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ABSTRACT 

This paper presents some preliminary 
resul ts from a serles of investigations 
into the use of texture analysis in urban 
image understanding. High spatial 
resolution satellite imagery of urban 
areas contains much information that is 
not adequately exploited using per-pixel 
classification techniques. The principal 
hypothesis addressed is that detailed 
spatial features may be recognised by the 
analysis of urban morphological texture. 
Resul ts from two analyses are reported. 
First, co-occurrence matrix measures of 
homogeneity are used on a spot 
Panchromatic scene of Harare, Zimbabwe, to 

INTRODUCTION 

In the human visual interpretation of an 
urban image three factors are important: 
tone I texture and context. Tone is the 
colour or shade of any particular element 
of the image; texture is the pattern of 
colour or shade variation and this can be 
observed at a variety of different scales; 
and context is the relationship between 
texture elements. Context is illustrated 
by the identification of a central 
business district which is generally 
achieved by observing the orientation of 
texture in the rest of the urban area. 
Similarly, urban fringe is identified by 
observing the sharp boundary between areas 
of greater and lesser homogeneity. We 
could also say that the urban fringe is 
demarcated by the boundary of areas of 
contrasting tone. In this case we are 
making a textural observation at a small 
scale. 

If the above is a reasonable proposition, 
it can be suggested with some degree of 
confidence that texture and context should 
be powerful concepts when applied to the 
automated, or semi-automated 
interpretation of digital urban images. 
Infact, the analogy may even suggest that 
texture and context should be more 
powerful interpretation concepts than 
tone. 

The importance of texture has long been 
recognised in many applied fields of 
digital image analysis and its 
quantification comes under the more 
general heading of pattern recognition. 
Much of this work had its origins in the 
vision branch of artificial intelligence. 
Thus the analysis of shape and movement in 
robotic vision makes considerable use of 
the measurement of surface texture of 
objects. In medical images, texture 
analysis can help identify structure in 
soft tissue. In earth observation studies 
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predict housing densities stored in a co
registered database. Second a Fourier 
domain statistic is developed to measure 
residential block density and is tested on 
a spot panchromatic scene of Cardiff, 
Wales. The statistic is used to predict 
urban popUlation counts stored in a co
registerd population surface. The results 
demonstrate that useful morphological 
information can be extracted from spot 
panchromatic images using such methods. 

Key Words: Texture, Urban Pattern, spot. 

texture measurements have been used to 
identify structures in the lithosphere 
(for example Saraph and Inamdar 1982), 
hydrosphere (for example Eppler and Farmer 
1991), biosphere (for example Mauer 1974) 
and the atmosphere (for example Welch et 
al 1990) . Considerable work has been done 
on urban images by digital 
photogrammetrists and defense agency 
scientists applying pattern recognition 
techniques to the task of identifying 
individual building structures (Huertas 
and Nevatia 1988), ie. at a large urban 
scale. Much less work has been done on 
quantifying the intuitively meaningful 
variations in urban texture at a small 
urban scale. There has been some attempts 
to measure urban texture as part of 
otherwise conventional urban satellite 
scene classification exercises. Jensen and 
Toll (1982), for example, incorporate a 
texture term in the supervised 
classification of urban fringe ground
cover in an urban change detection 
analysis. There has been less effort 
directed towards a systematic search for 
meaningful texture measurements. A good 
example of such work, which explores the 
discriminating power of various texture 
measures at different level of spatial 
resolution is Marceau et al (1990). 

THE TEXTURE-CLASSIFICATION PARADOX 

While texture analysis has found an 
established place in many image processing 
application areas its benefits are 
generally regarded as unproven in the 
field of satellite image interpretation 
(Mather 1987). There is a paradox here 
however, since the same commentators 
typically recognise that intuitively, 
texture should be more important than has 
frequently been demonstrated so far, given 
its role in the human interpretation 



calculus. Indeed, some studies have 
achieved significant improvements in 
classification accuracy using texture 
features (see, for example, Shih and 
Showengerdt 1983). This suggests that it 
might not be the idea per se of using 
texture in satellite image interpretation 
that is inappropriate but the texture 
measures that have been tried. Since there 
are an infinite number of ground cover 
textures that can be characterised in many 
different ways at any chosen scale, it is 
easy to see that the nature of the texture 
measure selected to identify a particular 
phenomenon is crucial. The fundamental 
difficulty is that the problem of finding 
the 'best' texture measure is an 
unstructured one. 

