
ERS-l SAR processing with CESAR.
by

Einar-Arne Herland
Division for Electronics

Norwegian Defence Research Establishment
P.O.Box 25, N-2007 Kjeller, Norway

Abstract

A vector processor called CESAR (Computer for Experimental Synthetic Aperture
Radar), is now in the final stage of development at the Norwegian Defence
Research Establishment. It is connected to a supermini computer, and has a
maximum performance of 320 Megaflops. This is achieved through parallelism and
pipelining, and the processor is fully programmable. This paper describes the
architecture of CESAR and the implementation of a set of algorithms for
processing of images from the ERS-l synthetic aperture radar.

1. Introduction.

Processing of SAR raw data into images is computationally very demanding,
and regular use of SAR images requires a very high processing capacity. With a
series of satellite-based SARs planned for the next decade, efficient utilization
of the systems requires that suitable processors be available soon. The main
objective for developing CESAR is to make possible the use of the coming
SARs for surveillance of the Norwegian economic zone, and the first of the
available platforms will be ERS-1 to be launched by the European Space
Agency (ESA) in the first half of 1990. A prototype of CESAR will be ready
by the end of this year, but through extensive simulation and testing of the parts
that are already completed, a very accurate estimate of the performance can be
given.

2. The CESAR system.

2.1 System overview.

An earlier version of CESAR has been described in [1]. Figure 2-1 shows
a block diagram of CESAR. The processor is connected to a host computer via
the data port module (DAP), which handles the transfer of both data and
programs to CESAR. All programming is done on the host computer, which
also takes care of communication with surrounding systems, like high density
digital recorders (HDDR), discs, graphic displays and output media. This is
done via the multi port memory (MPM) on the host computer.

Application programs run in the control processor (CP), which is a
Motorola 68020 microprocessor. The application program is written in CESAR

191

PASCAL, which is an extension of standard PASCAL. This is necessary in
order to allow parallel processes to run in CESAR, like data transfers between
memory modules, and the actual processing. A special extension is also used to
allow the CP to refer to data residing outside its own local memory. The CP
also controls the other parts of CESAR by sending control information over the
VMEbus, which in addition can be used for low capacity data transfers.

lbua

~~ MPM

1 Address I aUF
HOST aUF

COMPUTER DAP MAIN TRAP aUF
MEM

I I I
I MAlU VMEbua I I MAlU 1 ___ §I9 MAlU

I MAlU I
I -----, I
I I I Control I I

CPI I ---.I I
I -______ J

Figure 2-1 CESAR block diagram.

The actual processing is done in the microprogrammable arithmetic-logic
unit (MAL U). This module is described in more detail in section 2.2. The CP
can also be used for data processing on small amounts of data if it has spare
capacity, or if a particular task is not suitable for implementation on the
MAL U. The MAL U gets its input data from and stores its output data in a
buffer memory (BUF). BUF is divided into three banks of equal size, and when
running a program in the MALU, two of the banks are connected to the MALU
input, and the third receives the output data. The connections between the BUF
data banks and the MALU I/O-lines is under full program control. CESAR
contains four identical, parallel sets of MALU/BUF, which work completely
synchronously, always with identical programs, but on different data sets.
Addressing in the BUFs is performed by the triple address processor (TRAP),
where "triple" refers to the three data banks in BUF. The same addresses are fed
to all four BUFs. Synchronization of MALU, BUF and TRAP is performed by
the sequencer (SEQ).

192

The main memory module (MAIN MEM) is used to store intermediate data,
and in the case of SAR processing it is used as corner turn memory. Input data
from MPM is typically fed directly to the BUFs and output data is transfered
directly from the BUFs to MPM, while the MAIN MEM is used for data
transfers to and from the BUFs. MAIN MEM and the BUFs are connected via
the Lbus, which is controlled by the DAP. The DAP can transfer data between
any two memory modules connected to it.

Data transfer capacities are 40 Mbytes/sec locally on the Lbus, 10
Mbytes/ sec for transfers from MPM to Lbus, and 6 Mbytes/ sec from Lbus to
MPM. Each of the three I/O-lines between BUF and MALU transfers data at a
rate of 40 Mbytes/sec. In the present configuration MAIN MEM contains 32
Mbytes of dynamic RAM, and each BUF has 6 Mbytes of static RAM equally
divided on three banks. CESAR thus contains 56 Mbytes of memory in addition
to CP's local memory, which is mainly used for storing system information.

In order to run an application on CESAR, four sets of programs must exist.
Three of them are inside CESAR, and the fourth is running in the host, taking
care of data communication with peripheral devices as mentioned above. It is
also possible to do actual data processing on the host. The host programs are
typically written in FORTRAN. The three program sets in CESAR are the CP
program and the TRAP and MALU programs. A library of MALU and TRAP
programs exists, and if this library is sufficient, only the CESAR PASCAL
program has to be written, and the MALU and TRAP programs are
implemented as function calls. Both compilers and simulators exist for MALU
and TRAP in case a user wants to write programs for these modules. There also
exists a simulator for the CP program, whereby bottlenecks in the program can
be detected and performance estimated.

