
PRINCIPLES FOR A NEW EDITION 
OF THE DIGITAL ELEVATION MODELING SYSTEM SCOP 

l. Molnar 

Institute of Photogrammetry and Remote Sensing, The Vienna University of Technology, Vienna, Austria 
ISPRS Commission IV 

Abstract: 

OEMs as information (~ub)syste~s stori~g vec:tors, raster, image pixels, and attributes. Communicating with other 
databases, ~md a<?ces~lng DE,M Infor~atlon, via ,(TOP)SQl. Treating topology in terms of relationality; dealing with 
true three-dl~enslonallty. ~aln functions. Combining vectorial algoritms with those of raster geometry. Patchwise 
processes With s~ag,es varYing locally. C~ntr<?lIing OEM processing via object oriented programming in a multitasking, 
and eventu~lIy distributed system. M~chlne Independent base modules. Modes for real-time processing, sub-system 
(slave or driver) mode, batch processing mode. Employing parallel programming including massive parallelity. 

KEY WORDS: Digital Terrain Models, System Design 

INTRODUCTION 

A univer.sity institute has the two interconnected tasks 
of teaching and of research. A new dimension has been 
added to th.ese tasks by some leading personalities of 
the academiC world of photogrammetry, in the first line 
by Prof.Dr. Ackermann at the Stuttgart University, 
followed by Prof. Dr. Kraus at the Vienna University of 
T~chno.logy, and by many others. According to this new 
dimenSion, results of recent university research are 
~ade commercially available to the world of production 
In the form of computer programs or modules - rather 
than just as theoretical papers and research reports. 
These pro~rams should have the merit of applying new 
technological methods. They can hardly be, however 
on the level of versatility of the available commercial 
products. Recently, in view of some major 
development,s in computer science, the contrast 
between merits and disadvantages of such research 
p.rogra~s beca~e by far too large - concerning, in the 
~Irst line, .object oriented design, graphical user 
Interfaces, Interactive graphics, etc. 

Current versions of the digital elevation modeling 
package ~COP 1 represent a splendid example of the 
aforeme'!tloned contrast. Therefore, and to refine the 
package ,In many other respects, work has been started 
on creating a new, open frame to hold some of the 
curre~t mod,ules and all future ones. Principles proposed 
for thiS ~rchltect~re c~,!stitute the s~bject of this paper. 
At the tlm~ of thiS Writing, these principles are not yet 
approved In any way as, final. In many points, they 
represent but a personal view. 

THE "CLASS-ORIENTED" PROGRAM ARCHITECTURE 

SouQht is a highly modular, easily extendable 
architecture to be implemented on most major 
platforms, to combine some existing modules with the 
new <?nes, and, to be controlled, on the one hand, by 
graphical user ~nterfaces, and on the other - in batch 
mode, on mainframes, or just as an option - by 
command language. 

The existing source of SCOP and of related programs 
represent up to 200.000 lines of proven FORTRAN 
code, one through ten years old. Three quarters of it 

1 INPHO GmBH, Stuttgart, and institute of 
Photogrammetry and Remote Sensing (lPRS) of the 
Vienna University of Technology 

962 

could and should - Indeed: must - be rescued. 

Due to its FORTRAN-centered, cross-platform 
programming expertise, the SCOP team is by now 
extremely proficient in creating new modules to the 
existing system. The price of giving up this expertise all 
together could be, I am afraid, about one year per 
programmer. So let's examine concisely whether there 
is sufficient technical reason to do so. 

There are two major recent developments in computer 
programming affecting the application of FORTRAN: 
first, the increasing necessity to address different 
~oftware and hardware resources such as graphical user 
Interfaces (GUls), graphics libraries, external databases 
(embedded SOL, GIS), or additional hardware. The 
problem is not just that FORTRAN does not provide any 
standard means for such purposes. More importantly, 
different libraries, device drivers, software kits, and the 
similar are nowadays supplied for Conly. These 
problems ~re then usually solved by mixed language 
programming. 

The second point concerns object oriented 
programming. It facilitates a deeper reaching modularity, 
a way of thinking coming much closer to that of the 
user, it yields a highly modular and highly extendable 
architecture, and it may aid greatly the transition to 
distributed and parallel computing. On a fine-grained, 
SMALL TALK-level, with object oriented operating 
systems and compilers for all major platforms, and with 
widespread processor support, distributed intelligence, 
and parallel processing - on this level, object oriented 
programming is not yet with us. For this, I think, even 
developers have to wait for maybe five years. However, 
a hybrid solution with a large-grained object structure 
~ixed with procedural parts is rapidly gaining 
Importance: the C++ solution and the similar ones, 
based on structures designated as classes to 
encapsulate both data and the methods (algorithms) 
operating on them. 

