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ABSTRACf: 

Soil spectral properties in the optical domain are related to soil minerals and organic compounds, water content, and soil particle size 
and structure. On the one hand, the understanding of these relationships is the basis for high resolution remote sensing studies of 
soil biophysical properties. 

On the other hand, soil spectral and spatial variability create a noisy background signal hampering the quantitative assessment of 
vegetation in mixed, soil-plant canopies. 

In this paper, we review soil spectral signatures and summarize techniques usable both for soil signal enhancement and for soil noise 
removal for vegetation studies. Both are deemed necessary in terrestrial studies of desertification processes, productivity studies, and 
environmental change studies involving optical remote sensing. 
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1. INTRODUCfION 

The development of environmental applications of optical 
remote sensing has been largely based on intensive studies of 
rocks and vegetation spectral properties. Numerous laboratory 
studies have been performed to characterize the features of a 
large variety of minerals, building the basis for multispectral 
remote sensing of geological structures and ore deposits (Hunt, 
1977; Clark et aI, 1990). 

As vegetation assessment and monitoring is a fundamental issue 
in environmental remote sensing, many studies have been 
aimed at measuring the plant spectral properties. Only a 
limited number of studies, however, have been devoted to the 
assessment of soil optical properties. This is partly due to the 
general opinion that soils are nothing but altered rocks, a 
relatively neutral background, largely masked by the vegetation. 
However, soils are a major component of the Earth surface 
observed by remote sensing. Over large parts of terrestrial 
environments soils are temporarily exposed (deforestation, 
plowing, ... ), or permanently (deserts and arid zones). The 
importance of considering soils in remote sensing of terrestrial 
ecosystems has been recently emphasized (e.g. GRAETZ, 
1990). In this perspective, we will try to give a few trends on 
the contribution of soils in current and future optical remote 
sensing of the environment. 

2. SOIL OPTICAL PROPERTIES 

2.1 Technique: Measuring Soil Spectra 

Current laboratory instruments such as spectrophotometers can 
be straightforwardly used for soil spectral reflectance 
measurements. Soil samples are more readily prepared for 
scanning with a spectrophotometer than rocks or plant samples. 
After air-drying, a simple sieving is generally sufficient for a 
first run. A more rigorous approach requires grinding of the 
soil sample down to a standard grain size. The optical quality 
of the sample holder needs also to be carefully checked. An 
overview of the application of the spectrophotometric 
technique to obtain soil spectral reflectance curves can be 
found in Bedidi et al. (1992). 

In the field, spectral data can also be easily recorded over soils 
with hand-held devices, whereas measurement of canopies 
often require more complex attachments such as cherry picker 
booms or truck mounted cranes. By ratioing the radiances 
observed over soils by the one measured over a reference 
target (compressed halon plate for instance) reflectance factors 
can be computed. 
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The recent advent of new type of portable instrument has 
brought field spectra measurements to a new era (Satterwhite 
and Henley, 1987). After the generation of broad band 
instruments such as portable radiometers, array detector 
technology and high density computer storage of data has 
allowed the development of portable spectrometers. They 
currently perform very satisfactorily in the visible to 
near-infrared range. Newer mid-infrared detectors will allow 
for coverage of the full optical domain in the near future. 
Technically, laboratory spectrophotometers measure the diffuse 
reflectance (they use an integrating sphere) while field 
instruments measure bidirectional reflectance factors which vary 
with the geometry of the sun-target system. In the case of 
soils, this latter effect is obviously more pronounced for soils 
with rough surfaces. Although these geometrical conditions 
affect the apparent brightness of the soils, the spectral shape 
remain almost constant (Escadafal and Huete, 1991a). Thus, 
field recorded reflectance factor curves retain the spectral 
features and can be compared to laboratory spectra of pure 
minerals, for instance. 

