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INTRODUCTION

A photogrammetric observation may be contaminated by three types of
errors = random errors, systematic errors and blunders. This paper
deals with the basic principles of the numerical treatment of blun-
ders and systematic errors and their interrelation. Random errors
being in practice considered relatively harmless are, in addition to

that, supported by extensive theory. In contrast to that, systematic
errors and blunders are neither considered harmless nor are they
treated theoretically to a sufficient extent. Photogrammetric prac-
titioners have, in the past, developed certain skill in the treat-
ment of those errors based mainly on experience, insight and common
sense. None of these prerequisites for successful error treatment 1is
easy to acquire. Due to the successful application of computer,
photogrammetry has relatively quickly transferred from basically
analogue to digital methods. The old manual treatment of errors has
become too slow, too tedious able spe and power
of computers nead to be exp only those
decisions where insight, intuition or additional ation are

"

is to dinvestigate the prac
treatment of blunders and sy
- 1

ment. Howaver, in order to i shall not
discuss any particular algorithm: T implementatic r computa-
tional efficiency. It must be mentioned, hov these prob-
lems can easily be handled ; : s of compu-

ters.
ERROR MODEL

The philosophy of blunder treatment depends strongly on the mecha-

nism by which the blunders are believed to be generated. We shall,
for this purpose, adopt the model proposed by Kubik {%E; however, in
a slightly modified form. Fig. 1 illustrates the main properties of
such error distribution. The random error £ is um to be approx-
imately normally distributed within the interva blun-
der may be defined as an error, which does not belong within the

t is comsidered to be a contaminant and does not
belong to the same distribution as €. The assumption that the dis-
tribution of blunders 1is unknown seems to be the only realistic
alternative.
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Figure 1
FUNCTIONS OF OBSERVATIONAL ERRORS

The treatment of blunders specifically 1in adjustment procedures
arouses the greatest interest in photogrammetric practice. The basic
mathematics in such situations is well known and extensively treated
elsewhere (see [10], [15]). The relationship between the vector of
residuals v computed after adjustment and the "true” observational
errors is given by the formula

v=0Q

Q=QqQWw

jo

€3]

which is valid generally for any type of least squares adjustment.
The matrix Q represents the cofactor matrix of residuals and W is
the weight coefficient matrix of observations. The characteristics
of matrix Q are known = it is a singular idempotent matrix (Q = QQ)
whose rank is equal to the number of redundant observations and
whose elements are all smaller or equal to 1. The functions of ob-
servational errors used in blunder detection procedures are:

1. Residual: vy
The relations between residual and observational errors are given
in formula (1).

2. Swept residuals: zy = vi/qi4 (2)
Such a residual represents the "natural” estimation of observati-
onal error e4. Assuming that the observation 1; did not take
part in the adjustment, but the results of such adjustment allow
the computation of a value, which replaces 1y, say Ti, then
the follow}ng may be written:

ry =1; -1
3. Variance: s? = (v'Wv)/r (3
4, Standardized residual: w?j; = v%;/qiy (4)

5. Standardized average residual length: WZS = XESQBXB/b
where wg is a (b x 1) vector comprising a selected combination
of individual residuals, and Qg is a (b x b) submatrix of Q
obtained by elimination of all rows and columns except those
corresponding to the selected residuals. Obviously the standardi-
zed residual is a specific form of the standardized average resi-
dual length when b = 1.

6. Reduced variance: 528 = (r g2 - bwza)/(r - b), (6)
which represents the variance, in the case when a group of obser-
vations B has been removed from the adjustment. Obviously, sg
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MASKING EFFECTS

The possible difficulties in detection and especially location of
blunders may be easily demonstrated with help of expression (1). It
shows 1in the first place that the vector g 1is irrevocably lost
because Q 1is a singular matrix. The vector v contains the whole
information about g, but each element of v is a function of, in
principle, all elements of £. In all test statistics we use residu-
als vy. The combined effect of all members of € on each vy is
unpredictable, especially in the case when contaminants are present.
The effect of this is that in v the blunders may be masked. Analy-
sis of the masking effects is the first prerequisite for successful
treatment of blunders.