Externally, a (complex) class controlled by messages 
resembles very much a (small) program controlled by 
directives of a command language. (Small) programs 
can thus be considered and employed as some common 
denominator between classical procedural programs, on 
the one hand, and (complex) classes of a C++ type 
object oriented program. As parts of an integrated 
system, such programs could be termed processes. This 
expression emphasizes dynamic so much that for most 
of us it is hard to think of a process as of data, with the 
code integrated. So after rejecting a series of terms 
(e.g. complex object, or just complex),1 found the name 
autonomous class to suit best. An architecture then, 
integrating such classes, will be termed a class-oriented 



one. Object-oriented on the surface, it is capable of 
integrating modules belonging to both the procedural 
and the object oriented world. 

Implementing Autonomous Classes 

An autonomous class is, in the most general terms, a 
complex object incorporating (a,!d encapsulf!ting) data, 
instructions, and hardware. Full Implementation of such 
classes is possible in distributed processing (network; 
specialized hardware on PC boards). But m,emb.er 
programs integrated into a system and running In 
parallel in a multitasking environ~ent represe~t the 
most typical, though not full, Implementation of 
autonomous classes. 

The main programming languages to be used are c: ~ + 
and FORTRAN. Within one autonomous class, mixing 
them is to be avoided as far as possible (for reasons of 
portability). The choice of the language depends on: 

- the class being machine bound (pr~feren~e for C++ ), 
- the class performing mainly numerics (mild preference 

for FORTRAN), 
- the availability of re-usable routines (usually 

FORTRAN), 
- the experience of the programmer (in most cases 

FORTRAN). 

An autonomous class is invoked by the user, or by other 
classes. It may command ove~ ~ny numb~r of 
autonomous sub-classes thus· building a family of 
autonomous classes. To enable the invocation, of an 
autonomous class in different environments, different 
heading statements have to be provided by conditional 
compilation ("ifdef"-s). In FORTRA~, a P~OG~AM 
statement enables SPAWN-type invocation In a 
multitasking environment. An alternative SUBROUTINE 
statement allows to build large linked systems, e.g., ~n 
mainframes, or the invocation of classes sto~ed, In 
dynamic link libraries (Dlls). In C + ~, Similar 
techniques are possible in using corresponding CLASS 
statements and names. In the future, special headers for 
Object Request Brokers (ORBs) may b~cor:ne necess~ry, 
so to enable invocation by some Dlstnbuted Object 
Management technology. 

Communication among classes is via messages 
(strings). These are reminiscent of simplified directives 
of a command language. Simplicity is partly due to 
polymorphism: the ?bject knows ~o~ to react to the 
same message in different cases, It Itself knows best 
the stage and ways of processing, etc, - In the case of 
the autonomous class for topological database 
management (TOPDB), messages acquire the syntax of 
TOPSQL (Loitsch, Molnar, 1991). Autonomous classes 
should be able to handle simultaneous requests (~/O 
queues, buffering, priority handling, managing 
asynchronous communication with other classes, record 
locking, periodic checking of externa,' requests to pause 
or abort, etc.). Multithreaded operating systems (OS/2) 
provide fine means to keep an autonomous class ~Iert. to 
messages while working on a task. Data communicatIOn 
should proceed either via the database n:'anagement 
class (TOPDB) I or via binary files, memory pipes" share,d 
memory and similar means, Synchronization via 
semapho'res, flags, etc. becomes very important - e.g. if 
one class is processing a patch (tile) of data, and the 
database class is simultaneously retrieving data for the 
next patch. 

The developer should clearly differentiate between 
classes 
- mainly machine bound, and 
- practically machine independent, 

963 

and furthermore, concerning invocation: 
- public classes, to be invoked 

- by the user, 
- by (other classes of) the system, and 

- private ones, being subclasses to some other class. 

For a system integrating autonomous classes, "lazy" 
processing is characteristic: without user requests, there 
happens nothing, and in answering requests, there 
happens the minimum necessary. This principle of 
laziness is a sometimes shortsighted but generally 
advantageous principle of economy. 