2.2 General Trends of Soil Spectra 

An overview of the main types of soil spectra is made possible 
through two sets of laboratory measurements from a series of 
various soils samples from the United States (and Brazil). The 
first series has been studied by Condit (1970) who gave a 
statistical analysis for the set of spectrophotometric measures 
in the 400-1100 nm range. Soils were observed in dry and wet 
conditions, but little is known about the soil preparation and 
the sample holder used, and the original spectra were not 
published. 

More recently, Baumgardner et al. studied a large series of soil 
samples with a spectroradiometer and a stabilized light source. 
The covered spectral range goes up to 2400 nm, but the 
illumination was not diffuse and the samples were wetted for 
'uniformization'. Given these non-standard conditions, this 
series cannot be used as a reference, although it has been 
successfully used for determining the main broad types of soil 
curves (Baumgardner et al., 1985) and soil data dimensionality 
(Price, 1990). 

Figure 1 illustrates different soil spectral curve types frequently 
observed in the visible-NIR range. These spectra were 
obtained using a field spectroradiometer over a series of soil 
samples of various composition (see Huete and Escadafal, 1991, 
1992 for details). The characteristics of the soils cited as 
examples in this paper are reported in Table 1. 
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Fig. 1. Example of soil reflectance spectra recorded with a 
portable field spectroradiometer (after Huete and Escadafal, 
1991. See Table 1 for soil characteristics). 

The first striking feature is that soil spectra vary mainly in 
brightness. This observation led to the concept of the 'soil line' 
discussed below, and to the opinion that albedo is the main 
property of soils when considering their role in the biosphere 
(particularly in global models, Wilson and Henderson-Sellers, 
1987). 

The general variation in shape has been fairly well described by 
Condit (1970). Soils have a reflectance regularly increasing 
with wavelength forming a convex curve in the general case 
(soil KARro on Figure 1). A second type can be described as 
sigmoidal (AVA, CONtine, MOLokai), whereas dark organic 
soil spectra have a convex shape (CLOverspring). These 
spectral features are related to soil composition. 

2.3 Soil Spectra and Soil Components 

2.3.1 Soil Mineralogy As soils are mainly composed of 
mineral grains of various sizes, the spectral features recognized 
in those common minerals are very often observed in soils. 
Absorption bands of carbonates, sulfates and clay minerals have 
been described in the literature (Clark et aI, 1990), they mainly 

occur in the mid-infrared part of the spectrum. Interpretation 
of these features is well developed in geologic remote sensing 
(Le. with Landsat TM data) and can be easily applied to soil 
mineralogy assessment (Mulders, 1987). 

From this respect, it is worth mentioning that soils are rather 
intensively homogenized by the natural fauna and/or human 
activity so that their surface often reflect the inner composition 
of soils, contrary to exposed rocks whose patina or surficial 
alterations may present very different minerals. 

2.3.2 Iron Oxides Iron oxides are alteration products very 
common in soils. These minerals are usually present in limited 
amounts, but they play an important role as they reflect the 
type and the degree of evolution of the soil (pedogenesis) . 
Two main iron oxides are responsible of soil color, hematite, 
giving a red color and goethite giving a yellowish color. Color, 
a criteria widely used in soil classification, is the visual 
manifestation of an absorption. On Figure 2 the curves of iron 
affected soils all show a similar sigmoidal shape due to the 
absorption in the shorter wavelengths. 

Iron-rich soils (CORnutt and MOLokai), show a red color (see 
Table 1) and a typical hematite curve shape, with the 
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Fig. 2. Example of spectra of iron oxide rich soils (see Table 
1 for soil characteristics). 

