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Abstract

This paper gives a review of the different methods of robust estimation
and of their suitability for photogrammetric computation, together with
an evaluation of their advantages and disadvantages compared to the least
squares method. ‘

Per Criger Jgrgensen and Kurt Kubik
Aalborg University, Ralborg, Denmark

Poul Frederiksen and Willy Weng
Technical University of Denmark, Lyngby, Denmark

268




269

1. INTRODUCTION

The method of least squares has been used for estimation of parameters

from measurements for nearly two centuries. In general, the method has
served the purpose well but not without any problems. It is recognized,
that the least squares estimate is heavily influenced by outliers among

the measurements, which pull the least squares estimate too much towards
them, causing a difficult errors-search due to the misleading residuals.
This often results in several trials with -the method of least squares omit-
ting different measurements (eventually by statistical tests) as outliers; |
a process which is time consuming and sometimes impossible, when dealing §
with a huge amount of data. ‘ ’

The method of least squares is based on the assumption that the errors of
the measurements are distributed according to the Gaussian error curve

and the so-called outliers may just arise from another - more heavily
tailed - distribution or are simply due to blunders. To cope with this
problem applied statisticians reject observations which seem located too
far away from the data bulk before estimating the mean from the remaining
observations, but it was not till the beginning of the fifties statisticians
(Rox, Turkey, and later Huber, Hampel etc.) began to examine the problem,

to emphasize the shortceming of the classical estimate and to establish al-
ternatives - the more robust estimates. A robust estimate may be defined

as an estimate which remains unchanged under a variation of the underlying
distribution functions or in the presence of observations from contaminating
distributions. The sensitivity of the robust procedure to changes in the
underlying distribution function is considered as a qualitative aspect of
the procedure whereas the quantitative aspect is related to the amount of
observations from a contaminating distribution or the amount of outliers
among the observations which are still tolerable in estimation.

2. MAXIMUM - LIKELIHOCD ESTIMATORS.

1If2,, 2 "'Zn is a sample for the random variable z with density £(z-04)
where Qg is a location parameter, the logarithm of the likelihood function
is

n n
ln L(8) =X 1n £(2,-8) = -L @(z,-6) (1)
i=1 i=1 T

with O denoting the estimator for Og.

In maximum likelihood estimation or M-estimation the goal is to maximize
In L(O) corresponding to minimizing the object function X ©(Z,-0), which
can be solved by differentiating the object function with respect to ©

3 ’ :
S T 0@-0) =T w8 =0 o  2au (2)
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As seen from eg. ! the object function must be convex in order to obtain
a unigque solution.

In order to be able to judge the influence of an additional observation
on the estimator obtained by a given method, Hampel (1974) has developed
a very efficient tool, namely the influence curve (IC). For M-estimators
this influence curve is simply proportional to w.




The IC enables us to construct a variety of robust estimators satisfying
pre-determined conditions to the estimate, eg qualitative robustness, re-
jection point and gross error sensitivity. Rather than specifying the ¢
function, M-estimators are usually described by specifying the function w.
The qualitative robustness means that a "small change" in the set of ob-
servations should result in a small change in the estimate. This small
change may either be many small changes in the observations (rounding off
or grouping effects) or a few large changes (outliers).

This means that the IC should be continuous and bounded. The first proper-
'ty is necessary and causes that a small change in many observations induces
only a small change in the estimate.

The maximum value of the IC is a measure of the gross error sensitivity.
This value measures the worst influence of contaminating observations.
Therefore a bound on the IC is the most important step in robustifying

an estimator. However, the lower the bound the larger the smallest variance
that can be achieved.

The rejection point is the value of the error where the IC is descending
towards zero influence of the observation.

3. ROBUST M-ESTIMATORS.

The first alternative to the least squares method, the least sum method
was proposed already in 1793 by Laplace and 1887 reintroduced by Edgeworth.

‘The minimum function is given by

[2-8] -+ min (3)
giving a w function
L w(lz-0]) = £ sign(2-8) =0 (4)

yvielding the sample median as the estimate of location. The median esti-~
mator can also be categorized as an L-estimator (linear combinations of
ordered statistics) since the median is obtained by taking the "mean" after
having deleted or trimmed 50% of the data from each end of an ordered da-
taset. This 50% trimmed mean (median) is the one extreme of the family of
L-estimators indexed by a, the proportion of the sample size removed from
each end.

The distribution function producing this median estimator is the double
exponential distribution

£(2) = cl‘exp(— lgéﬁﬂiﬁ; c, constants
2

which is longer tailed than the normal distribution and therefore permits

more outliers. The method never found large application due to computatio-

nal difficulties since a solution of a linear programming problem is re-
quired. However, the recently developed simplex algoritm provides a solu-

tion of the least sum principle without requiring more time than least squares.
Furthermore the solution can be cbtained easily by a rewelghted least squares
algorithm.




