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ABSTRACT 

Surface interpolation over a triangulation with scattered DEM may 
maintain the continuity and smoothness of surface while it is contributed 
by a condition that two triangles in each shaded quadrilateral must be 
related to the same planar affine map. In other words, two adjacent surface 
patches posses the same tangent plane at each point of their common 
boundary. According to this principle, two numerical experiments were 
used to examine three piecewise polynomial interpolants which are linear, 
cubic, and quintic polynomials. Five criteria including average absolute 
and relative accuracy, root mean square error, CPU time, and visualization 
were chosen to evaluate the tasks of surface construction. Conclusively, the 
best performance is the cubic polynomial interpolation. 
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1. INTRODUCTION 

A smooth interpolatory surface from scattered 
DEM is especially desirable when a visual 
impression of the data is called for. This task may 
be handled by a method of surface interpolation on 
a triangular patch. Let the data set be comprised 
of a set of points (Xj,yi)' arbitrarily distributed in 

the x-y plane, with corresponding ordinates zi' i = 
1, ... ,n. These points are the components for a 
bivariate function F(x,y) which interpolates the 
data values, i.e., F(xj,yj) = Zj' This is denoted by 
bivariate interpolation and it should satisfy two 
requirements: first, the interpolant should be 
continuously differentiated everywhere in the 
underlying domain; second, the scheme should be 
local, i.e., evaluating the interpolant at a point 
within a specific triangle should require only 
function and gradient values at the vertices of that 
triangle. This approach, which has been 
employed by Lawson (1977) and Akima (1978); it 
consists of the following three procedures: 

(I)Partition the convex hull of the set of points 
into triangles by connecting the points with 
line segments. 

(2)Estimate partial derivatives ofF with respect 
to x and y at each of the points using the 
data values on either a set of nearby points 
or all of the points. 

(3)For an arbitrary point (x, y) in the convex 
hull of the set of points, determine which 
triangle contains the point, and compute an 
interpolated value F(x, y) using the data 
values and estimated partial derivatives at 
each of the three vertices of the triangle. 

Later, the construction of triangulation from the 
scattered data is described briefly. Three different 
degree polynomials with gradient estimation were 
used to construct two different experimental 
surfaces. According to the error analysis and 
visualized judgement, three algorithms were 
evaluated. 
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2. TRIANGULATION IN A PLANE 

Suppose that P = {Pi = (Xj, Yi)} 1 n is a set of n 

distinct points in the plane. The set T = {(vIi' v2i • 

v3i}1 m of triples of integers chosen from {l, ... , n} 

is called a triangulation of P provided that the 
points Pvl-' Pv2.' Pv3. are the vertices of a triangle 

1 1 1 

ti for 1 ~ i ~ m. Each triangle contains exactly 

three points of T and these are precisely the 
vertices of the triangle. The interior of the 

triangles {Ti}lm are pairwise disjoint, i.e., no 

overlapping. The union of {Til 1 m is equal to the 

convex hull of P. 

In general, a given point set P can be triangulated 
in several ways and all triangulations of P can be 
shown by induction as the following relationship: 

m = number of triangles = 2n - nb - 2 

ne = number of edges = 3n - nb -3 

where nb denotes the number of boundary 

vertices. A triangulation is completely described 
by the set T of the integer triples giving the vertices 
of the triangles making up the triangulation. 
Hence, to store a triangulation in a computer, the 
2n numbers describing P and the 3m integers 
describing T are needed. Before constructing the 
triangulation from a general set of points, it will 
be convenient to first consider the problem of 
triangulation a set of four points whose convex 
hull is a convex quadrilateral. In this case there 

. are precisely two different triangulations which 
may denote by tl and t2 (Figure 1). 



pI 

p4 '"-_________ ~ 

p4 

p3 

pI 

p3 

p2 

p2 

Figure 1: Triangulation of four points 

A number of different criteria have been invented 
for choosing between t1 and t2. The simplest one is 

to let PI' '" , P4' be oriented as in Figure 1, and let 
d1 = length of the diagonal P2P4' and d2 = length of 

the diagonal PIP 3' Then t2 is a better 
triangulation of tl with respect to the shortest 

diagonal criterion which provided that d1 > d2. 