2.2 The microprogrammable arithmetic-logic unit, MALU.

The actual computations are performed by the MAL U. This module consists
of a matrix with 128 identical S-elements, connected as a sylinder, as shown in
figure 2-2. The right-hand view shows the data matrix and the interconnections
between the 16 by 8 S-elements, while the left-hand view shows how the matrix
is connected into a cylinder. Data is fed to the top of the cylinder on parallel
form, where it is converted to serial form and clocked bitwise down into the
cylinder. On the output the reverse operation is performed. Two 32-bit data
words enter and one 32-bit word exits the cylinder every 100 ns when a
program is running.

Each S-element is a single VLSI chip, and it has a repertoire of 32
instructions implementing floating point, fixed point and logical operations. It
works with bit-serial data, and uses on-chip pipelining to implement the
instructions. It has 4 input lines, two from above and one from each of the
horizontally neighboring elements, and 6 output lines, two vertically downwards,
two horizontally and two diagonally downwards. For the elements in the bottom

193

row only one output exists vertically. The routing of data along these I/O-lines
is programmable, and data can move horizontally and downwards through the
matrix. On the top of the cylinder data is input from one or two of the data
banks in BUF, and the output data from the bottom row is written back to the
third data bank of the BUF.

Input
~

~
Output

Input Data

I I I I I I / I I
I I I I I I / I I

~~7~S~7.~8f7~f = = ~
Output Data

Figure 2-2 The systolic array MALU.

When MAL U is running a program, each S-element performs a single
operation with a fixed routing combination given by the instruction word. The
S-element contains delay registers in order to insure synchronous arrival of the
operands, and it can store 32 different instruction words, which gives rapid
change of MAL U program. By combining the operations in different
S-elements, complex algorithms can be implemented by a single pass through
the MAL U. Division is not itnplemented in the present version of MAL U .

The actual throughput depends on the algorithm implemented. If a simple
addition of two vectors is performed, only one cylinder row is used, and the
throughput is accordingly only 1/8 of maximum performance. The more
complicated the operation, the better the performance. Figure 2-3 shows how a
radix-2 FFT butterfly is implemented. It uses three rows, and the rest of the
rows are not shown, since data only is routed directly through them. Since the
width of the algorithm is four S-elements, four butterflies fit around the
cylinder. The W's are twiddle factors, while X and Y are the complex input

1

data.

XR WRX XI WIX YR WRY

Figure 2-3 Radix-2 butterfly.

3. SAR processing on CESAR.

YI WIY

The implementation considered here is the one which is going to be used
for processing of SAR images from ESA's ERS-l satellite. This is a C-band
SAR, which is reflected in some of the algorithm parameters. It has less range
curvature than L-band SARs, but more than an X-band SAR. Yaw steering
will also reduce the range cell migration (RCM). In spite of these differences,
the structure of the algorithms would be much the same for all wavelengths.
Highly squinted systems, however, may require different processing algorithms.

3.1 Processing algorithm.

The algorithm used here is the soc aIled range! doppler algorithm, where the
two-dimensional compression of the target signal histories is divided into two
one-dimensional operations, range compression and azimuth compression. Range
dependence of the azimuth signal is handled by changing azimuth filters across
the swath, while range cell migration correction (RCMC) is done in the azimuth
frequency domain. This is valid for SARs with small squint angles.

Processing is done in terms of reference scenes of 100 km by 100 km. In
order to achieve this, the scene is broken down into a number of smaller

1

processing blocks. This is described in more detail in section 3.2. The algorithm
described in this section applies to a single processing block.

Figure 3-1 shows a block diagram of the algorithm. The first step is to
unpack the raw data from the packed 2 x 5 bit per complex sample used in the
input, and convert to 32-bit floating point format used in the computations. The
next step is to range compress the data, which consists in fourier-transforming
the range vector, mUltiplying with a reference filter, and inverse transforming the
result. At this stage the data is converted to 16-bit integer format and
intermediately stored in MAIN MEM. By properly scaling the range reference
filter, the full dynamic range of the range compressed data is retained. The
conversion is done to save memory space and data transfer capacity on the Lbus.

RANOE COMPRESSION

UNPACK

AZIMUTH COMPRESSION

REfORMAT

REFORMAT

LOOK
DETECT10N

LOOK
ADDmON

OUTPUT
IMAQE

Figure 3-1 Block diagram of SAR algorithm.

When the processing block has been range compressed, azimuth compression
is performed. Corner turning of the data is done by reading back the range
compressed data from MAIN MEM in azimuth direction. The first operation is
to convert the data from 16-bit integer form back to 32-bit floating point
format. The azimuth vectors are then fourier-transformed and RCMC is
performed by interpolating in the transformed data in range direction according
to the target trajectory. The straightened azimuth vectors are then multiplied
with the look filters and inverse transformed. Look detection is done by taking
the absolute value of the compressed data, and the looks are added together.
Overlapping parts from previous processing blocks are read back from MAIN

196

MEM and added to the present data. The part containing the full number of
looks is then output to the host, and the incomplete part is written to MAIN
MEM.