APPLYING THE CLASS-ORIENTED ARCHITECTURE 
TO BUILD A DTM SYSTEM 

Instead of an Introduction: 
DTMX. and Hints on an Obiect-Oriented View of DTMs 

DTMX was to be a modular system of software tools 
operating on a (transitory) database, designed to /.?rovide 
a highly flexible interface between DTMs of different 
structure and origin (Molnar, 1984). It never 
materialized as a whole but its definitions of a 
sequential data exchange format became wide~y used in 
Austria (data in this format cover many times the 
territory of the country). 

The database of DTMX was to contain patches of data 
with a code characterizing the level of processing 
achieved on them ("lazy" processing). Examples of such 
levels are 'raw data', 'data edited', 'DTM grid', 'contour 
lines interpolated', etc. Modules have been foreseen to 
perform the upward transition from one lev,el of 
processing to the next. With some system on the Input 
side yielding data of one level (e.g. raw data), and the 
system on the output side requesting another level (e.~. 
contour lines), DTMX was thought to perform thiS 
transition automatically by piping internally the 
corresponding tools. 

So, the design of DTMX did have the pot~ntial t? r.esult 
in a fully-fledged DTM-ing syste~. Looking at It In. an 
object-oriented way, a DTM IS a . complex o~J~ct 
encapsulating both data and processmg code, unltm.g 
information with intelligence. DTMX corresponds to thiS 
definition. - It is the origin of some major principles to 
follow here. 

Classifying Autonomous Classes of the DTM 

According to their role, the autonomous classes of the 
DTM can be classified as 

FRAME (or Management) classes such as 
Management of User Interactions (including on-line 
context-sensitive help), Database Management, 
Project Management including Error and Message 
History, Graphics Management, and others; 
KERNEL (or Application) classes such as Input 
Data, DTM Surfaces, Graphic Sheets, 
Isolines/Zones/Distributions, Views, the products 
of DTM-Algebra, of DTM Classification, of DTM 
Exploration - and numerous other classes. 

In thinking of an autonomous class (e.g. in planning 
one), the main consideration should be given to its 
instances (i.e. to its data records); the methods 
(algorithms) operating on them should be considered as 
means. This corresponds to the aspects of the user, and 
to an object-oriented analysis and modeling of the task. 
In this sense, notes on some of the classes of the DTM 
follow. 



FRAME (MANAGEMENT) CLASSES 

Management of User Interactions 

There is indeed, only a limited number of different 
actions ~ user needs to perform. He needs to identify 
some options (words) or some position (x, y), to end 
pausing states (e.g. by typing a carriage return), or ~o 
enter some strings or numbers as values. From this 
point of view, it is easy to construct an interface 
transferring information from the user interface to the 
autonomous classes. . 

The problem is the other, the prompting si~e. Early 
single-line promptings developed to graphical user 
interfaces (GUls) presenting the user with a wealth of 
details such as windows with drop down menues, scroll 
bars, dialogue boxes, radio buttons, etc. IBM's Systems 
Application Architecture (SAA) specifications created a 
widely accepted standard (OS/2 Presentation Manager, 
MS Windows, X-Window, DEC-Window, and many 
others). Recently, there are cross-platform tools 
commercially available providing a single interface to ,all 
these systems, and realizing an acceptable compromise 
of the common denominator to them. 

Development, or sometimes fashion, do not. stand still, 
however. With regard to Smalltalk and Macintosh type 
user interfaces, the SAA standard appears to be 
antiquated. And I do not doubt that further stages are 
following in a rapid sequence, considering, e.g., the 
exploding importance of multimedia technology. 

It is therefore, imperative to separate the GUI from the 
clas~es to be controlled by it. There is an interface 
nec'essary, somewhat similar to the resource file 
statements as originally formulated by IBM for the PM. 
Interpreting such statements, the autonomous class 
'Management of User Interactions' can comp?se ~he 
graphical user interface to appear on the screen In uSing 
the latest cross-platform development tools and 
libraries. This way, the user interface can be kept to 
correspond, though with severe compromize, to the 
fashion of the time. 

The class 'Management of User Interactions' is to 
support the user interface: where possible, a GUlf and 
everywhere, a command language interfa.ce -. as .a 
choice, and as a necessity for batch processmg. Via this 
interface the user can invoke the major classes, and 
keep mo;e than one of them active at a time. This class 
is overwhelmingly machine bound for it has much to do 
with the GUI, wi.th foreign libraries, with graphics and 
device drivers, and, in invoking other auto~omous 
classes, with operating system calls. Therefore, It has to 
be implemented in C++. It is the tip of the iceberg - it 
is the ROOT or MAIN class of'the DTM system. 

