two 
line strings 

connects to three 
line strings 

Figure 3 Examples of node placement and line 
string endpoint identification. 

The output of the raster processing pass is a 
vector data set that is not very useful. It will 
typically consist of a very large number of line 
fragments that are tied together by temporary 
nodes. Consolidating these fragments by removing 
unnecessary nodes requires further processing of 
the vector data. 

The vector processing uses a form of a depth-first 
search to visit all the coordinates ~n the data 
set. Nodes that connect to exactly one vector, or 
to more than two vectors, are true ends of lines. 
These types of nodes are the starting points for 
traversals of line strings. Any node found during 
such a traversal that connects to exactly two 
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vectors is a false node; the vectors that it 
points to are combined and the traversal 
continues. The traversal continues through nodes 
recursively and ends when all lines that connect, 
either directly or indirectly, to the start node 
have been traversed. 

Most cartographic data sets are not fully 
connected graphs. The traversal of vectors is, 
therefore, a series of graph traversals. 

No linework coordinates have yet been removed from 
the data set. The final step of the vector 
processing is to remove coordinate values that are 
not necessary to characterize the line. The 
coordinates are filtered using the Douglas-Peucker 
algorithm (Douglas and Peucker, 1973). The 
resultant coordinates are sent to an output module 
for storage. 

RESULTS 

The algorithms and structures described above were 
implemented in software. The program is written 
in ANSI C and is very portable. It has been 
tested on DOS (v3.3 and higher) PC's and on two 
UNIX workstations. 

Implementation 

The three factors (neighborhood state, rule set, 
predecessor pixels) to the vectorization process 
are implemented as distinct processing steps. 

First, the neighborhood state of the current pixel 
is determined by an evaluation function. 

Second, a function that codes one of the rules is 
called. Each of the rules in table 1 is coded in 
a C function. Although there are only 16 rules, 
there are 256 possible neighborhood states. The 
implementation uses an array of pointers to 
functions to minimize the search time for the 
appropriate rule. 

Each element of an array of 256 pointers to 
functions is initialized to point to the 
appropriate rule (Figure 4). The result of the 
evaluation of the neighborhood state becomes an 
array index which permits the appropriate rule to 
be called with a single array access. 

Third, a set of utility functions provides support 
to the rule functions. These utility functions 
supply the intelligence of the third input to the 
vectorization decision. 

Production environment 

The U.S. Geological Survey (USGS) uses its graphic 
products as data sources for a variety of digital 
products. Map separates are scanned at 
resolutions of 750 or 1000 lines per inch. Such 
data sets typically contain 250 to 450 million 
pixels. Run-length encoding will usually compress 
such data sets to less than 20 Mb. The goal of 
this project was to produce nonproprietary 
vectorization software that would operate directly 
on these run-length encoded data sets. 

The software was designed to use relatively little 
memory. In general, directory structures (e.g. 
node-line and line-node lists) are kept in memory, 
but at anyone time the bulk of the coordinate 
data are on the disk. The memory required by the 
directory structures can be as high as 20 Mb for 
large USGS maps scanned at high resolutions 
(although less than 10 Mb is average), so it is 
not practical to vectorize these very large data 
sets on PC's. But UNIX workstations with 32 Mb or 
more of memory can easily vectorize the largest 
USGS data sets. 

Keeping coordinate data on disk instead of in 
memory results in slower performance. But 
vectorization is a batch process that takes a 
small amount of time compared with the total time 
and cost of producing a digital data set from a 
map. On a 17-mip UNIX workstation, this software 
will typically vectorize a 1:24,000-scale 
quadrangle overlay in less than 1 hour. 



Test results 

The largest data set tested with the software to 
date is a topographic contour overlay of a USGS 
1:100,000-scale quadrangle. This data set 
contained more than 460 million pixels, of which 
6.6 million were linework. (The output vector 
data set, stored in a relatively compressed binary 
format, was about 1.7 Mb. The vectorization 
process took about 85 minutes on a 17-mip 
workstation. ) 

In this test 111 of the 256 possible neighborhood 
states were represented. However, only 11 
neighborhood states accounted for 96 percent of 
the actual neighborhoods, and 19 states accounted 
for 99 percent of the actual neighborhoods. 

1* prototypes of functions that comprise the 
rules base *1 
void rl(),r2(), 1* ... *1 r16(); 

1* array of 256 pointers to functions, 
statically declared and initialized *1 
void (*ruleFunc[256})() = { 

}; 

rl, r3, r2, r2, r2, r7, r2, r2, r2, r7, 
1* 240 more assignments go here *1 
r16, r16, r16, r16, r16, r16 

1* program fragment to illustrate call to a 
rule function *1 
main ( ) 
( 

} 

int currState; 

I * many lines of code here * I 

1* evaluation of neighborhood state *1 
currState = evaluate(); 
1* fire appropriate rule *1 
(*ruleFunc[currState})(); 

1* many more lines of code here *1 

Figure 4 Implementation of the rule set as an 
array of pointers to functions. 

Analysis of this and other test data sets suggests 
the 16 rules identified in this paper define a 
reasonable cartographic vectorization process. 
However, the analysis also suggests that these 
rules are not uniquely correct. Characteristics 
of the output data can be changed relatively 
easily by altering the rules. The speed and 
efficiency can likely be improved by extending the 
rule set to deal better with certain special 
cases. 

CONCLUSIONS 

This research developed work of previous 
investigators into a prototype software system. 

cartographic vectorization requires only one 
sequential pass through the raster data set. 
Acceptable processing speeds do not require that 
large amounts of the raster data be held in memory 
at anyone time. 

The nature of the vector output can be controlled 
by a set of 16 rules. These rules can be coded in 
software in a manner that makes them easy to 
modify. 

The 16 rules shown in table 1 work well on 
cartographic data from USGS quadrangles. However, 
these rules are probably not uniquely correct. 
The behavior of the system can be modified by 
changing these rules. It is probable that more 
intelligence could be built into an extended rule 
set to alter system behavior and improve 
performance. 

The combination of sequential processing and 
rule-based decision making was quite effective in 
this application. That combination may be 
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applicable to other aspects of cartographic raster 
processing such as raster line skeletonization. 
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