Although it is very easy to implement, the shortest 
diagonal criterion does not do a good job of 
avoiding thin triangle. The following max-min 
angle criterion contributed by Lawson (1977) is 
specially designed to avoid thin triangle. If there 
is a triangle t, let a( t) = minimum angle in t. 
Associated with the triangulation T, let aCT) = min 
{ aCt) : t E T }. Then t2 is better than tl with respect 

to the max-min angle criterion which provided 
that a(t2) > a(t1). In Figure 1, aCt1) = 300 while a(t2) 

= 460 , and thus according to the max-min angle 
criterion, triangulation t2 is the better of the two. 

Although the error in approximating a smooth 
function on a triangle can be estimated in terms of 
the largest angle in the triangle, Barnhill and 
Little (1984) suggest the following min-max angle 
alternative to the max-min angle criterion: if 
there is a triangle t, let aCt) = I/(maximum angle 
in t). Associated with the triangulation T, let aCT) 
= min { aCt) : t E T}. Then t2 is a better 
triangulation than tl with respect to the min-max 
angle criterion which provided that a(t2) > a(t1). 

Regarding the optimal triangulations of general 
points sets, let Q be a criterion for choosing the 
optimal triangulation of a quadrilateral based on 
maximizing some measure a( t) of the thinness of 
the triangles. For each triangulation T of a point 
set P, let aCt) be the vector measure of goodness of 
T defined above. Then a triangulation t2 is said to 
be an optimal triangulation of P with respect to Q 
provided that a(t2 ) > a(t1 ) for all other 

triangulations tl of P. 
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Post optimized, iteratively built, and divide-and
conquer approaches are three rather different 
algorithms which can be adopted to work with the 
above swap criteria for constructing the optimal 
triangulations. The post optimized approach first 
constructs an initial triangulation, and then goes 
through the quadrilaterals and makes swaps 
where necessary. The iteratively built approach 
starts with one triangle and adds one point at a 
time, making sure that at each step the current 
triangulation is locally optimal. The divide-and
conquer approach divides the data up into pieces, 
finds locally optimal triangulations for each piece, 
and then merges these triangulations. Every 
triangulation approach requires at least nlog(n) 
operations (Lawson, 1977), where n is the number 
of points being triangulated. 

3. GRADIENT ESTIMATION 

Many techniques for producing a surface from 
scattered DEM require gradients at the data 
points. Typically, only positional data are known 
so the gradients must be estimated before the 
surface values can be computed. The quality of the 
surface depends on the estimated gradients so it is 
important to compute accurate estimates. For the 
planar interpolation problem, there are five 
common gradient estimation methods: Shepard, 
multiquadric, weighted quadric, weighted planar, 
and triangular Shepard methods. The Shepard 
method which interpolates only to positional data 
is defined by 

n 
GS(x, y) = 1 Wi(x, y) Fi (x, y) (1) 

i=1 

where 

and 

GS(x, y) was localized in the following way. For 
each (Xj, Yi)' GS is determined by the six data 

points closest to (Xj. y/ Note that (Xj, Yi) has to be 
excluded from the computations; otherwise, the 
gradients at (Xj, Yi) would be zero. 



The hyperbolic multi quadric method is defined by 

n 

GM(x. y) = :6; Ci y'dlix. y) + r (2) 

where dj
2(x, y) is given above, r must be specified, 

and the coefficients ci are found by solving the n by 

n system GM(xi' Yi) = Fi • i = 1, ... , n. GM is 

localized as follows: for each data point (Xj, Yi)' 

GM is determined by the nineteen points closest to 
(Xj, Yi) plus (Xj. Yi) itself. 

The weighted quadratic least squares method GQ 
is determined by the ten points closest to (Xj. Yi) 

plus (Xi' Yi) itself, for each data point (Xj. Yi).The 
weights are 

(3) 

where ri equals the distance between (Xj. Yi) and 

the most distant of the ten closest points. In 
addition, the weighted planar least squares 
method GP is determined by the eight points 
closest to (Xj. Yi) plus (Xi' Yi) itself, for each data 

point (Xi' Yi)' The weights as above are used with 

ri equal to the distance between (Xj, Yi) and the 

most distant of the eight closest points. 