Due to the computational advances the method is again taken up for treat-
‘ment and especially Barrodale (1973) recommends the method after several
tests showing much better performance of the least sum methecd than the
least squares method when outliers are present in the measurements. See
section 7 for examples.

The least squares and least sum estimators are alsc named norm estimators
L, where

B

b tz—elB > min; B € [1;2] (5)

The least sum method yields less accurate (efficient) estimators than the
least squares method in cases where the data actually are normally distri-
buted. Therefore Huber (1964) has derived the following robust minimum func-
tion

(z-9) 2 . lz-8l La
©(z-9) = 2 (8)
2
alz-9] -% ,  lz-8] > a

and w function

| A
o

Z-6 , |z-6|
{ (7)

w(2-6) =

\"%
o]

a*sign(z-86) , 1z-61

The Huber estimator is based on an error model being normal in the middle
and double exponential in the tails.

The turning constant, a, may be changed according to assumptions about the
error model. However, if the estimator should have an efficiency of 95%
when the error model is purely normal*), a should be set to 1.5 since most
of the scaled (about scaling see section 4) residuals would enjoy the pro-
perty |2-6] < 1.5, s being the standard deviation.

—
The above-mentioned M-estimators are the so-called non-descending estimators
according to the form of the w function. Common for these estimators is that
all observations, even the most extreme outlier do influence the estimate.

In order to be able to reject outliers Hampel (1973) has proposed a three-
part descending estimator including as well the robustness properties men-
tioned as a rejection point. Hampel's proposal is

( 1z-0] 0 < lz-6l <a
w(Z-0) = sign(z-0)+¢ a ‘ a < |z-8} { b (8)
a(c-lz-91) b < lz-8l <c
c-b
L 0 c < |z-81

*) efficiency of 95%: the variance of the estimator is 5% larger than the
variance of the least squares estimator.




Since the w function is descending the associated object function is not
convex and there could be certain convergence problems in the sclution
procedure. The influence functions of these three robust estimators are
shown in Figure 1.
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Fig. 1. Influence functions for a = 1.5, b = 3.0 and ¢ = 4.5.

4. SCALE INVARIANCE

The estimator 06 based on the observation Zi, ZZ""Zn is scale invariant
if
8(AZ,, A2

>\Zn) = }\-6(21, Z ...Zn) (9)7

1 27 2

As it easily can be shown only the norm estimators are scale invariant.
Therefore it is necessary to enforce scale invariance by estimating a scale
parameter simultaneously with 6.

The usual estimator for the standard deviation is a very non-robust measure
of scale, and normally the median of the absolute deviations
mate) is used as scaling parameter. The MAD estimate is defined by

medieil
S = me—r—— ; e, =2Z. -6 (10)
0.6745

where 0.6745 is the expectation of med Ieil under strict normal conditions.

5. NUMERICAL SOLUTION

The numerical sclution can be obtained by using the method of "reweighted
least squares". Eq.(2) can be written as
€1

ei
Lo piz) =0 ‘ oAb

where the weight function p is given by

iy

e
P(;? = (12)

(the.MAD esti-
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The procedure is iterative, starting with the least squares solution (p=1).

In the second iteration the individual weights are calculated from eqg. (12)
using the residuals from the least squares solution. In the third and fol-
lowing iterations, the residuals from the previous iteration are used for
calculating new weights. This procedure is continued until convergence is
obtained. In practice exact convergence is never achieved and a stopping
rule is needed.

To achieve scale invariance, a scale has to be estimated simultaneously
with the location parameter which may cause certain convergence problems,
especially if the least squares solution is heavily influenced by outliers.
To aveid part of this problem a more robust solution than the least squares
solution can be used as the starting solution in the iteration procedure,
eg. the least absolute sum estimator being scale invariant. The object func-
tion related to the descending w-functions is not convex meaning that no
unigque definition of minimum is possible and the iteration procedure may
converge to a local minimum. To cope with this problem it is always a good
- idea to apply different estimators on the same data for evaluation of the
reliability of the result.

6. THE DANISH METHOD

The sensibility of the least squares method to gross errors has also

been recognized by the Gecdetic Institute of Denmark, where since the
late sixties an automatic error search routine has been used in the com-
putation of all larger geodetic problems. This method was developed af-
ter the ideas of Krarup (1967) and is used as an automatic mean for sing-
ling out gross error candidates for further inspections. It is based on
the iterative numerical solution, described in section 5.