The processing chain described above is not complete, and it is only valid
for a fast-delivery type product which is not geometrically corrected. In addition
to what is shown above, doppler centroid frequency estimation is performed, but
only on a small part of the data, and if orbit data is not available, autofocusing
must be applied to estimate the azimuth doppler rate. The processing necessary
to implement these steps is only a few percent of the total processing load.
Geometric correction of the compressed image, however, is a maj or operation
which can be quite time consuming depending on the level of accuracy desired.

3.2 Implementation.

The input data matrix for a 100 km by 100 km scene consists of about 6000
by 25000 complex samples, in range and azimuth, respectively. This is divided
into 4 by 35 processing blocks of identical size. Figure 3-2 shows this division
into processing blocks.

86 BLOCKS

AZIMUTH

Figure 3-2 Division of scene into processing blocks.

197

CESAR processes the four blocks lying at the same azimuth position in
parallel, with one block for each of the four MALU/BUF sets. The block length
is 2048 in range and 1024 in azimuth, suitable for multilook processing. Range
overlap is approximately 700 and azimuth overlap is 256, corresponding to one
out of four looks. Since a single block is too big to fit into one BUF, it is
processed by dividing it into smaller blocks of f.ex. 32 vectors at a time. When
possible, these vectors are considered as one long vector, thereby effectively
eliminating the importance of the pipeline tails in MAL U .

A set of different MAL U programs is needed to implement this algorithm.
If a specific operation, e.g. unpacking of raw data, cannot be performed in one
pass through MAL U, more passes will be needed, and the programs for these
passes mayor may not be different from the programs in previous passes. In the
case of FFT, the number of passes depends on the vector length. One pass
implements a single butterfly, which means that a radix-4 lK FFf needs 5
passes, but in this case all passes use the same program. A 2K FFf needs the
same 5 passes and in addition a radix-2 pass, which uses a different program.
Multiplication of two complex vectors is done in a single pass, while unpacking
of raw data needs two passes. The reason for this is the cyclic nature of the
input. Since the cylinder input row has 16 S-elements, the input data must also
be cyclic with a period of 16. If unpacking is to be done in a single pass, the
input will lose its cyclic nature. Vector addition is done in one pass, while the
square root in the detection operation needs 3 passes with different programs. It
turns out that the total number of MALU programs needed for SAR fast
delivery images is 10-15, which means that all the programs can be downloaded
into the MALU before processing starts.

3.3 Perfonnance.

Since MALU works synchronously, it is easy to calculate the perfornlance
of a specific algorithm. The time used is proportional to the vector length,
except the pipeline tails at the beginning and end of the vector, which only
depend on the algorithm, and is longer the more complex the algorithm. The
vector lengths used here are long enough to justify neglecting the tails.

Unpacking a 2K vector of raw data requires two passes, where the first pass
is shorter than the second. The total time is

25000(512 x 200 ns + 2048 x 200 ns) = 12.8 s

A 2K FFf needs 6 passes through the MALU, which gives

2048 x 6 x 200 ns = 2.5 ms

for a single MALU. CESAR thus uses 0.6 sec on a 2K FFT. A 1K FFT is
performed in 0.25 sec on the average in CESAR. Filter multiplication takes 0.2
ms for a vector, and conversion from 32-bit format to 16-bit format the

1

same. Unpacking, range compression and format conversion accordingly require
160 seconds for the whole scene.

Azimuth compression is performed on 35 x 5400 1K vectors = 189000 lK
vectors. The forward and inverse FFTs and filter multiplications are done in 110
seconds, if it is assumed that the multilook processing requires the same time as
onelook processing. If range cell migration correction uses a four-point
interpolation filter in range, this operation consumes 40 seconds for the whole
scene. When reformatting of the input data, look detection and addition are
added, the total time for azimuth compression will be approximately 175
seconds.

The calculations above assume that data is always available in the BUFs.
This is achieved by using double buffering, where data 1/0 between BUF and
the Lbus is done simultaneously with the MALU processing. The Lbus is able
to feed the four MALU/BUF sets with data because many passes are applied to
all the data before it is output to the Lbus again, and the data format is more
compact for the Lbus data than for the MALU data. The goal for processing of
a reference scene is 8 minutes, which will be achieved with the system described
above.

4. Conclusion.

During the design of CESAR, SAR processing has been the main
application area. The system can, however, be used in a wide range of
application areas, notably signal and image processing. is a vector processor,
and is especially efficient for complicated computations where many operations
are to be performed on the data.

References

[1]:
V.S.Andersen, T.Haugland, O.S(tjrasen: CESAR - A programmable
systolic array multiprocessor system. The first International Conference on
Supercomputing Systems, Dec 1985, St. Petersburg, FL.

1