Masking effect l: Contaminated variance

All test statistics treated up till now have been scaled by the
variance s2, which 1is estimated with the help of a given sample.
There is no doubt that sz, as defined in (3), is an unbiased and
sufficient estimator of variance o?. However, if £ is contaminated
by blunders s2 tends to be too large, which than affects all ratios
involving s2,

In order to demonstrate this effect we may introduce in (7) the
value s2 as expressed in (6a).

92 = r wl/[(a-1)s? + wl] (8)

Note that wy is present in both denominator and ,numerator. As
€4+ « then wy> = while sj; does not change. So w;> 1 and the
probability of rejecting wy approaches zero. The rate with which
%1 approaches 1 depends on the redundancy. The smaller the redun-
dancy the more severe are the effects of masking. Larger numbers of
contaminants (blunders) shall also increase the masking effect.

Masking effect 2: Blank range

The second masking effect becomes apparent when inspect11 the
expression (1). If any q;4 is very small than, because q4 Zq 3 all
elements of i*®column of Q are also very small. Therefore the lnflu-
ence of €4 on vector v becomes very small and may become negligib-
le. With the help of (1) we may express vj, wy and 2y as
functions of €4 and neglect £j, j # i :

Vi = agiey/s, Wy = eyvEyy/s, 2y = gys &
where s is considered constant.
Obviously in Wi and especially in vl the influence of error
€y 1s substantially reduced and only in Zi is it revealed in its
full amount. As qii+0 the influence also tends to zero.
But even 1f all qi4 values are acceptably large it may happen
what some groups of large observational errors vanish in the results
of adjustment. The analysis such as above may be also completed with
help of WB and (1). The submatrix Qg plays, 1in this case, a
central role - especially its minimum eigenvalue Api,.
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Generalizing we may say that 1f Agyp of a submatrix Qg
approaches zero the influence of the corresponding group of observa-
tions on residuals tends to zero.

Masking effect 3: Rank disorder

For the location of blunders generated according to the model given
in fig. 1, the rank ordering o nal errors accordiag to
the absolute value (jegp € [ ') is of special interest.
Because the observational errors are inac sible we are interested
in how far the test statisti §i or Ei reflect the rank

b
o]
&
7]
1]
=]
<
P
a3
e
O

(]
1]
]

its ¥4

order of £35. Even a simple inspec ! ession (1) makes it
obvious that only when all diagonal elements of Q are equal to 1,
the rank order of original errors 1s reproduced in all test statis-
tics. In all other cases it may be distorted. Simulation with adju-
stmant of 70 normally distributed s%sezv&t;eﬁs it}lGdQGS repetitions
has shown that the probabllity that gi} and ;sii simultaneocysls
reach maximum values does not exceed 30%. For 557 and fsif
similar results have been obtained. Even the statésties differ among
he largest }% corrrespond to

- ' rna

o

themselves. Not infrequently does L
the smallest @iT. However, a !

(@i shall reach a maximum also T
blunders increases the above mentioned probability decreases.

iy

The masking effect 1 is actually the only one which can be practi-
cally and successfully treated at little expesnse. Instead of the
4
.