Database Management 

Database management plays a central and multiple role 
in this system's architecture: it is managing data for all 
the different classes. Besides of dealing with sets of 
original (input) data including digital images and over!ays 
of the DTM surface, it should carry tables and matrices 
with overviews of previous and current stages and 
peculiarities of the processing, of data changes within 
individual patches (tiles) with date and time, objects of 
graphics output, matrices and tables of error and 
message history, 3-D enclaves, and much more. The 
class 'Database Management' is not directly accessible 
by the user; such access is only granted via other 
classes. These last ones are considered to logically 
encapsulate the data managed by them. 

There is every reason to go on with the SCOP 

964 

philosophy to reflect various aspects of terrain 
characteristics by building multiple models of the same 
area rather than having more than one function value at 
each location of a single model. This allows to have 
independent structures and densities o! the mo~els 
covering the same area, e.g. those reflecting elevations 
belonging to different epochs, or soil quality, or ind~ed 
any characteristics capable of sorting on an ascending 
scale. 

for this purpose, in the system as proposed, database 
management should handle multiple overlapping te~ra~n 
models structured independently of each other (thiS IS 
solved in SCOP's current DTMUB routines already). 
These can serve then either as overlays, or as operands 
in e~pressions of DTM Algebra re~ultinQ in operations 
identical or similar to those proVided In the current 
SCOP.INTERSECT module. 

Most probably, the class 'Database Manage,me~t' is to 
comprise more than one sub-class to. fit dlffere~t 
purposes. TOPDB ~and DTMUB to be deSCribed next Will 

be integrated as such sub-classes. A further sub-class 
to manage graphic objects may become necessary. 

TOPDB (Loitsch Molnar, 1991) is a fully relational 
database manag~ment system capable C?f dea~ing ~ith 
data attributes, and arrays of these (including pixel 
arrays). TOPDB is specifically d~signed ~o be effici~nt in 
performing spatial and topological quefle~ a?cordln~ to 
2-D criteria on large amounts of data distributed In a 
"two and a half" dimensional space .. It is treating 
topology in terms of relationality. It is controlled by 
TOPSQL a major subset of the Structured Ouery 
Languag~ (SOL) extended by topological operators. 
TOPDB tables can be created and discarded on the fly, 
at run time. TOPDB has hardly any limitations 
concerning the amount of data to be treated. The major 
sources of its efficiency are multiple continuously 
balanced binary trees, and extensive buffering. - Further 
development is necessary conc~rning T~PD~'s 
capabilities to function as a server In a multitasking 
and/or networked environment. - TOPDB has been 
developed in FORTRAN by using the totally in~redible 
compiler and workbench created by A. Koesth of the 
SCOP team in Stuttgart (Koestli, 1990). 

DTMLlB is a main library of the current edition of SCOP. 
It contains the database management system for the 
random access DTM. It is designed to access multiple 
individually structured DTMs concurrently. It contains 
routines available to user-written programs (FORTRAN). 
DTMUB should be further developed to deal with 
irregular patches of the surface rather than just with 
regular computing units. It should be ~xtended to work 
in concert with TOPDB, especially with regard to vector 
type data such as break lines, borderlines, highs and 
lows, etc., to be managed in the new system by TOPDB 
only. 

Project Management 

This class is supervising the entire project. It is to 
manage records of data security, of archiving (saving), 
of limiting polygons, matrices of coverage, etc. The 
Error and Message Management belongs here, as well, 
both to send and to administer these messages, and to 
build up a history of them, for analysis, and for 
summaries. - Most records are stored on TOPDB tables. 

Graphics Management 

Graphics Management is to receive data via interprocess 
data communication (memory pipes, shared memory 
areas, binary files). These data are to be displayed, 



plotted, or stored as graphics objects in the 'Database 
Management' . 

The best way to organize the data communication is an 
asynchronous stream on memory pipes, so to allow the 
~ending and the receiving classes to act in parallel. Data 
Items shoyld b~ c?~ed as meaningful objects rather than 
as graphics pnrT;lltlves, e.g. as 'contour line section' 
rather than 'spline curve section', or 'contour label' 
rather than 'string'. The Graphic Management should 
"know" how to represent the objects on the basis of 
set-up tables and user definitions. 