Table 1. Characteristics of the soil samples used in this study 

Symbol Series Soil Taxonomy Munsell Color(*) %Clay %Sand %Fe %Carb 

AVA Ava mesic typic fragiudalf 5.1 YR 6.0/4.0 31 9 1. 25 0.880 
CLO Cloversprings cumulic cryoborolls 4.5 YR 2.7/1. 5 21 40 2.00 0.930 
COM Comoro thermic typic torrifluvent 4.9 YR 3.6/1.9 5 84 1.60 0.240 
CON Contine hyperthermic typic haplargids 3.8 YR 4.5/3.7 26 52 0.70 0.970 
COR Cornutt mesic ultic haloxeralfs 24.80 0.005 
DAV Davidson thermic rhodic kandiudults 2.9 YR 3.3/4.2 52 25 10.20 0.580 
HOL Holtville hyperthermic typic torrifluvent 4.4 YR 4.4/2.1 41 9 0.90 0.380 
KAR Karro thermic ustollic calciorthids 9.9 YR 6.9/2.3 0.19 1.198 
LAV Laveen hyperthermic typic calciorthids 4.1 YR 4.7/3.0 19 46 0.80 0.005 
MOH Mohave thermic typic haplargids 3.8 YR 4.8/3.6 23 59 0.60 0.630 
MOL Molokai isohyperthermic typic torrox 2.2 YR 2.7/4.0 52 23 12.50 0.740 
NrC Nicholson mesic typic fragiudalf 5.2 YR 5.5/4.0 49 4 2.80 0.005 
PIN Pinaleno thermic typic haplargids 4.2 YR 4.7/3.4 7 71 0.90 0.890 
RED Red Cinders 1. 4 YR 3.1/2.7 2.25 0.110 
SUP Superstition hyperthermic typic calciorthids 4.6 YR 5.7/3.1 2 96 0.47 0.300 
VIN Vint hyperthermic typic torrifluvent 4.3 YR 4.9/2.9 4 82 0.80 0.840 
WHA White house thermic ustollic haplargids 3.9 YR 4.1/4.0 7 79 1.50 0.890 
YUM Yuma 4.8 YR 5.5/3.1 30 2 0.90 1.000 

(*) Munsell color computed from reflectance spectra (see Escadafal et al., 1989 for details on technique) 
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absorption extending to the 550 nm region. The yellowish 
NICholson soil has a more goethite shaped curve absorbing 
mainly in the blue band region. In fact most of the soils show 
intermediate shapes as they are mixtures of skeletal minerals 
(such as quartz, calcium carbonate), iron oxi-hydroxides, and 
organic matter. The 'coloring efficiency' or the spectral effect 
of these different compounds vary greatly with their grain size 
and organization. For instance very low amounts of hematite 
in the form of coatings on quartz grains can produce a very 
vivid red color resulting in a spectrum similar to hematite. The 
White House A soil shows a typical 'mixed' signature of iron 
affected soil darkened by organic matter. 

2.3.3 Organic Matter It is well known that the general 
effect of organic matter is the darkening of the soil. A more 
detailed analysis also shows a modification of the spectrum 
shape whereby soils rich in organic carbon have a very low 
reflectance with a concave curve (soils COMoro and 
CLOverspring on Figure 3). However, this feature is rather 
subtle and vanishes at lower organic contents (HOLtville, 
GRAbe and YUMa soils). It is then difficult to assess the 
organic content of a soil from its spectral curve. 
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Fig. 3. Example of spectra of organic carbon rich soils (see 
Table 1 for soil characteristics). 

2.3.4 Water Content Water is present in soil minerals (such 
as gypsum in some arid soils) but soil water is mainly adsorbed 
at the surface of the grains and in the portal space. The 
quantity of water is highly variable but is of great interest as it 
conditions biomass production in general. Water related 
absorption bands present in the mid-infrared can be partly 
accessed with Landsat TM for soil humidity estimation (Musick 
and Pelletier, 1988). In the visible, the overall effect of water 
is a rather homothetic decrease in reflectance. However, in a 
recent study concerning oxisols from Brazil, Bedidi et a1. (1992) 
showed that the spectral shape of those colored soils (Le. with 
marked absorption features in the visible) is modified by the 
water content level. 