¢4, which is, naturally, free of influence o
variance is, moreover, known for the majorit
procedures. Quality control is, anvhow, the o 3
the production environment. It is worth noting that only a f
authors recommend the use of s2 o ‘ 1

There are alsc some other
variance, but they are all
For example, one can compute
with b larger than the larges

the minimum sg as a scalin o

so called backward replacement dis
entitled "Treatment of masking effect
always assume that external varianc

er
permlts the test on s%. So we may rede

= , = = Ty = s ]’
vy vy/o, s s/o, Wy = wy/o

= H . =w./a = = = /=~
Zi = Zi!(j’ WS = dgiug 38 = Dgi'\_)




TREATMENT OF MASKING EFFECT 2

As discussed earlier the masking effect 2 depends on the structure
of matrix Q. The larger the diagonal elements, the smaller the mas-
king effect, The structure of matrix Q depends on the design and
arrangement of observations. This stresses the importance of
adequate planning of observations for the treatment of the masking
effect 2. Numerous papers deal with this problem (e.g. [4], [5],
{IO]). However, during the planning of observations we do not have
complete freedom and when the adjustment starts we have to deal with
the existing situation. The size of the masking effect 2 does not
depend only on the structure of the matrix Q, but also on the tole-
rance accepted for the test in question. For example, for the test
Wi<t] we could make the t value arbitrarily small and reduce the
masking effect to that arbitrarily small amount. Why we actually do
not act in such a way is obvious = as t+ 0 the probability that the
observations shall be discarded tends to reach certainty, no matter
whether the blunders are present or not. The selection of tolerance
t becomes, in such a way, a problem of optimization: How does one
reduce the masking effect and at the same time minimize the probabi-
lity of the rejection of good observations? Tolerances may be found
in x? tables after the significance level oy has been selected.
The conventional 1interpretation of the significance level 1is as
follows: in 100 (l=ap)% of cases the test shall discard an obser-
vation although it is not wrong. However, because the error distri-
bution 1in reality is not exactly normal, statements such as the
above should be read with caution. Simulation of random errors
according to the model given in fig. 1 shows that the above estima-
~ tion is conservative if the tails of the distribution are not too

heavy. The other factor in optimization of t is traditiocnally given
in the form of Bg - the probability that blunders stay undetected,
so Bg actually controls the masking effect 2. The selection of
Bop together with ag allows for the determination of so called
the boundary wvalue GO/tii with the following interpretation: the
boundary value represents the magnitude of error which can just be
detected with the probability B8g- Such a glib formulation is
probably of little use to a practitioner, but it 1s difficult to
find anything better. Anyhow, optimization procedures become clear:
by increasing t the probability of rejecting good observation
decreases, but the masking effect increases and vice versa. For the
one dimensional test, t should not be smaller than a as defined in
fig. 1. In place of the boundary value the so called blank range
{see [15]) may be used where:

myg = (1-/l=qyy) £1/Vq4
or generalized for the Wy test where:

mg = (1 + /l-kmax) tp / Anin
The blank range my may be interpreted as follows: m; represents
the magnitude of a blunder, starting from which it shall almost
certainly be detected provided there are no more blunders. In order
to test the blank range, an adjustment was simulated with 70 random
observations according to the model in fig. 1.
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A blunder was also simulated having the magnitude of the blank range
(for ap = 0.001 and qq43y = 0.75,my = 4.87/0.86). In over 99%
of all cases the blunder was detected. As a comparison the boundary
value of 4.87/0.86 corresponds approximately to By = 94%, obvious~
ly too conservative a value. Anvhow, as already mentioned, duriag
the blunder location procedures we cannot influence the masking

effect 2 but only control it by issuing a warning when the magnitude
of the blank range becomes too large.

TREATMENT OF MASKING EFFECT 3
e rank disorder is the most disturbing of all masking effects.
While the first masking effect can easily be eliminated and the
nd controlled the third effect is completely unpredictable.
tion of this fact has been why sometimes no attempt is made
locate blunders, but only to detect them., The responsibility for

3

0
lunder location is than shifted to the operator, who 1s then forced

ook

H

to use alternative blunder location mathods: measurements, scrutiny
cf field books, insight, hunch, etc.