Storing graphics objects in some sub-class of 'Database 
Management' serves two purposes. First, such storage 
allows for an on-screen customization of graphics 
output (e.g. ,of a map sheet with different contents). 
And second, It can serve purposes of "what-if" analyses 
where variants of the output have to be compared 
among themselves on the screen. For this specialized 
d!splaying methods have to be used, ~nd graphic 
displays ,to be ~ompared should be constructed in ways 
best !Ittl~g this purpose (e.g., probability-distribution 
type Isolines (Kraus, 1992) in different colors might 
Yield great advantages when mixed additively). 

!h~ class :Graphics .Mana~ement' plays important roles 
In interactive graphics. Displays and user entries have 
much to .do with the Management of User Interactions. 
User actions should be received from it, and reported 
back to the requesting class. 

KERNEL (APPLICATION) CLASSES 

Notes on some selected important and characteristic 
classes follow here. There will be many more of them. 
Mo~t importantly, this series can easily be extended by 
adding new autonomous application classes. 

The Class 'Input Data' 

The flexibility of database management by TOPDB 
allows for great freedom in handling different data 
types. A classification according to current needs could 
be: On-terrain data in the form of points at random 
grids, I.in~s (breaklines, form lines, borderlines{, 
geometric figures, enclaves with analytical surfaces and 
3-D objects, etc., off-terrain data (e.g. church crosses) 
data de!ined in the (x, y) plane only, furthermor~ 
ge0'!7etrtc constraints, digital images, and different 
attributes to the above, Because data can be retrieved 
by any of the usual relational queries, and in addition 
and most importantly, according to ~patial and 
topological criteria, it is easy to create flexible methods 
(tools) operating on the data. 

The methods to this class are numerous indeed so in 
implementing them, a large family will have 'to be 
created with many sub-classes. The major methods 
necessary are: 

- Import/Export, on the one hand via software 
interfaces from and to different systems such as 
GIS, Arclnfo, Intergraph Microstation, or 
AUTOCAD, and on the other, from and to 
sequential data formats (file interfaces) such as the 
ones of DTMX, those of current versions of SCOP: 
WINPUT and KA001, furthermore from and to pixel 
data standards, and others; 
Di.ffere~t transformations, including absolute 
orientation; 
Editor for vector type data, with 

Methods of Data Exploration and Analysis: 
Ana~ytic, including Progressive Sampling to be 
applied both on-line (data acquisition), and 

965 

off-line (checking), 
- Numeric, including Line Networking, and 

handling contradictions in the Overlapping 
Zones of photog ram-metric models (both of 
them semi-automatic processes with 
interactive user support), 

- Visual, including Data Displays and Data 
Plots, 

- and a complex system providing means (via 
invoking other classes) of prospecting contour 
lines, perspective views, pixel-coded views, 
and the similar within local areas of interest 
("What-if" Analysis); 

listing and Updating, with addressing 
- by means of interactive graphics, 
- via alphanumeric entries (inevitable for batch 

processing) . 
Patching (replacing patches of data); 

Editor for Raster (Pixel) Data; 
Changes' Management, in the first line to facilitate 
automatic updating of previously derived products 
(such as the DTM surface or contour lines) by re
processing the tiles (data and algorithm patches) 
involved. ' 

The Class 'DTM Surfaces'. 

In this architecture, the concept DTM Surface is an 
~Iusive o~e. It is a means to achieve a goal, a transitory, 
intermediate state of the information contained in the 
original ("input") data on its way to be expressed in 
another form - e.g. as contour lines or slope vectors. it 
may not be needed in some cases at all, or it may be 
needed locally only, e.g. along a profile axis, and it may 
take on different forms, such as a grid or an analytical 
expression. It is up to the user, whether to have this 
surface representation just transient (as scratch), to 
keep it for the sake of some processes and then discard 
it, or to store it permanently as a regular, classical DTM 
structure. 

Notwithstanding all this, whether transient or 
permanent, we need the means DTM in most cases, 
and, so to attain fine quality, we should be able to work 
on it directly and locally: reality is not always willing to 
submit to generalised schemes. I often remember Dr. 
Yoeli fighting on these grounds against replacing original 
data by all-purpose DTM grids (unpublished). 

~DTM Surfaces' should be, according to this discussion, 
Just some sub-class (or even just a method) to such 
classes as 'Isolines', or 'Slope Vectors'. But because it 
is so overwhelmingly important, common to most 
application classes, anQ sometimes even a goal in itself 
(in case, e,g., of country-wide permanent DTMs), 
regular and usually discrete surface representation 
continue~ to, be a corner-stone of DTM-technology, and 
as such, It Yields one of the largest and most important 
classes in this architecture, as well. 