3. REMOTE SENSING OF SOIL TYPE 
AND COMPOSITION 

3.1 Soil Spectral Discrimination 

From the previous discussion it can be summarized that 
brightness is the most dominant optical soil parameter, being 
simultaneously affected by the viewing geometry, the surface 
roughness, the organic matter and water contents. It is then 
generally difficult to retrieve any of these parameters from 
remotely sensed soil albedo. On the contrary, we have seen 
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that the spectral curve shape is more specifically related to 
certain variables and less sensitive to geometrical conditions. 
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Fig. 4. Visible-NIR reflectance variability among soils (soil 
spectra of Figure 1 are normalized to 900 nm to facilitate 
intercomparison of spectral shapes). 

In Figure 4 the brightness information has been removed by 
normalizing the soil spectra of Figure 1 to the NIR reflectance 
(assuming 100% at 900 nm). The differences among soils 
appear more clearly and show that the soil spectral signatures 
vary significantly. This variability has been used for soil 
discrimination in multispectral classification of satellite imagery 
for soil mapping. The spectral features occurring in the visible 
domain are responsible for color variations. In the Munsell 
Color system, widely used in Soil Science, hue (related to the 
overall shape) and chroma (related to the intensity of the 
absorption features) describe the spectral signature, whereas 
value varies with the brightness. Retrieving color information 
from remote sensing data is then a useful technique for soil 
surveying and monitoring (Escadafal, 1989; Escadafal et aI., 
1989; Curran et aI., 1990). 

3.2 Towards a Quantitative Approach 

Our studies have shown that because of the relatively simple 
shape of soil spectra, color can be quantitatively related to soil 
spectral reflectance. Simple models have been derived from 
this approach to assess color from satellite data (i.e., Landsat 
Thematic Mapper), based on the conversion of Munsell color 
into R,G,B coordinates (Escadafal, 1992). 

The soil composition is more difficult to assess. It is possible 
to come up with qualitative information such as 'iron affected' 
or 'rich in organic carbon', but the quantitative approach is 
more difficult. The coming age of continuous spectrum remote 
sensing with imaging spectroradiometers will allow more 
sophisticated data processing such as derivative spectrometry 
techniques, enhancing spectral differences as shown on Figure 
5. 

Currently however, in specific situations such as a certain soil 
type in a limited geographic area, quantitative relationships 
have been established. As an example, combining the 
quantitative relationships established by Torrent et a!. (1983) 
between color and hematite content and the model for remote 
sensing of color with Landsat TM mentioned above, Madeira 
recently proposed a Landsat TM band combination for remote 
sensing of the hematite content of oxisols from Brazil 
(Madeira, 1992). 
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Fig 5. First derivatives of oil spectra series of Figure 1. 

Other more geographically limited examples can be found in 
the literature such as relating soil brightness to organic carbon 
content at a farm level. Unfortunately, these local empirical 
correlations cannot be used for more global remote sensing of 
soil carbon content. 

As stressed above, the spectral influence of a given amount of 
a given soil component varies tremendously with the particle 
size and the distribution in the soil. These characteristics are 
largely related to the soil forming processes and history, or the 
soil class and type. As a consequence, today there is no 
general model relating the optical properties of soils to their 
composition. 

4. SOIL SPECTRAL NOISE IN REMOTE SENSING 
OF VEGETATION 

4.1 Evidence of Soil Noise 

Interest in soil optical characteristics comes not only from the 
possibility of assessing soil types and soil properties from space, 
even if this is in itself an important aspect of remote sensing of 
environment. 

While working at refining the indices and models used in 
optical remote sensing of vegetation, several researchers found 
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that soils have an influence on the spectral behavior of plant 
canopies, particularly when they are incomplete (Ezra et al., 
1984; Heilman and Boyd, 1986; Huete, 1987). Recently, Huete 
and Tucker (1991) found numerous soil artifacts in NDVI 
values derived from NOAA-A VHRR data over the Sahara. 
These alterations of the vegetation signal by the soil will be 
discusssed here under the name of 'soil noise'. 