The triangular Shepard method is defined by the n 

data {(Xj' Yj' Fj )}j=l n and a triangulation {(vIi' 

v2 i , v3i}i=lm , where m is the number of triangles 

in the triangulation. It is given by 

m 
GT(x, Y) = L wi(x, Y) LFi(x, Y) 

i=1 

where 

w/X , Y) = 3 
1 

II ~j2(x, Y) 

j=l 

m 1 
IL-3-~-

i=kII 2 
dkj (x, Y) 

j=1 

(4) 

LFi(x, Y) is the linear interpolant over the i-th 

triangle, and ~j is the Euclidean distance from (x, 

Y) to vertex j of the triangle i. Note that no 
parameters need be specified for LF, although it is 
dependent on the triangulation. 
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4. SURFACE INTERPOLANTS 

Several interpolation schemes that assume 
prescribed values and their gradients on the 
boundary of a planar triangle have been 
developed. Barnhill, Birkhoff, and Gordon (1973) 
first developed such a method using lines parallel 
to the triangle sides, and Nielson (1979) has 
developed method for line segments joining 
vertices to their opposite sides. This method 
consists of using the planar interpolant on the 
underlying planar triangle with boundary data 
obtained by projecting values and gradients onto 
the plane. 

For such an interpolation, let p be a point of the 
triangle with vertices, in counterclockwise order 
vI, v2, and v3, and let p' be the central projection of 
p onto the underlying planar triangle having the 
same vertices T = evl,v2,v3), i.e., boundary points 
of the triangle project to boundary points of T. 
Denote by bI, b2, and b3 the barycentric 
coordinates of p' with respect to T. These are 
defined by 

and 

3 
L bjvi =p' 
i=1 

(5) 

(6) 

This is a basic scheme of piecewise linear surface 
interpolation. This scheme is given a 
triangulation of a set of points in the plane and 
computes the value at (x, Y) of a piecewise linear 
surface. Equivalently, bi = ~/A, where A is the 

area of t and ~ is the area of the subtriangle (p', 

Vj' vk) for (i, j, k) E s = {(1,2,3), (2,3,1), (3,1,2)}. 

Consider the line defined by vI and p'. This line 
intersects the edge opposite vI at the point 

I' b2 v2 + b3 v3 
q = b2+ b3 (7) 

The points q2' and q3' lying on the sides opposite 
v2 and v3, respectively, are defined similarly. The 
following side-vertex-based interpolant is derived 
by Lawson (1977). For a bivariate function f on T, 
the interpolant defines 

3 
Fep') = L Wi ~ep') (8) 

i=1 



where 

b.bk J 
wi = b. b· + b· h. + h. b· 

1 J J ~k "'k 1 

for (i, j, k) E S 

and 

that is, Hi is the Hermite cubic interpolation of the 
endpoint values and directional derivatives of f. 
Note that the weights wi are not defined at the 

vertices where two of the barycentric coordinates 
are zero. 

A similar scheme, the values of the function at 
point (x, y) in a triangle is interpolated by a 
bivariate fifth-degree polynomial in x and y; i.e., 

5 5-j 

F(x, y) =.I L. qjk xj ~ 
J=O k=O 

(9) 

Note that there are twenty one coefficients to be 
determined. The values of the function and its 
first-order and second-order partial derivatives 
are given at each vertex of the triangle. This yields 
eighteen independent conditions. The partial 
derivative of the function differentiated in the 
direction perpendicular to each side of the triangle 
is a polynomial in the variable measured in the 
direction of the side of the triangle. Since a 
triangle has three sides, this yields three 
additional conditions and assures the smoothness 
of interpolated values. 

5. DESCRIPTION OF EXPERIMENTS 

Two numerical experiments were provided to 
examine three surface interpolation algorithms: 
linear, cubic, and quintic polynomials. The first 
experiment is a set of hundred simulated DEM 
points. Their x and y coordinates are generated by 
random number generator. The z coordinates are 
calculated according to an arbitrary function as 
the following and the diagram is shown in Figure 
2. The second experiment has fifty scattered DEM 
points, feature points of terrain, which come from 
a field project (Figure 3). 
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( ) _ 0 75 [- (9 x - 2)2 - (9 y - 2)2] 
z x, y -. exp 4 

O 75 [ 
(9 x + 1)2 (9 y + 1)] 

+. exp - 49 - 10 

[
- (9 x - 7)2 - (9 y - 3)2] 

+ 0.5 exp 4 

- 0.2 exp [. (9 x - 4)2 - (9 y_7)2] 

6. CRITERIA OF EVALUATION 

The purpose of this evaluation was to examine the 
potential of three interpolation algorithms: linear, 
cubic, and quintic polynomials. The following 
criteria were used to determine the relative 
goodness of the three algorithms: 

(l)Mean absolute error (MAE) 

n 
I (z* - z) 

MAE = "'-i=--"I'--__ 
n 

where z* are interpolated values and z are 
function values. 