The class 'DTM Surfaces' is thought to provide space 
for a growing number of competing and co-operating 
algorithm sub-classes. Algorithm Tiling is a task of the 
mother class. Enclaves with analytic surfaces and 3-D 
objects on the input data are pre-defined tiles. These 
tiles are belonging to the sub-class for Special Enclaves. 
Algorithm tiling for the rest of the terrain may become a 
quite complex process combining data exploration with 
u~er interactions. Areas surrounded by break lines, and 
without any other data within them, should be identified 
and classified as enclaves with analytic surface. It must 
be of special concern to provide for smoothness of 
s,urface ~epresentation on both sides of the tiling limits 
(Just as It IS along the edges of computing units). 



Surface Exploration and Analysis is to become a major 
group of methods of the class 'DTM Surfaces'. Applying 
these methods, the user should be able to find optional 
ways of surface representation in problematic areas, 
and to convince himself and others about the quality of 
it. "What-if" Analysis should enable him to apply 
different algorithms to the same set of tiles and to 
compare results numerically, analytically, and visually, 
e.g. by viewing shadows or shading in oblique light. 
Different methods of Quality Analysis should be at the 
user's disposal, e.g. transient and local data 
transformations (translation, rotation) to check on 
isotropy. 

Algorithm Sub-Classes are to be very independent large 
black boxes logically encapsulating data for a tile of the 
surface, local co-ordinate systems, (a combination of) 
interpolation algorithms, private surface representation 
(e.g. hexagonal tiling, or analytical forms), functions to 
service inquiries concerning this surface (z, components 
of f' and f" at a given location, the isoline at a given 
elevation, ray tracing, etc.), and in some cases even 
hardware (e.g. on a board). They should employ 
parallelity in their co-operation with each other (tiling), 
and with the Database Management class. 
Multithreading may be pursued (e.g. reading the data 
stream and setting up equations or matrices). 

Modules realizing the linear prediction algorithm in the 
current version of SCOP can be adapted to become one 
of the algorithm sub-classes of the new edition. 

Algorithms should fulfill, at least in co-operation, many 
requirements. Concerning data types, they should 
operate on points distributed at random and be able to 
deal with large variations in data density. They should 
exploit additional information carried by special data 
such as breaklines and structure (form) lines, both with 
or without elevation, contour lines, highs and lows. If 
possible, geometric information provided explicitly (e.g. 
normal vector components) should be used. 

Concerning quality, filtering of noise in data should be 
solved adequately. Attributes to each data element 
carrying a-priori accuracy characteristics should be 
taken into account. Outlier analysis (blunder detection) 
is important. However, an automatic blunder elimination 
should be avoided (Wild, 1983). Algorithm sub-classes 
should provide spatially distributed a-posteriori quality 
characteristics. 

Concerning the mathematics applied, algorithms may be 
widely different. There will be a series of vectorial ones, 
such as the linear prediction mentioned (Assmus, Kraus, 
1974). Solutions belonging to raster geometry will 
follow; they may rapidly gain importance - special 
hardware for them is on its way to become standard on 
PC-s, due to the growing interest in multimedia 
technology (array processors: Next Station, IBM PS/2, 
Apple Macintosh; massive paralletity may follow). To 
this realm belong neuronal nets with heuristic solutions, 
or, more realistically, systolic arrays. Hybrid algorithms 
may exploit advantages of both worlds, combining, for 
instance, the topologic capabilities of systolic arrays 
with the numeric precision of vectorial solutions. 

The DTM Sub-Class 'Special Enclaves' 
with Analytic Surfaces and 3-D Objects 

Applying true 3-D algorithms all over a DTM places 
tremendous burden on most computer resources and 
therefore they should be used only when and where 
inevitable. Terrain canopies, sometimes even vertical 
wails, and 3-D objects scattered over the surface 

966 

represent problems for "2,5 D" solutions defining 
locations just by a pair of (x,y) co-ordinates and carrying 
the third dimension (z) rather like an attribute of the 
point. Here, a hybrid solution is proposed, applying true 
3-dimensionality only within special enclaves surrounded 
by breaklines. 

As already mentioned, special enclaves are tiles of data 
with pre-defined "2,5" or 3 dimensional algorithms to 
operate on them. A growing choice of such algorithms 
should be provided, and identified by some names or 
codes to enable referencing them in data sets. 