4.2 Causes of Soil Noise 

4.2.1 Soil Type Influence In most of the indices developed 
for remote sensing of vegetation it is recognized that the 
infrared/red ratio varies essentially with green vegetation 
related parameters, such as density, biomass or percent cover. 
Atmospheric effects can also alter this ratio, but these effects 
are not a feature limited to soils and vegetation and they are 
largely discussed in the literature. Here we will limit our 
discussion to ground-based optical properties. 

The concept of vegetation indices, such as the Normalized 
Difference Vegetation Index (NDVI) implies that soils have a 
constant infrared(IR)/red(R) ratio whereas their brightness can 
vary largely, describing a soil line in the infrared/red reflectance 
data plane. 

NDVI= (IR-R)/(IR+R) (1) 

While looking at Figure 4 it is obvious that this assumption is 
not always true. When compared to the infrared, red 
reflectance values vary largely among soils. As a result, without 
the presence of any vegetation some soils will have higher 
NDVI values than others, producing a 'noise' in the vegetation 
index. This is what is observed in Figure 6 where NDVI values 
have been computed for four different sensors from a series of 
spectra recorded over bare soils. 

Noticeably, this noise is related to the two peculiar curve 
shapes: the sigmoidal curve of iron rich soils and the concave 
curve of organic soils. In the latter case the noise intensity is 
particularly enhanced by the fact that the overall reflectance is 
low. At those low values a slight modification of the IR value 
will lead to a strong NDVI change. 

4.2.2 Sensor Band Width Effect Remote sensing satellite 
sensors operating in the spectral range considered here have 
different band specifications. For a given soil the 'red' and 
'infrared' signals vary with the corresponding band spectral 
windows. For instance, because of broader spectral bands 
encompassing shorter wavelengths, A VHRR has the highest 
NDVI fluctuations over the studied soil series, while SPOT XS 
with narrower spectral bands has the smallest (Figure 6). 
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Fig. 6. NDVI values for four different sensors (A VHRR, Landsat MSS, Landsat TM and Spot 
XS) simulated from spectroradiometric data of different types of soils (see Table 1 for soil 
characteristics). 
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Although these field data derived values do not take into 
account the atmospheric attenuation observed in real A VHRR 
imagery, it should be noticed that the 'noise' level observed 
here is far from totally negligible. 

4.3 Remedies 

Different techniques can be imagined to take the soil spectral 
variability into account when designing vegetation indices. The 
link between the soil spectral shape and the noise is obvious, 
but two different situations must be distinguished. In the case 
of organic soils, the noise is rapidly increasing with the 
concavity of the curve. When using vegetation indices where 
the origin of the soil line is shifted such as the SA VI (Huete, 
1988) the noise of organic soils is diminished. For iron rich 
soils the noise is linked to the sigmoidal aspect of the curve, 
and another correction method can be designed. 

4.3.1 Experiment with Aridic Soils The case of aridic soils 
is interesting as their organic content is very low, they are often 
colored by iron oxides, and they are the dominant spectral 
component of arid environments observed from space, i.e. more 
likely to be a source of noise in vegetation indices. 

Based on simulated TM data obtained from spectra recorded 
over ten aridic soils, a simple noise correction technique has 
been recently proposed by Escadafal and Huete (1991b). The 
intensity of the absorption due to the iron oxides is related to 
a redness index, RI, combining the red and green bands (e.g. 
TM bands 3 and 2) in a manner similar to the NDVI: 

RI = (R-G)/(R+G) (2) 

This index varies with the slope of the steep part of the soil 
spectral curves. It was found to be significantly correlated with 
the NDVI values computed for the same studied soils, that is 
to say with the noise intensity. 

RI = k . NDVI ,with r2= 0.72 (3) 
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The actual vegetation signal in the NDVI can then be 
computed by removing this soil induced signal from the raw 
NDVI values, giving a corrected index, NDVI*. 