There are two important dimensions to this 
problem: choice of statistic and choice of 
scale. A statistic will characterise a 
texture in one out of many possible 
dimensions. If the objective of the 
analysis is to use texture information to 
classify an image into meaningful 
categor ies, then the most appropr iate 
statistic is one that achieves the best 
discrimination between different 
categories. The notion of a best statistic 
is therefore meaningful only in 
relationship to a particular category 
scheme and different schemes are likely to 
have different best discriminators. It 
might be supposed that for any given type 
of classification exercise, (urban 
landuse, upland vegetation etc) certain 
texture methods will be better than 
others. For some problems, and urban 
classif ication is one of them , it is 
likely that general statements about best 
discriminators will only hold for limited 
geographical areas. The texture of ground 
cover in a commercial area or a newly 
developed urban fringe area in South-East 
Asia, for example, is likely to be 
significantly different to equivalent 
areas in Europe and best discriminators 
need to be explored for both locations. 

Just as important as the choice of 
statistic is the choice of spatial scale 
at which the statistic is measured 
(Marceau et al 1990). At one extreme we 
can imagine an image window just one pixel 
square in which no texture measurement 
(and therefore no discrimination between 
areas) is possible. As the size of the 
window is increased different levels of 
regularity will be captured within it, 
starting with repetitive patterns 
associated with building arrangement and 
progressing to patterns related to 
building lots, local roads, city blocks, 
arterial roads and so on. The general 
proposition implied here is that the scale 
at which texture is measured must reflect 
the scale at which significant texture 
appears. Significant texture can be 
defined as texture which is likely to 
contribute to the discrimination between 
meaningful categories in an image. 

In a 10m resolution spot image of a city 
scene it might be hypothesised that 
significant texture begins to appear with 
window sizes that exceed the dimensions of 
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the smallest type of housing lot. 
Extending this it may be hypothesised that 
discrimination between different types of 
residential areas may be achieved with 
window sizes ranging from the smallest to 
the largest types of housing lots. The 
lowest level of urban texture that may be 
examined, therefore is at the housing lot 
scale. This will be an appropriate scale 
of texture analysis if the objective is to 
classify an image into areas of 
homogeneous housing types, ie. into 
residential neighbourhood categories. If 
the interest is in broader categories of 
urban landcover type (residential, 
commercial, industrial; residential areas 
by age or style; categories of urban 
fringe etc), then it may be hypothesised 
that significant texture will begin to 
appear when window size exceeds the 
typical spacing of local distributor roads 
(or the width of city blocks). Above this 
there are any number of scales at which 
texture may be meaningfully measured. At 
the smallest scale, windows that embrace 
whole urban areas may support statistical 
comparisons of different towns using 
texture measures that are sensitive to a 
town's compactness, linearity, radiality, 
nodality and so on. Batty's measures of 
the fractal dimension of city boundaries 
is of this nature, albeit the measures are 
of lines not surfaces (Batty 1991). At 
this scale, however, we have ceased to be 
interested in urban texture as an aid to 
urban image interpretation; using it 
rather as means of quantifying urban shape 
and informing speculation about the 
relationship between shape and process. 

The remainder of this paper reports on two 
exploratory studies which systematically 
investigate the possibilities of texture
based urban image interpretation. 

IMAGE-DOMAIN MEASURES OF URBAN 
MORPHOLOGICAL HOMOGENEITY 

Four types of texture measure are applied 
to a spot panchromatic scene of the city 
of Harare and summary statistics 
correlated with ground-truth information 
held in a GIS layer registered to the 
satelli te image. The GIS data record the 
density of housing for residential suburbs 
and the assumption is that there is a 
signif icant relationship between measured 
housing density and image texture. If 
this hypothesis is supported for any 
particular texture measure then it may be 
assumed that the measure can be used as a 
tool in the interpretation of urban 
images. The study limits itself to 
establishing the discriminatory power of 
the texture measures; it does not test the 
performance of the measures in 
classification. 

