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ABSTRACT 

Art if cia I neura I network devices ( ha can be used as 
pattern recognizers are discusse here. 
NND can be used to store known patterns. in a process known as 
•• 1 e a r n i n g " or ~~ t r a i n i n g , and t o ma p i n put p a t t ern s t o t he 
most closely stored patt rn (known as "recognition" or 
"classification") 
An implementation of NND as an associative memory in a digital 
computer, which performs as a classifie for bi level images is 
here described Implementation to allow c assification of 
mu It i I eve I (gray) images are a I so discussed. 

1 .. 

The neura I structure of the human brain has been considered as 
the basis for the assoc1ative structure of the learning 
pr·ocess. 

A "neuron" ma be described as a device with many inputs and a 
threshold element which weights the many inputs to produce a 
single output. The most simple neura 1 networK. mode 1 is a 
collection of ~~neuronsu which inter·act among themselves, each 
neuron output driving the inputs of the other neurons. Each 
connection between two neurons is known as a "sinapseu. 

A neura I network can store patterns as an associative memory, 
most 1 iKe an hologram, superimposing the patterns on the same 
memory medium. When an unknown pattern feeds the inputs of the 
neural ne work, the netwo K tends to map the input pattern to 
the most similar s ored pattern 

It is possibles as it is in associative memory, to store pairs 
of patterns and dentifiers (for instance, a number) and the 
input pattern wi II then pr·oduce, in trte output of the neura 1 
networ the ident ifi r· of the most similar stored pattern. 
This property of the neura 1 network can be used to implement 
an 1mage classifier. The advantage of such implementantion is 
that classification of an input pattern can be achieved in 
times that are not d pendent of the number of the stored 
patterns. However, if a neural network stores too many 
patterns, its classification accuracy decreases; there are no 
forma I studies about how much a certain neural network can 



.. 1 e a r n .. • but a few r u 1 e s may be used t o avo i d ex c· e e d i n g t he 
network capab iIi ty. 

Use of neura I nets should be performed in two steps: the first 
one consists of "teaching" the network the patterns which wi If 

be later compared to an input pattern. This teaching (or 
training) process can be either adaptive or not. Basically, 
adaptive training means that the weights of each neuron input 
are adjusted in order to obtain the best association for that 
specific pattern. Non-adaptive training implies in a fixed 
weight for each neuron input. 

The second step consists of exciting the neuron network with a 
pattern and let the neurons network to ~~r·everberate 11 unt i I its 
outputs remain stable. When this occurs, the outputs can be 
read to obtain the stored pattern or, as mentioned above. an 
identifier of the stored pattern. 

2.. TYPES OF NEURAl NETWORKS 

Here. the most known artificial neural networks are described. 
Neural nets can be divided in two main classes, according to 
their capability of storing binary or continuous-valued 
inputs [1]. Another classification can be achieved if we 
consider the capabi I ity of the neura I network for supervised 
or unsupervised training. However, this study wi II on IY dea I 
with supervised training. 

HOPFIELD NETWORK 

The HOPFIELD network is a special case of the Cohen-Grossberg 
autoassociator for binary input and is severely limited in the 
numbers of patterns that can be stored. Also, if two stored 
patterns have too many similar bits, a misclassification can 
occur [3]. 

To implement this network, a correlation matrix should be 
created to act as the storage medium for all patterns. Suppose 
t he pat t e r n s have N b i t s i n 1 eng r, t , t he cor r e I at i on rna t r i x 
should be dimensioned as NxN elements matrtx. The number of 
stored patterns M should not exceed INT(0.15 x N x N), 
p r o v i de d t t"t at two p a t t e r· n s a o not have t o o rna n y s i m i I a r b i t s • 
are not linear IY dependent and the patterns to be learned are 
not degraded by noise. 

For example, suppose we want to use this type of network to 
identify the 26 printed alphabetic characters, each character 
being defined as an array of 5 x 7 points. The network storage 
requirement is a matrix of 35x35 elements and the maximum 
number of patterns which can be stored 1S M=INT(0.15x35x35) = 
1 83, wh i c h is good enough for the I at in a 1 p habet . 