Classical data snooping developed by Baarda ég} is a typical example
of such a methoed. Here we have to deal only with the first two
masking effects and the formalism of statistical hypothesis testing
is sufficient. However, although procedures such as this in many
situations fulfil regquirements, it is obviously desirable to use the
power of the computer to locate blunders and relieve the operator
from tedious searching. In such a case the above mentioned testing
formalism is no longer sufficient. It has to be complemented by some
additional rules. _

The most obvious idea 1s to take the largest ¥;, W3 or zj; to
indicate the most suspect observation. Xraus LS} was probably the
first to suggest maximum %; as a blunder locator. Later a stepwise
procedure based on this 1dea became guite popular under the name
forward elimination. After the observation with the largest wi is
eliminated the adjustment 1s repeated, and the new maximum %y
found, until no Wy exceeds the tolerance.

The masking effect 3 is the obvicus reason why such a procedure is
nct completely satisfact T tions may easily be
eliminated, because wy does not follow the rank order of g; and
this 1is, of course, highly undesirable. Even the hope that, among
good observations, all blunders may be aliminated is not justified.
In the case of Iittle redundancy if may easily happen that after the
elimination of some good observations the blank range for actual
plunders assumes such a large value that it becomes undetectable. As
a result of the economization on the number of observations the
photogrammetric adjustments are wusually characterized by small
redundancies. So the procedure may end up with the most embarassing
result: the elimination of good observations and the acceptance of
blunders. The tables 2 and 3 in Appendix illustrate such a situa-
tion.

In order to justify the above procedurs one could estimate the prob-
ability of such an unsuccessful outcome, which as we intuitively
feel, would be extremely low. However, on the other hand, it is
probably more appropriate to consider the "weakest 1link” when judg-
ing such procedures.

An attempt to avoid the troubles caused by stepwise procedures is
PR 4 [ . 1

the so called Danish method (see [7]), which uses the complete set

of observations throughout the whole location procedure.

.
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Actually several adjustment runs are completed and in each run a new
set of weights is introduced. The weights are usually proportiomnal
to residuals from the preceding run. The procedure 1s stopped when
no further change is significant. Without a thorough analysis it is
difficult to clarify whether such a procedure actually eliminates
the effect of rank disorder. However, intuitively it seems difficult
to believe that any weighting system based on residuals may do that.
Obviously, some good observations may easily get weights larger than
those assigned to blunders and vice-versa. Practical tests (see [6},
[12]) reveal, that failures, indeed happen.

Benciolini et al. [2] propose the method, which may be termed back-
ward replacement, and use s? as the scaling factor. At first the
forward elimination is completed with fixed number of eliminations.
The number of eliminated observations should be larger than what is
believed to be the maximum possible number of blunders. It is hoped
that in such a way a residual set of observations is obtained which
is blunderfree. This fact 1s exploited to compute the blunderfree
variance, sgp+ Starting from this set the eliminated observations
are reinserted in the sequence opposite to their elimination. The
procedure 1is stopped as soon as the value Wi/SO exceeds the
tolerance. Obviously the procedure does not change anything in the
rank order of wy values. Consequently, it delivers the same
results as forward elimination provided ¢ is used as scaling factor.
Therefore the backward replacement may be recommended only in cases
when the external ¢ is not known.

An attempt to eliminate the masking effect 3 is the procedure propo-
sed in {15], which may be termed selective elimination. Only those
observations or groups of them which simultaneously satisfy
Wg»t, and Sg<tr., may be identified as blunders. The
rank order does not play any role in such a definition. One should
start by checking each individual observation (b = 1). If no obser-
vation satisfies Sy<ty.; it may be concluded that more than
one observation is erroneous. The test should be continued for all
combinations withOut repetition of two observations (b = 2), then
for three observations, etc. As soon as a group satisfies the blun-
der definition the members of the group are excluded from further
testing but the test is continued for other groups of the same size
and even for groups of larger size. It may happen that several non-
overlapping groups satisfy the blunder definition. Then it is not
possible to distinguish which of them are erroneocus without
additional information. The tables 2, 3 and 4 in Appendix illustrate
this. This method has the following advantages that it does not rely
on the rank order of the statistics and it uses the full observation
set in all tests.