The interpretive power of texture is 
examined within the framework of the 
hypothesised {tone,texture,context} 
calculus. This is done using a linear 
model in which housing density is 
expressed as a function of the three types 
of explanatory variable [1]. 



[1] 

Where: Di=housing density for sub-image ii 
B1i to B7 i =mean grey-level values on TM 
bands 1,2,3,4,5 and 7 for sub-image i; T1i 
to T3 i =texture measures for sub-image i; 
and ci=a context measure for sub-image i. 

The model assumes that residential density 
can be predicted on the basis of tone and 
texture information derived from satellite 
imagery together with subsidiary context 
information. If this is the case, then the 
continuously-measured predicted density 
variable may be used to create a density 
surface at any level of aggregation. Fine 
aggregation categories will produce a 
finely differentiated residential land
cover classification. 

Data and Methodology Four databases are 
used in the study: spot panchromatic and 
Landsat TM digital satellite images of 
Harare, zimbabwe; digitised administrative 
boundaries of Harare; and housing density 
statistics for the administrative suburbs. 

A sample of 47 suburbs was selected, 
stratified to achieve an approximate 
balance between high, medium and low 
density housing suburbs in the analysis. 
47 sub-images of 30x30 pixels were 
extracted, one from wi thin each sampled 
polygon. The size of the sub-image 
corresponds approximately to the 
dimensions of the largest housing lots in 
the city. The sub-images were located so 
as to capture the characteristic texture 
of the residential areas within the 
Suburbs, ie. avoiding obvious areas of 
open space. For each sub- image, measures 
were derived for tone, texture and 
context. 

(i) Tone six tone variables were defined 
by recording the mean grey-scale values on 
each of the Landsat TM bands: 

Bn= (~ r i) I 900 

1.=1 

(n=l to 5,7) [2 ] 

(ii) Texture Three types of texture 
measures are used: urban pixel density, 
Haralick's homogeneity statistic (f1) and 
entropy (E). The first is derived from the 
grey-scale frequency distribution and the 
other three from the grey-scale joint 
probability distribution (co-occurrence or 
P matrix) defined as: 

P(i,j,d,t) [ 3 ] 

where P=probability of grey-scales i and j 
occurring at distance d and angle t. 

Urban pixel densi ty A grey-level 
frequency statistic that has been used in 
several urban applications is urban pixel 
density. Although this is measured in the 
grey-level frequency domain, it should be 
thought of as recording the general 
urban/nonurban texture in the image plain 
(a specific measure of variation). 
Measured as the proportion of all pixels 
classified as urban land-cover: 
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[4] 

it may be thought of a simple measure of 
homogeneity of urban land-cover. It is 
cruder than the homogeneity measures 
derived from the P matrix, however, since 
it does not capture the pattern of 
aggregation of urban pixels. It cannot 
differentiate, for example, between an 
image with a few large clusters of urban 
pixels and an image with the same 
proportion of urban pixels but where those 
pixels are scattered more evenly. 

Homogeneity (fl) The f1 measure of image 
homogeneity is derived from a P matrix by 
measuring the sum of squares of the matrix 
entries. The statistic takes on higher 
values for textures in which there are a 
few dominant grey-scale transitions and 
the P matrix therefore has a small number 
of large P values. It is expressed by the 
following: 

f1= t t (P(i1j ,d1t»2 

l.=rn 1.=rn R 

[5 ] 

Where: 
R=is a normalising factor which equals the 
number of pixel pairs used in the 
calculation of f1i Min=minimum grey-scale; 
and Max=maximum grey-scale. 

Entropy Entropy is a commonly employed 
measure of variance in data. Applied to a 
P matrix using [7], it gives higher values 
when matrix entries are equal and lower 
values when they are unequal. This is 
therefore another method of measuring the 
homogeneity/ heterogeneity of an image. 