However, other authors [~, 6] have stated that the maximum 
capacity of the HOPFIELD network isM= N-1. An experimental 
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implementation of this network showed up that the last 
statement is more likely to be considered in the example case. 

As can be seen, this network does not store any identifier 
along with the pattern, so the pattern recognition process 
should have one aditiona I step: instead of storing the pattern 
by itself, the product vector of the pattern and a orthonormal 
reference pattern (for instance, the ones provided by the 
Wa Ish functions) should be stored; then, after presenting an 
input pattern, a sea lar product of the output pattern by a 
discriminant function wi I I yield a number which is unique for 
each learned pattern and can be determined a-priori [7]. This 
pre-processing of the input patterns also assures that the 
patterns to be learned are not 1 inear ly dependent to each 
other. 

Figure 1 gives the HOPFIELD network algorithm. 

BAN NETWORK 

Binary bidirectiona I Associative Memory (BAM) is an adaptation 
of the HOPFIELD network [3.~]. Pairs CA.B) of patterns of size 
N and L bits, respectively, are stored and can be later 
recovered either by presenting pattern A or pattern B to the 
network. Like the HOPFIELD network. it has severe limitations 
on the number of patterns that can be stored: the maximum 
number of pair of patterns which can be stored is M=min(N,L). 

The storage requirement of a BAM is a matrix of NxL elements. 
An implementation of this network showed up that when near its 
maximum capacity, the BAM becomes very sensitive to noise in 
the input pattern and can lead to miscfassifications. 

Figure 2 gives the algorithm for BAM network implementation. 
It can be observed that when the two input vectors are the 
same. the BAM network performs as the HOPFIELD network. 

HANNING NETWORK 

This network is also used to classify binary patterns. It is 
composed of two subnets, Known as upper and lower subnets. The 
lower subnet contains NxM synapses, where M is the number of 
patterns to be stored and N is the number of bits of each 
pattern. The upper subnet consists of MxM synapses. When an 
unKnown pattern feeds the inputs of the lower subnet neurons, 
the HAMMING network reverberates unt i 1 the upper subnet 
neurons outputs remain stable with only one output being set. 
So the learning process consists of storing pairs (A,B) in the 
network, but the B pattern must have only one bit set, the 
others must remain off. 

HAMMING network has one advantage over the two previous ones: 
it does not suffer from spurious classification [1], but the 
number of patterns should be known in advance. 
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The storage requirement for this network is a matrix of MxM 
elements and a matrix of MxN elements. To store the same 26 
alphabetic characters representation of the previous example, 
the HAMMING network wi I I require 26x26 + 26x35 = 1586 integer 
numbers. 

Implementation of this network showed up that it is not so 
sensitive to noise as HOPFIELD and BAM networks and needs 
a bout the same number of iterations unt i 1 it converges. 

Figure 3 gives the algorithm for HAMMING networK 
implementation. 

Of the 3 binary nets described. HAMMING network seems to be 
the logical choise, in terms of storage requirements (mainly 
when the number of bits of each pattern is large), re 1 iabi 1 ity 
and ease of implementation in digital computers. 

PERCEPTRON NETWORK 

Artificial neural networks for continuous-valued input are 
restricted to the PERCEPTRON network, which is better 
described in (2]. It requires more sofisticatea training 
algorithms for weight adjustment, although these algorithms 
rapidly converge [1]. It also has tt'1e advantage of being able 
to accept several representative patterns to define a "class" 
and later an unKnown input pattern can be associated to one 
known class instead of being associated to a Known pattern. 
Its operation is very simi 1 a r· to the HAMM 1 NG network except 
that inputs are not binary values ana weights must be adjusted 
during training. 