(2)Mean relative error (MRE) 

n (z* - z) 
I--
. 1 z 

MRE = =--1=-=-__ 
n 

(3)Root mean square error (RMSE) 

n 
L (z* - z)2 

RMSE = =-i=-=I __ _ 
n 

(10) 

(11) 

(12) 

(4)Running-time of the central processing unit 

(5)Visual inspection of the surfaces 



7. ANALYSIS OF RESULTS 

The task of surface interpolation was done by 
three different degree polynomials over triangular 
patch algorithms. There are one evaluation table 
and two sets of diagrams for analyzing the 
potential of these three algorithms. For the first 
criterion, the values of mean absolute error gives 
information about the error range of interpolation. 
In this case, the quintic approach has the 
smallest error; the linear approach has the 
largest error; and the cubic approach has an error 
below that of the linear and above that of the 
quintic approach. Based on mean relative error, 
the situation is similar to that of the first criterion. 
The quintic approach has the smallest relative 
error; the linear approach, the largest relative 
error; and the cubic approach, a relative error 
below that of the linear and above that of the 
quintic approach. As a matter of fact, the relative 
error of the cubic approach is much closer to that 
of the quintic approach. The root mean square 
error carries one of the most important messages 
in this evaluation. A little change occurs in this 
portion. The cubic approach gives the best result, 
while the linear approach gives the worst case. 
For the running-time of the central processing 
unit (CPU), in this research, three algorithms 
were run in the IBM compatible 486 personal 
computer. The consuming time is proportional to 
the degree of polynomial. The quintic approach 
requires more time and the linear approach 
requires less time. Table 1 displays above four 
items. In the second experiment, CPU running
time of three algorithms are 28.12 seconds in the 
linear approach, 67.94 seconds in the cubic 
approach, and 83.27 seconds in the quintic 
approach. Regarding the visualization, i.e., the 
smoothness of interpolated surface, on inspection 
of the pictures of simulated DEM in Figure 2 and 
scattered DEM in Figure 3, the performances of 
three algorithms are attractive. They are very 
smooth and their shapes are very good. With 
regard to the smoothness of the surface, the 
surfaces from the cubic approach have the best 
appearance. 

According to above five criteria of evaluation, the 
general idea about these three algorithms is that 
the linear approach is time-saving and less 
accurate; the cubic approach has good accuracy 
and may generate smooth surface; and the quintic 
approach also has good accuracy, but consuming
time. Hence, the cubic approach has the great 
potential for surface interpolation in the scattered 
DEM. 
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8. CONCLUSIONS 

Three-dimensional measurements passing 
through a surface are often taken by scientists and 
engineers. The methods of linear, cubic, and 
quintic polynomial on the triangular patch have 
application in finite-element analysis and 
computer-aided geometric design, as well as in 
the scattered DEM interpolation problem treated 
here. According to evaluation in this research, 
conclusively, the cubic approach is recommended 
to do surface interpolation in the scattered DEM. 

Two related problems which were encountered 
during the research will be studied in the next 
phase. The first problem is the error bounds. The 
classical error bounds for approximating a 
smooth function on a triangle by a polynomial 
depend explicitly on the size of the smallest angle 
in the triangle. Thus, if the error bounds for a 
precise polynomial are defined over the two 
triangles forming a triangulation of a convex 
quadrilateral, the triangulation produced by the 
max-min angle criterion can get better bounds. If 
the Delaunay triangulation is constructed, the 
cri terion for detecting the error bounds is worth 
consideration. The second problem is the fitness of 
triangulation to terrain, especially in the peak, 
pit, hole, island, and so forth. 
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Table 1: Evaluation of three algorithms using simulated DEM 

Algorithm 
Criterion Linear Cubic Quintic 
MAE 0.00480 -0.00052 -0.00216 
MRE 0.18911 0.09437 0.08900 
RMSE 0.03526 0.02131 0.02535 
Speed (second) 70.25 151.87 244.20 
visualization good excellent good 

Figure 2a: Simulated DEM Figure 2c: Cubic surface interpolation 

Figure 2b: Linear surface interpolation Figure 2d: Quintic surface interpolation 
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Figure 3a: Scattered DEM Figure 3c: Cubic surface interpolation 

Figure 3b: Linear surface interpolation Figure 3d: Quintic surface interpolation 
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