The starting point of the method is a conventional least squares adjust-
ment. From the residuals of this first adjustment, new weights are com-

puted for the individual measurements, according to the rule

1 for |z-6] < a-s

T | |
Z-8
P(—(‘;j;“ﬂ) else

The constant a usually is set to 3. The convergence grade of the method

is usually. superior to other robust methods; it depends on the stability
(conditioning) of the adjustment problem. For photogrammetric bundle adjust-
ment a variant of the original Danish Method proved to be most efficient,

[Z-p %" . . .
exp(—0.0S(——g——ﬂ ) for first 3 iterations
P = .
lz-6]3-0 L ‘
exp(-O.OOS(——E——Q ) for following iterations

Other exponential weight functions are used for other categories of pro-
blems (cf. Crlger and Kubik 1983). A possible further improvement of the
Danish Method is to use the variance of the residuals instead of s’ in
computing the weight function. This technigque is being implemented at the
Geodetic Institute of Demmark.
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The Danish Method cannot be classified within the existing maximum likeli-
hood theory of robust estimation; an adjoint error distribution function
cannot be derived due to the rapid decrease of the weight function. Another
possible interpretation of the Danish Method is given by non-linear pro-
gramming:

Find the largest number of measurements, which is mutually consistent, and
use only these measurements in the least squares adjustment to determine
the unknowns. An alternative formulation is to find those observations
which are not consistent with the majority and exclude them from adjust-
ment. (cf. Krarup et al, 1980). The iterative method may be interpreted as
a penalty method for solution of the above programming problem. In this
formulation the problem resembles the clustering problems in statistics.

7. NUMERICAL EXAMPLES

This section presents results from application of three alternatives to
the least squares method for estimation of parameters in a first and third
order polynomial. These examples are representative for strip- and block
adjustments with erroneous ground control points.

The method tested are the least absolute sum, Huber's method and the
Danish Method. The estimates are all obtained by the method of reweighted
least squares as sketched in section 7.2.

The following weight functions are used in the computations, with e =(2-8):

Absolute Sum:

1
ple) =gy
Huber's Method:
1 for £l < a ; a=1.5
S = s T
b s .
~;~ else
=l
s
Danish Method:
e
1 for =l <a; a=1.5

e
p(s) =

else

Let us first consider the fitting of a straight line to 20 data points,
including 5 outliers (cf. figure 2). In the first example (case 2.1) the
outliers are concentrated in the center of the interval, next the outliers
are situated on both ends (case 2.2), and finally all outliers are concen-
trated at one end of the interval (case 2.3). The regression lines, as esti-
mated by the different methods, are shown in the figures.
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All methods enable the identification of the erronecus observations for the
first case (2.1). The robust estimates are obviously better than the least
squares estimates. The Danish Method gives the best result, because here

the wrong observations have the lowest weights. For the second case (2.2)
only the Danish Method gives a clear identification and elimination of the
gross errors. The least sum method behaves second best, while Huber s method
and the least squares method cannot locate the blunders. For case (2.3) none
of the methods originally gives satisfactory results. By reducing the con-
stant a from 1.5 to 0.4, the Danish Method rejects the gross errors, but
‘also 4 correct observations (point 9, 12, 13 and 16).

» N

FTVYyYV
Fig. 2. Linear regression by : LS
least squares (LSQ), ,/4//
least sum (LS), Huber o
(H) and the Danish ;;7
Method (DK). g

e 2.3

In the second example, a third order polynomial is fitted to 10 data
points, including one outlier. This case is in its character rather
characteristic for photogrammetric and geodetic adjustments, where the
degrees of freedom are appr. equal to the number of unknowns.




The 3rd ‘order polynomial considered for the numerical example is

Z, =21"X, - 10°X,2+x. % +e., ;i
1 1 1 1

Y%= 0..... .,
1

I
s
-~
°
~
-
o

The errors e, have been generated with a variance of 1 unit, a gross

error of 20 Gnits has been introduced in the first data point. The least
sum method and the Danish Method is compared to least squares. In the Da-
nish Method, the median estimate s for the standard deviation is applied in
the weight function, when it is smaller than the a priori value ¢ = 1 unit;
otherwise the a priori value is used.

Table 1 and figure 3 show the results of the computations. The Least Sum
Method requires 26 iterations to converge, the Danish Method 6. The Danish
Method detects and eliminates the gross error in the first data point,
while the other two methods are not succesful For more test results cf.
Cruger and Kubik (1983).

s ]
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Fig. 3. 3O Polynomial fitting - three estimates
and true function (T). Only the first
parts of the curves are plotted.

point 1 2 3 4 5 6 7 8 9 10
true value 6 0 12 10 0 -12 -20 -18 0 40 108
true error e -20 0.6 1.0 -0.7 0 -0.2 -1.0 -0.9 1.5 -0.9

estimated errors

least squares -3.8 6.5 1.2 -2.9 -2.1 -0.9 0 1.2 3.2 =2.4
least sum -0.4 10.5 4.8 0 -0.3 -0.1 o 1.1 3.7 -0.2
Danish Method -20.1 0 0.2 ~-1.2-0.2 0.2 -0.3 0.2 2.7 0

Table 1. 3° Polynomial fitting - residuals after adjustment.
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8. FINAL REMARKS

The application of robust estimation methods is still in its beginning.
Much work still has to be done, both of theoretical and practical nature.
However, one thing is quite clear: The method of least squares should be
used with care.
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