Instances (data records) of this sub-class can be 
classified as: 

data provided for the enclave to be approximated 
- by analytic surfaces such as a horizontal plane 

or a hyperbolic surface; 
- by restrained surfaces such as minimal surfaces 

or such to fit river basins (Kalmar, 1991) 
3-D objects 
- terrain canopies, vertical walls, 
- 3-D constructs such as buildings or bridges. 

In the case of 3-D objects, a surface should be defined 
to represent, when needed, the continuation of the 
terrain surface passing the object. For this, the ways as 
used outside of the enclave should be used. Instead of 
defining the continuation surface, small enclaves can be 
coded as 'disregardable' for cases when the 3-D object 
is to be ignored (e.g. on a fast perspective view, or 
more characteristically, on an overlay with contour 
lines). 

In special cases, enclaves can become very large to 
carry, for instance, (parts of) a city model. For such 
purposes, complex software should be adapted and 
included in this system as another sub-class (Kager, 
Loidolt, 1989). 

Special enclaves should service the same requests as 
other algorithm sub-classes do. Additional options could 
become necessary in this respect, e.g. of providing the 
perspective image of the object according to 
specifications or providing special ways of access to the 
data for the purpose of editing them. 

Short Notes on Some Other Classes 

The class Graphics Sheets is to build up presentation
quality graphics stored, for the time of on-screen 
customization, as TOPDB tables. While frame 
composition is a direct task of this class, to fill the 
sheet with contents is via messages to other classes 
such as Isolines/Zones/Distributions, or Views. Upon 
such invocations, the user can interact with those 
classes. The graphics stored is then edited and 
customized by invoking the class 'Graphics 
Management' . 

Isolines/Zones/Distributions is an example of a class 
usually invoked from the class Graphics Sheets, it can 
however be invoked directly, as well. This second case 
becomes necessary when results are required in forms 
other than graphics output - e.g. as a stream or file of 
numeric values. 

The class Views is for vector and raster (pixel) type 
visualizations of the DTM including the input data, as 
well (e.g. a perspective view of the latter). The class 
should be capable of superimposing different 
visualizations where applicable (Ecker, 1991 and 
Hochstoeger, Ecker, 1990). 



DTM Algebra applies as operands different DTMs of the 
same area carrying different epochs of the same 
information (e.g. elevation), or different types of 
information (e.g. slope or soil quality models). There 
may be used very complex expressions. This is one of 
the functions of the current SCOP.INTERSECT module 
(Sigle, 1991), parts of which should be adapted as a 
method of this class. Classification is to incorporate the 
second important function of SCOP.INTERSECT 
allowing to classify contents of a DTM according to a 
network of polygons of any complexity (e.g., to classify 
a slope model according to cadastral boundaries). DTM 
Exploration is for compiling (deriving) different products 
of a DTM, by methods such as reported in (Rieger, 
1992). 

It is of mandatory importance to represent results of 
different methods not just as graphics or listings but in 
forms capable of further processing such as, again, 
DTM structures with the derived quantities as z values. 
Slope models are a good example of this, but even 
visibility of the surface from a specified point of space 
(a by-product of the hidden line algorithm of perspective 
views) can be represented as a DTM structure. In this 
case, the elevation difference (negative, 0, or positive) 
should be represented as z, to be added to the elevation 
of the DTM location so to become visible or invisible, 
respectively (Hochstoeger, 1991). 

SYSTEM INTEGRATION 

The classes as described will be integrated into two 
different versions of the DTM system: 

a full-featured version with user interface 
(GUI), command interactive graphics, 
etc., available for some the most important 
platforms (such as PC workstations under OS/2 
2. * and under WINDOWS some major UNIX 
workstations, and and 
a major machine-independent subset of the DTM 
system, mostly for mainframes, with just the 
command language as user interface. 

Both versions will run in three modes of operation: 
interactive mode, 
batch mode controlled by command procedures, 
and 
driver or slave mode, to service requests of a host 
system, without being seen by the user in any 
ways (him seeing just the user interface of the 
host system), and sending all output to that 
system. 