E= -~P(i,j,d,t) 10g(P(i,j,d,t» [6] 

The P matrix methods of recording texture 
were applied in three different ways. 
First, the statistics are derived for an 
entire matrix of 256 grey-levels: 

P(i,j,d,t) (i=l. .256, j=l.. 256] [7] 

thus measur ing texture over all grey
scales within a window. Second, they were 
derived for a partition of the full P 
matrix defined as: 

P(i,j,d,t) [U<i<256, U<j<256] [8J 

where U is a threshold value above which 
grey-scales are assumed to represent 
ground-cover of a broadly urban nature. 
This effectively measures the texture of 
the urban part of each window. Third, they 
are derived for a re-classified binary 
image defined as: 

P(i' ,j' ,d,t) [i f =1. .2, j '=1. .2 J [9J 

where: 
i'=l if i<u and i'=2 if i>=u; 
and j'=l if j<U and j'=2 if j>=U. 



Co-occurrence statistics were computed for 
the urban part of [10J only, thus 
measuring the texture of the monotonic 
urban surface. The expressions for f1 and 
Entropy under these circumstances simplify 
to: 

( 

P(2,2,d,t) ) 2 
f1-

P(2,l,d,t)+P(2,2,d,t) 

[10J 

Entropy= -P(2,2,d,t)log(P(2,2,d,t» [llJ 

(iii) context A single context measure is 
used: distance from city centre. For each 
of the 47 sub-images the Euclidean 
distance between the sub-image's centroid 
and a point taken to be the centroid of 
the Central Business District is measured. 
This expresses the theoretical notion that 
density of development falls off towards a 
city's periphery. 

Resul ts We present for illustrative 
purposes the results from an analysis 
using a P matrix defined as in [9] and f1 
and E measures defined as in [10J and 
[11 J. Expression [1] was calibrated over 
all 47 windows. Fo~ each, housing density 
and distance were retrieved from the GIS 
attribute table; percent urban was 
measured from the panchromatic layer; f1 
and E were measured from the P matrix of a 
classified binary panchromatic layer as 
defined in [9J; and B1 to B7 were derived 
from the 6 respective TM layers. 

The results, summar ised in Table 1, are 
interesting for a number of reasons. 
First, all three texture measures have a 
significant amount~f predictive power, 
each individually explaining approximately 
70% of the variance in housing density 
between suburbs. Second, when the full 
model as expressed in [1] was run, the 
significant explanatory terms are %urban 
(panchromatic) and TM band 4, ie. a 
mixture of 'tone and ' texture' but not 
context. An even better fit is achieved, 
however, using f1 (panchromatic) and TM 
bands 5 and 7. This model (Table 1a) 
explains approximately 80% of the variance 
in housing density between suburbs. It 
should be recalled that f1 is a normalised 
measure so that its size is independent of 
the absolute number of 'urban' pixels in a 
sUb-image. This strongly supports the 
contention that texture is important in 
urban image interpretation. This is all 
the more significant when it is considered 
how the housing density data were created. 
The density values were computed at the 
suburb level with open space included in 
the denominator term and are therefore 
gross dens i ty values. Texture was 
measured, however, for sample areas 
displaying characteristic residential 
pattern, excluding significant areas of 
open space. There is apriori reason to 
believe therefore that texture should 
display a stronger relationship with net
housing density than with the gross 
housing density figures used. 

That the context variable did not enter 
the model is not surprising since the 
highest density suburbs in Harare are not 
concentrated around the city centre, but 
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rather towards the periphery in one sector 
of the city. It could be 
attain greater importance 
displaying more conventional 
landuse patterns. 

expected to 
in a city 
monocentric 

TABLE 1 PREDICTING HOUSING DENSITY 
WITH MEASURES OF IMAGE-PLANE HOMOGENEITY 

(a) Density=f(fl) 

Variable T 
fl 10.487 

Multiple R=0.8424 
Adjusted R2=0.7032 

(b) Density=f(E) 