PERFORMANCE OF THE PROCEDURES

We may 1list three measures of performance for blunder detection
procedures, which may be of practical importance:

1. 8 - the probability that test incorrectly concludes that
there is a blunder.

2. By = the probability that the test incorrectly concludes that
there is no blunder.
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3. B3~ the probability that the test incorrectly locates the blun-
der given that it correctly concludes that there is a blunder.

Although a discussion of those measures would be a ver:
topic, we shall not attempt this in order to shorten th

THE PHILOSOPHY OF BLUNDER LOCATION IN PHOTOGRAMMETRIC PRACTICE

The optimality of blunder location wmethods in any production
environment depends on many factors: The available equipment, the
available software, the professional level of personnel, the methods
of production, etc. Because these factors vary from place to place
an attempt to establish a general recipe for the solution of the
blunder problem seems an impossible task. Therefore we shall only
discuss the general trends and their possible impacts. One such
rend 1s the application of powerful

tr i i I computers in photogrammetric

prac iat be~-

come fion

seen lica~-

tion I

1. A large number of combinations have to be tested. This is true
egpecially in the case of multiple blunders and numerous observa-
tion. But even in the case of hundreds of thousands of combina-
tions, it 1is not the number which matters, but the speed with
which combinations may be scanned, and this is remarkably high.
Moreover, veduction to only one adjustment run saves a lot of
computations too.

2., The masking effect 2 for 85z may reach g 2.
The simulation shows that for r = 30, a = 0.001 and q44= 0.75
the blank range amounts to 9¢. However, Sg only used to test

ations not inclu-
obs

:
geyvations ar

ded in the group B. In add
g
also scanned for Wa

Wy, wh mue ensitive.

The smaller adjustment problems (such as relative and absolute
orientation) can easily be extended to include automatic blunder
£ po ! al triangula-

pe: a ally accepted,

that the blunder tests have to be executed not only after the final
ad justment but also prior to it. For this purpose the whole block
may be subdivided into 0 bundles, models, tri s
strips, i in each subunit ind -
ally. eals with a smaller r
of blun iency, even in the ¢ £
automatic a way the blunders may be

detected Y f I : the whole triangulation proce-
dure may be shortenead The fact that the blank range of 3g
increases i t ! oblen i arge
systems. of
observatis d.
Sometimes it is recommended that the photogrammetric observations be
separated from the ground control in ordar to facilitate the blunder
detection, although there is no justification for that.
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It is anyhow never possible to discover whether the error is in
photogrammetric observation or in ground control. Moreover, as
increased ground control results in increased diagonal elements in
the Q matrix, this militates against such a measure.

Another trend seems to be the application of a very simple treatment
of blunders during processing of the subunits (e.g. a check of the
residuals), while more sophisticated methods are used in the final
ad justment only (see [3], (12]). Such a procedure may only be justi-
fied in the case where blunder treatment in subunits has been
developed in the past and there 1is little possibility of changing
it, Otherwise it seems difficult to see why simplified blunder
detection methods are efficient in small ad justment units and not in
larger omes.

At this point we would also like to warn against any approximations
in computational procedure. The examples 1in the Appendix make it
clear that even small errors may have fatal consequences. Up till
now we have discussed only the location of blunders in adjustment
problems. There are, of course, also other possibilities. Examples
are checks on double measurements of the same point, checks on con-
sistency of point coding, checks on data format, checks on whether
the measured coordinates are inside the model or the photo limits,
etc.