Integrating the DTM system into a greater application 
software environment concerning both input and output 
is of crucial importance. A new edition of the 
Topographic Information and Archiving Software 
(TOPIAS) based on TOPDB is to be integrated into the 
DTM package so to play the role of some foreign 
secretary. Messages in the syntax of standard SOL, or 
better still, of TOPSOL should enable communication in 
both directions. Servicing (TOP)SQL requests by the 
DTM system yields a good example of "lazy 
processing": requesting (SELECTing) an elevation at a 
location (x,y) will result in a message to the class DTM. 
This will check whether there is an interpolated surface 
ready at the location; if not, a message will check with 
the class of input data whether interpolation is possible, 
and so on. After some "small talk" among the classes 
exchanging messages and data, the result will be 
deduced and sent back (as INSERT statements) via 
TOPIAS to the requesting system (which could be a 
user-written program, as well). 

The driver or slave mode of operation provides fine 
means of integration with geographic information 
systems (GIS), with systems to serve analytical plotters 
(e.g. to support data acquisition: progressive sampling, 
editing, image overlay of different DTM products), or 
with interactive graphics systems. 

And furthermore, there remain such means of 
integration as DXF and other file format standards. 
Compatibility with earlier versions of SCOP must be 
ensured by supporting not only the corresponding I/O 
formats but also both databases (DAF and RDH). 

SUMMARY 

An architecture for application software is described, as 
proposed for the new edition of the DTM package 
SCOP. It consists of fairly independent modules 
('autonomous classes'), integrated within an object
oriented frame. Autonomous classes can be 
implemented, in> addition to object oriented 
programming, in classical procedural ways. This 
compromise has major merits at the current state of the 
software engineering practice: it provides fair portability, 
allows for integrating modules of earlier programs, from 
the user's perspective it carries clear signs of object 
orientation resulting in user friendliness, and the system 
is easily extendable by further autonomous classes. 
Some selected classes of the DTM system are 
described. Further important application classes are 
going to be created as important by-products of 
dissertations, the commercial benefits providing the 
student with means for his studies, and the application 
helping to new technology. 

Acknowledgment 

This study has been financed Fonds to Promote 
Scientific Research of the Austrian government, 
Nr P7385-GEO. 

References 

Assmus, E., Kraus, K., 1974. Die Interpolation nach 
kleinsten Ouadraten; Praediktionswerte Simulierter 
Beispiele und ihre Genauigkeiten. Deutsche 
Geodaetische Komission, Reihe A, H.76. 

Ecker, R., 1991. Rastergraphische Visualisierungen 
mittels digitaler Gelaendemodelle. Geowiss. Mitteilungen 
der Studienrichtung Vermessungswesen der TU Wien, 
Heft 38. 

Hochstoeger, F. 1989. Ein Beitrag zur Anwendung und 
Visualisierung digitaler Gelaendemodelle. Geowiss. 
Mitteilungen der Studienrichtung Vermessungswesen 
der TU Wien, Heft 34. 

Hochstoeger F., Ecker R., 1990. Application and 
Visualization Techniques for Digital Terrain Models. 
International Archives of Photogrammetry and Remote 
Sensing, Komm. IV, Vol. 28, Part 4, Tsukuba, Japan. 

Kager H., Loidolt P., 1989. Photomontagen im 
Hochbau. Vermessung, Photogrammetrie, Kulturtechnik, 
Nr.3. 

Kalmar, J., 1991. Diverse Interpolationsverfahren. 
institut fuer Photogrammetrie und Fernerkundung, TU 
Wien. Intern. 

967 

Koestli, A., 1988. Manual for BC FORTRAN. Be 
Software, Bad Canstatt bei Stuttgart. 



Kraus, K., 1992. Analysis of Geographic Data and 
Visualisation of Their Quality. Presented paper, ISPRS 
Congress, Washington,D.C. 

Loitsch, J., Molnar L., 1991. A Relational Database 
Management System with Topological Elements and 
Topological Operators. Proceedings Spatial Data 2000, 
Dept. of Photogrammetry and Surveying, University 
College London. 

Molnar, L., 1984. DTM-Verwaltung: DTMX. Institut fuer 
Photogrammetrie und Fernerkundung, TU Wien. Intern. 

968 

Rieger W., Automated River Line and Catchment Area 
Extraction from DTM Data. Presented paper, ISPRS 
Congress, Washington,D.C. 

Sigle, M" 1991. Die Erstellung von Bodenerosions
gefaehrdungskarten auf der Basis eines DGM. GIS 4, pp 
2-7. 

Wild E., 1983. Die Praediktion mit Gewichtsfunktionen 
und deren Anwendungen zur Beschreibung von 
qelaendeflaechen bei topographischer 
Gelaendeaufnahme. Deutsche Geodaetische 
Kommission, Reihe C, Heft 277, Muenchen. 