Variable T 
E -10.214 

Multiple R=0.8359 
Adjusted R2=0.6919 

sig T 
.0000 

R2=0.7097 

Sig T 
.0000 

R2=0.6986 

(c) Density=f(%urban) 

Variable T 
%urban 10.908 

Multiple R=0.8518 
Adjusted R2=0.7195 

Cd) Full Model: 

Sig T 
.0000 

R2=0.7256 

Density=f(%urban, fl, E, 
Bl •• B6, Distance) 

Variable 
%urban 
B4 

T 
10.378 
-2.352 

Multiple R=0.8697 
Adjusted R2=0.7451 

Sig T 
.0000 
.0232 

R2=0.7562 

(e) Density=f(fl,Bl •• B6,distance) 

Variable 
f1 
B5 
B7 

T 
4.968 

-4.499 
3.251 

Multiple R=0.8974 
Adjusted R2=0.7918 

Sig T 
.0000 
.0001 
.0022 

R2=0.8054 

FOURIER-DOMAIN MEASURES OF URBAN 
MORPHOLOGICAL STRUCTURE 

One way of measuring regularity in image 
texture is to define relevant summaries of 
the image's Fourier transform. A Fourier 
power spectrum records complex information 
concerning the wavelength, amplitude, 
phase and orientation of recurring image 
patterns. The significant features of an 
urban image are essentially linearments 
which recur with varying degrees of 
regularity. Since the linearments are, in 
general, ultimately determined by street 
or block pattern, the regularity will be 
greater wi thin a neighbourhood of 
homogeneous morphology than between 
neighbourhoods. It may therefore be 
supposed that a Fourier power spectrum of 
an urban image will contain information 



about street patterns and may be us~d to 
discriminate between diverse urban 
morphologies. 

We test this supposition using a simple, 
but potentially powerful statistic defined 
by the following generalised algorithm: 

(a) transform image to optical power 
spectrum; 
(b) find spectrum's maximum peak(s); 
(c) find Fourier-space coordinate of 
maximum peak furthest from origin and 
measure frequency by hypotenuse; 
(d) divide image width by frequency, 
taking into account angle of wave-forms, 
to get image-plane distance (u1); 
(e) take this distance to be a measure of 
regular i ty corresponding to street or 
block patterns. 

since a two-dimensional Fourier transform 
is defined as: 

+00 +00 

ff 
-i27rtwx+VY) 

F(w,v)= f(x,y)e dx dy 
-00 -00 

[12J 

the block pattern statistic u1 can be 
expressed as: 

where: D=image width in world coordinate 
distance; 
wmax and,vmax = two-dimensional 
frequencles ~rom F(w,v); 

Data and methodology Two data sources 
are used in this part of the analysis; a 
spot panchromatic scene of the city of 
Cardi ff (June 1988) and a raster ised 
population surface at a spatial resolution 
of 200m 2 . The population surface is a 
modelled distribution of census population 
counts onto a grid 0 It adopts a method 
that achieves an allocation of a given 
population total over space that is 
spatially more accurate than conventional 
polygon mapping (it is less likely to 
'place' people in parks and industrial 
areas, for example, than databases based 
on census tracts). The spot scene and the 
surface are registered to the UK National 
Grid. 

Each population cell corresponds to 400 
spot panchromatic grey-scale values. A 
sample of 25 cells was taken from a 
transect extending from the city centre to 
the low-density suburbs giving a vector of 
25 population counts Pi. The texture of 
the corresponding sub- image was measured 
using u1 (over 400 pixels), forming a 
vector of 25 u1 values u1i. The power of 
u1 in discriminating between areas of 
different residential density is tested by 
regressing Pi against u1io 
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Results The success of u1 in capturing 
distinctive block regularity can be gauged 
by comparing it with the actual inter
block distance measured from a large-scale 
map. In addition, the or ientation of 
streets on the map can be compared with 
the orientation of u1 in frequency space. 
This is easily observed from the optical 
power spectrum but can also be 
approximated by the slope of the line 
joining F(w,v)max to the origin, given by: 

[14J 

The relationship between Fourier 
statistics and ground truth information 
from a map' is illustrated in Tabel 2 for 
three 200m2 cells representing distinctive 
neighbourhoods. 