' INFLUENCE OF SYSTEMATIC ERRORS

Systematic errors are somewhat difficult to define. However, they
may become apparent in one of two ways: either in the results of
calibrations of measuring instruments; or, in the results of adjust-
ment  (i.e., residuals). The calibration of ~instruﬁ:ents and the
further processing of the results of calibration is a special sub~-
ject which shall not be treated here. When the residuals after
ad justment show some regularity it is concluded that systematic
errors are present. They may be caused either by insufficient cali-
bration or by errors in the functional moedel. In aerial triangula-
tion the method of selfcalibration (additional parameters) is consi=-
dered to be efficient in eliminating both types of systematic
errors. The results of tests confirm this. However, the interrela-
tion between systematic errors and blunders has hardly been investi-
gated. Formula (1) makes it obvious that a blunder or a group of
blunders may produce residuals which may create an impression of
presence of systematic errors. Their correction by means of
additional parameters is then, of course, very wrong.

There 1is also another effect of additional parameters, which is
usually neglected. The inclusion of additional parameters in the
ad justment causes a reduction of redundancy. Smaller redundancy
means smaller diagonal elements of the Q matrix. So, obviously, the
additional parameters reduce the power of blunder detection. Genuine
systematic errors, on the other hand, hamper the location of
blunders. They may cause excessively large variance estimates.

APPENDIX
In Table 1 coordinates measured in a photogrammetric model are lis-

ted (X, Y, Z). They are used in absolute orientation adjustment.
Although a three dimensional absolute orientation has been executed
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Nr.|Type Z vV, "1 |51 Group WS SB Group'w@ SS Group WB sB
1 3 49.237| 40! 61(31}]1,2 7012412,3 401314,6 54129
2 3 42,4141 34| 38132)11,3 4713012,4 4413114,7 45131
3 3 45,7701 33| 40(32||1,4 4713012,6 4213114,8 44131
4 3 74.579] 39| 50(32]11,6 471301(2,7 4513116,7 91112
5 3 40.2741-91131)12|11,7 6212612,8 35(32(6,8 40]32
6 3 44.1991-39] 53{32}11,8 52129(3,4 63126(7,8 4032
7 3 45,669 =40 54]32 3,6 48130

8 3 56.387| 24| 26133 3,7 43131

9 1 - ———| | -— 3,8 37132

t.o 42122 34122 34122 34122

Table 3

The test clearly indicates point 5 as erroneous (wy»tog, Si<to).
Further search, however, reveals also that the group consisting of
points 6 and 7 1s a candidate for rejection. All groups worth tes-
ting are given at the right side of table 3 with corresponding wg
and sg.

In Table 4 agaln points 6 and 7 are declared to be planimetric
points. Points 5 and 9 are both distorted by 200u. The qi; ele-
ments are not excessively small (see table 2) but the blunders,
although large, are not apparent and no method will discover them.
However, the minimum eigen value for the matrix Qg for the combi-
nation of points 5 and 9 is very small JApy, = 0.009. This
explains why the blank range is so large.

Point|Type z v W, Point|Type z b W. s.j ”

z i z 1171
1 3 49,2371 -16(26 1 3 49,237 49| 57|35
2 3 42,4141 114112 2 3 42,4141 44 35|39
3 3 45,770 12|14 3 3 45,770 44| 38138
4 3 74,795 18|23 4 3 74,597 491. 46136
5 3 40.4741-13121 5 3 40.674(=-941105|19
6 1 - el 6 1 -— ] e -
7 1 -—— ——— 7 1 - || -
8 3 56.3871-35{38 8 3 56.3871{-13| 1140
9 3 49.729|- 8|13 9 3 49,729 -78| 99|23
ot 42 22i ot 42 122

Table 4 Table 5

The situation given in table 4 is also represented in table 5, but
this time the height of point 5 is distorted by a larger amount,
400u. The blunder in point 5 now becomes detactable but not in point
9. Further search will not deliver further results. After the elimi-
nation of point 5 the qyy for point 9 will equal the 2Apip
mentioned earlier 0.009. Obviously, the method of selective elimina-
tion, although automatic, replicates a photogrammetrist with a lot
of insight. “
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