The PERCEPTRON network can be great IY improved if more than 
one layer of neurons is used, where the outputs of layer i are 
used as input to layer i+1. Several studies on this subject 
demostrate that a three-layer PERCEPTRON is enough to separate 
almost a! I classes of patterns, but Its storage requirements 
becomes excessive [1] since the next layer should have at 
least 3 times the number of neurons of the prev1ous layer for 
a good performance. 

3.. IMAGE ClASSIFICATION 

An image classtfication task is in general based on one of the 
two distinct features of an image: radiometric features, i.e, 
the gray levels of the pixels of an image, or geometric 
features, i.e, shapes and rug iness of the image. 

RADIOMETRIC CLASSIFICATION 

Classifying an image according to its radiometric 
charactertstics has been studied for many years, ana several 
methodologies have been implemented successfully. Use of NND 
can. however, simplify the implementation of a classifier in 
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low performance computers, since no excessive arithmetic is 
needed. 

The PERCEPTRON network should be used for supervised 
classification. The single-layer netowork performs like a 
Gaussian classifier, and thus it is very restricted for 
decision regions which are too complex. On the other nand, the 
three-layer networK performs as a K-nearest neighboor 
classifier and can dea I with arbitrary decision regions. 
However, if the implementation requires the classifier to deal 
with a large number of classes, the mu It i -layer network memory 
requirements can oecome an inconvenience. 

GEOMETRIC CLASSIFICATION 

When trying to classify images based on geometric features, 
the classification task encounters some difficulties: 

patterns are of variable size; 

-patterns are most I ikely to be disturbed by "noise" s1nce 
t rt e y a r e ext r a c t e d f r om r e a I i mag e s ; 

the images contain bidimensional information which is 
important for pattern recognition. 

The first two constraints can oe accomodated with the use of a 
noise-insensitive classifier. In the first case! a fixed size 
pattern can be defined and patterns which do not match its 
size are fi lied with 11 blanks", these "blanks~~ acting as noise 
to the classifier. 

The other constraint (orientation, scaling and alignment of 
the pattern inside the image may -and normally wi 11- vary 
between two images) has been subject of several studies and, 
up to now, there is no conclusive studies for use of a NND to 
act as a classifier. 

When the pattern to be classified is orientation-independent, 
it is necessary to orient the patterns according to certain 
rules before storage in the network or before being presented 
to the network input for classification. This implies the need 
of computationa I pre-processing operations for rotation and 
translation of the patterns. 

For certain patterns (for instance, geologica 1 structures) the 
orientation and sea ling of the patterns to be classified are 
significant to the classification process, so the patterns may 
be presented to the network without any pre-processing except 
a translation of the image. Even this can be time-consuming 
s i n c e t h e i mag e s h o u 1 d be ex a c t 1 y 1 o c a t e d t o a 1 1 ow t he NN D t o 
recognize the pattern. 
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Figure 1: Hopfield Network Algorithm 

Let X be the known pattern vector; 
Let y be the unknown pattern vector; 
Let t be the number of iterations; 
Let Z(t) be the output pattern vector at iteration t; 
Let M be the the lenght of X. 

Step 1: Convert binary input data to bipolar 

If Xi = o then let Xi == -1, for 1 s i sM. 

Step 2: Learn an input pattern 

Let Wij be the connection weight from node i to node J; 

W i j : = SUM (Xi · Xj) for 1 s i s M, 1 S J ~ M and i ~ j. 

Step 3: Initialize for recognition 

t : = 0; 

Zi(t) :: Yi for 1 S i SM. 

Step 1: Reverberate the network 

t == t + 1; 

For each i, 1 s ~ M, repeat: 

z j ( t) h (SUM Wij·Zi(t-1) ], for 1 S j S M 

where h is the threshold function. implemented as: 

h(s) . - -1 if s s 0; 
h(S) . - +1 otherwise. 

Step 5: Iterate unt; 1 convergence 

If z i (t) ~ Zi(t-1) goto step "'1, for 1 ~ s M. 