NDVI* = NDVI - k . RI (4) 

Although the SA VI in itself already dampens the soil noise 
comparatively to the NDVI, a noise corrected SA VI was 
similarly tested (k was equal to 0.45 for the NDVI and to 0.27 
for the SA VI). 

Figure 7 shows the dispersion of the raw NDVI and SA VI 
values obtained from the data over the ten studied soils, 
compared with the dispersion after noise correction. For both 
indices, the noise amplitude is reduced by about a factor of 2, 
which indicates a doubling of the vegetation index sensitivity to 
low vegetation amounts. 

4.3.2 Application to Satellite Derived NDVI Imagery These 
first interesting results are currently tested with different types 
of satellite imagery over vegetated areas with low vegetation 
cover. The application to Spot or Landsat multispectral data 
is rather straightforward, assuming atmospheric corrections can 
be done properly, and 'pure soils pixels' can be found in the 
imagery to compute the coefficient k. 

NOAA-A VHRR are the most intensively used data to monitor 
the vegetation changes over large areas. They are also the 
most affected by soil noise, notably because of the broadness 
of the bands of this sensor as discussed above. Unfortunately, 
this sensor provides no other visible band to take the soil 
spectral shape into account for soil noise correction purposes. 

However, in an experiment reported in a forthcoming paper 
(Escadafal et aI., 1992) we have merged an A VHRR-LAC 
image with a CZCS image acquired over Northern Africa. We 
have shown that the soil artifacts and noise observed in 
A VHRR derived NDVI data can be corrected using the CZCS 
blue and red bands to compute a redness index as described 
above. 
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Fig. 7. Soil noise correction in vegetation indices: NDVI and SA VI values computed for ten 
acidic soils of Arizona raw: without correction corrected: after noise reduction using the 
'redness index', see text. (see Table 1 for soil characteristics). 
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The current applicability of this last result is limited because 
NOAA-CZCS is no longer functioning, but it might be a good 
test of the next generation of medium resolution remote 
sensing data such as from the NASA-MODIS (Salomonson et 
al., 1990) or SPOT-Vegetation, which will have several visible 
bands. 

5. CONCLUSION-PERSPECTIVE: SOILS ARE NOT 
A GREY BACKGROUND! 

Under the current technology of optical remote sensing, soils 
cannot anymore be considered a neutral background. Besides 
their strong -OH bearing mineral features in the mid-infrared, 
they show important variations of their spectral shapes in the 
visible-NIR range. In the near future, new instruments with 
more bands in this domain (Vane and Goetz, 1988) will allow 
a better assessment of soil spectral shapes and hence of soil 
type and composition. Monitoring of soil surficial changes, of 
water and organic content, of erosion and desertification will be 
facilitated with polar orbiting platforms. The better depicted 
soil spectral variability will have to be taken into account more 
than ever when trying to retrieve data for non-soil components 
of mixed pixels. 

Therefore, new processing techniques will have to be used for 
those high dimensional data sets, such as derivative 
spectroscopy and spectra unmixing (see Huete and Escadafal, 
1991, for an example dealing with soils). A better knowledge 
of soil spectral properties will be needed, which means 
collecting more spectral measurements over soils and 
standardizing the techniques to establish a reference database 
and to facilitate intercomparisons. 

Most of the current simple additive models assume that soils 
are an intimate mixture of different calibrated powders. A 
more realistic approach will have to be developed to modelize 
and predict the spectral behavior of soil from known properties 
such as soil data available in maps or databases. As an 
example, a model for estimating soil spectra from color has 
been recently tested (Esc ada fa I et al., 1990). Independent 
assessment or estimation of soil optical properties will be useful 
for vegetation parameter unmixing. Moreover, it might also be 
a solution to overcome the high variability of soil reflectance in 
the blue band, when using that band for adjusting atmospheric 
effects in vegetation indices such as the one developed by 
Kaufman and Tame (1992). 
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