TABLE 2 RELATIONSHIP BETWEEN FT MEASURES 
AND GROUND-TRUTH DATA FOR THREE SAMPLES 
REPRESENTING HIGH, MEDIUM AND LOW DENSITY 
NEIGHBOURHOODS 

u1 
(from FT) 

Inter block 
Distance 
(from map) 

Frequency 
(from FT) 

No. of rows of 
houses 
(from map) 

Orientation 
(from FT) 

orientation 
(from map) 

High 

70m 

65m 

4 

4 

E-W 

E-W 

Med. Low 

46m 24m 

45m 25m 

6 12 

6 10 

NW-SE NW-SE 

NW-SE NW-SE 

Table 3 shows the results of regressing 
population against u1. Approximately 70% 
of variance in popUlation is explained by 
u1 alone. This is a promising result when 
compared to the Harare analysis where the 
best texture variable in [lJ accounted for 
little more than 50% of variance on its 
own. This illustrates the potential of 
texture measures that record the 
regularity in urban linear features and in 
particular, of Fourier-domain statistics 
which give orientation-independent 
statistics. 

TABLE 3 CORRELATION COEFFICIENT FOR A 
REGRESSION OF POPULATION ON u1 

R 
R2 
Adj R2 
F 
Signf F 

0.85912 
0.73808 
0.72669 
64.812 
0.000 



Conclusions 
Our exploration of two approaches to 
extracting textural information from urban 
imagery demonstrates both the problem and 
the potential of such an endeavour. The 
problem is, by nature, an unstructured one 
and there are few clues about how best to 
reduce the solution space. The importance 
of the arrangement of linear surface 
features in aiding visual interpretation 
of analogue maps is one such clue. Another 
is the intuition that different urban 
areas will have characteristic ground
cover homogeneity. Even then, there are 
many different ways of measuring a 
hypothesised type of regularity. Having 
discovered a method with discriminating 
potential, there is the risk of refining 
it for specific morphologies until it iSI 
no longer a general tool. . 

For these reasons, we are encouraged bi 
the results reported here. The P matrix 
measures of homogeneity demonstrate that a 
simple measure of 'clumpiness of 
development' can modestly but 
significantly improve upon the 
discriminating power of grey-level values 
alone. The Fourier domain u1 measure of 
'street/block spacing' appears to be even 
more powerful. Its attraction lies (a) in 
its ability to capture the visually most 
striking textural features of an urban 
image, namely street or block patterns; 
(b) in its ease ,of interpretation (u1 is 
expressed in world-coordinate distance); 
and (c) in its robustness. It is robust in 
that a given morphological pattern will, 
in principle, produce the same u1 
statistic whatever the orientation of the 
streets and whatever the position (phase) 
or size of the window. u1 is orientation
independent because it is defined by 
extending an arc from the origin of the 
optical power spectrum and searching for 
the furthest maximum peak in any 
direction. u1 is independent of the 
position of the window in relation to the 
street pattern (ie its value will remain 
the same as a window is shifted accross an 
image as long as the frequency of streets 
remains the same) because the FT power 
spectrum is phase-shift independent. u1 is 
independent of window size because it is 
expressed in world-coordinate distance 
units by standardising the significant 
street/block frequency by the world
coordinate dimension of the window. 

The findings have significance for a 
number of lines of inquiry. First, they 
demonstrate the potential of using texture 
in image classification; as a supplement 
to per-pixel approaches, or as part of 
hybrid classification techniques. Second, 
they have relevance to the development of 
tools for the extraction of complex 
objects in urban GIS (Webster et al 1992). 
Third, they demonstrate the utility of 
integrating RS data with other urban data 
in co-registered GIS layers. Although we 
use the the high resolution population 
surface (Bracken and Martin 1991) in the 
Cardiff analysis as a source of ground
truth data, we have also explored the use 
of image texture, in refining the model 
population surface; a problem that 
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suggests some form of iterative movement 
towards an optimum solution. 
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