Step 6: Convert output vector to binary 

If z i (t) = -1 then let z i (t) . - 0, for 1 s s M. 
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Figure 2: BAM Network Algorithm 

Let X and X' be the two known pattern vector: 
Let Nand M be the the lenght of X and X', respectively; 
Let Y be the unknown pattern vector, of size N or M: 
Let t be the number of iterations; 
Let Z(t) be the output pattern vector of size M or N 
at iteration t. 

Step 1: Convert binary input data to bipolar 

If Xi= o then let Xi::: -1, for 1 ~ i ~ N; 

If X'i = 0 then let X'i ::: -1, for 1 ~ ~ M. 

Step 2: Learn the input patterns X and X' 

Let Wij be the connection weight from node i to node j; 

W i j : :::: SUM (Xi ·X' j) for 1 s i s N, 1 ~ j ~ M. 

Step 3: Reverberate the network 

t . - t .... 1 ; 

For each i t 1 ~ s M or N i repeat: 

Zi(t) . - h [ SUM Wij·Yi(t-1) ] ' for 1 ~ j s N or M; 

For each i' 1 ~ ~ N or M ' 
repeat: 

y i (t) . - h [ SUM Wij·Zi(t-1) ] ' for 1 s j s M or N. 

Step "'1: Iterate un t i 1 convergence 

If Zi(t) ~ Zi(t-1) goto step for 1 ~ s M or N; 

If y i (t) ~ Yi(t-1) got o step 3, for 1 ~ s N or M. 

Step 6: Convert output vector to binary 

If z i (t) :::: -1 then let Zi(t) . - 0, for 1 ~ ~ M or N. 
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3: HAMMING Network 

Let X be the known pattern vector; 
Let y be the unknown pattern vector; 
Let t be the number of iterations; 
Let Z(t) be the out put pattern vector at iteration 
Let N be the the lenght of X; 
Let M be the number of patterns to be stored. 

Step 1 Convert bi input C) bipolr.'ir 

If X 0 then let Xi 1 ' for 1 s s N. 

Step 2: Learn an nput pat ern 

Let Wij be the conn cti weight rom 

Wi j ::: Xi -:- r 1 M; 
::: (N-1) 2; 

et W' i j be th connec on weight from node 

W' i j . -

W' i j 
f i :: j; 
if i ~ j f S M 1 j M; 

n 

t 

Step 3. Initial ze ~or recogn tion 

t . -.-

Fo each j' 1 ~ ~ M, repeat: 

Zj(t) . - h ( SUM (W j 'y i - ) ] for 1 ~ 5: 

Step "'! : Reverberate the network 

t . - t + 1 ' 

For each j' 1 ~ j ~ M , repea 

Zj t) h Zj t 1 ) C·SUM (t-) J~ 

f r 1 ~ k ::; M nd k ~ j 

whe e h i the thresh ld unc on lement 

h(s) . - 1 I s s 
h(s) . - 1 otherw s 

Step 5: Iterate un i I convergenc 

If Zj(t) ;;If! Zj t -1) got o s p for 1 s J ~ M. 

Step 6: Convert CJU ut vector to b 

If ZJ(t) :: 1 then let Zj(t) for 1 s j ~ M. 

t' 
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'1: PERCEPTRON Networ-k 

Let X be the known pattern vector; 
Let y be the desired out put vector; 
Let t be the number of iterations; 
Let Z(t) be the output pattern vector at iteration t; 
Let N be the the I eng ht Of X. 

Step 1: Initialize weights 

t : = 0; 

Wi(t) := ai, for 1 ~ ~ N; 

e : = a; 

where ai are random values. 

Step 2: Determine actual output 

Zi(t) :::: h [ Wi(t)·Xi- e). 

Step 3: Adjust weights 

t == t + 1; 

w i (t) Wi(t-1) + n·[Yi- Zi(t-1)]·Xi, for 1 ~ ~ N; 

where n < 1, a gain factor. 

Step "': Iterate unt i I convergence 

If Wi(t) .: Wi(t-1), for 1 s i s N, goto step 3. 
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