
ASSOCIATIVE PATTERN RECOGNITION - AN IMPLEMENTATION

ESCADA Jr, J. B.
lnstituto d PesQuisas Espaciais
Rod. Pres. Dutra Km ~0
12 630 cachoe ra Pau ista - SP
BRAZIL
commission 11

ABSTRACT

Art if cia I neura I network devices (ha can be used as
pattern recognizers are discusse here.
NND can be used to store known patterns. in a process known as
•• 1 e a r n i n g " or ~~ t r a i n i n g , and t o ma p i n put p a t t ern s t o t he
most closely stored patt rn (known as "recognition" or
"classification")
An implementation of NND as an associative memory in a digital
computer, which performs as a classifie for bi level images is
here described Implementation to allow c assification of
mu It i I eve I (gray) images are a I so discussed.

1 ..

The neura I structure of the human brain has been considered as
the basis for the assoc1ative structure of the learning
pr·ocess.

A "neuron" ma be described as a device with many inputs and a
threshold element which weights the many inputs to produce a
single output. The most simple neura 1 networK. mode 1 is a
collection of ~~neuronsu which inter·act among themselves, each
neuron output driving the inputs of the other neurons. Each
connection between two neurons is known as a "sinapseu.

A neura I network can store patterns as an associative memory,
most 1 iKe an hologram, superimposing the patterns on the same
memory medium. When an unknown pattern feeds the inputs of the
neural ne work, the netwo K tends to map the input pattern to
the most similar s ored pattern

It is possibles as it is in associative memory, to store pairs
of patterns and dentifiers (for instance, a number) and the
input pattern wi II then pr·oduce, in trte output of the neura 1
networ the ident ifi r· of the most similar stored pattern.
This property of the neura 1 network can be used to implement
an 1mage classifier. The advantage of such implementantion is
that classification of an input pattern can be achieved in
times that are not d pendent of the number of the stored
patterns. However, if a neural network stores too many
patterns, its classification accuracy decreases; there are no
forma I studies about how much a certain neural network can

.. 1 e a r n .. • but a few r u 1 e s may be used t o avo i d ex c· e e d i n g t he
network capab iIi ty.

Use of neura I nets should be performed in two steps: the first
one consists of "teaching" the network the patterns which wi If

be later compared to an input pattern. This teaching (or
training) process can be either adaptive or not. Basically,
adaptive training means that the weights of each neuron input
are adjusted in order to obtain the best association for that
specific pattern. Non-adaptive training implies in a fixed
weight for each neuron input.

The second step consists of exciting the neuron network with a
pattern and let the neurons network to ~~r·everberate 11 unt i I its
outputs remain stable. When this occurs, the outputs can be
read to obtain the stored pattern or, as mentioned above. an
identifier of the stored pattern.

2.. TYPES OF NEURAl NETWORKS

Here. the most known artificial neural networks are described.
Neural nets can be divided in two main classes, according to
their capability of storing binary or continuous-valued
inputs [1]. Another classification can be achieved if we
consider the capabi I ity of the neura I network for supervised
or unsupervised training. However, this study wi II on IY dea I
with supervised training.

HOPFIELD NETWORK

The HOPFIELD network is a special case of the Cohen-Grossberg
autoassociator for binary input and is severely limited in the
numbers of patterns that can be stored. Also, if two stored
patterns have too many similar bits, a misclassification can
occur [3].

To implement this network, a correlation matrix should be
created to act as the storage medium for all patterns. Suppose
t he pat t e r n s have N b i t s i n 1 eng r, t , t he cor r e I at i on rna t r i x
should be dimensioned as NxN elements matrtx. The number of
stored patterns M should not exceed INT(0.15 x N x N),
p r o v i de d t t"t at two p a t t e r· n s a o not have t o o rna n y s i m i I a r b i t s •
are not linear IY dependent and the patterns to be learned are
not degraded by noise.

For example, suppose we want to use this type of network to
identify the 26 printed alphabetic characters, each character
being defined as an array of 5 x 7 points. The network storage
requirement is a matrix of 35x35 elements and the maximum
number of patterns which can be stored 1S M=INT(0.15x35x35) =
1 83, wh i c h is good enough for the I at in a 1 p habet .

However, other authors [~, 6] have stated that the maximum
capacity of the HOPFIELD network isM= N-1. An experimental

11-291

implementation of this network showed up that the last
statement is more likely to be considered in the example case.

As can be seen, this network does not store any identifier
along with the pattern, so the pattern recognition process
should have one aditiona I step: instead of storing the pattern
by itself, the product vector of the pattern and a orthonormal
reference pattern (for instance, the ones provided by the
Wa Ish functions) should be stored; then, after presenting an
input pattern, a sea lar product of the output pattern by a
discriminant function wi I I yield a number which is unique for
each learned pattern and can be determined a-priori [7]. This
pre-processing of the input patterns also assures that the
patterns to be learned are not 1 inear ly dependent to each
other.

Figure 1 gives the HOPFIELD network algorithm.

BAN NETWORK

Binary bidirectiona I Associative Memory (BAM) is an adaptation
of the HOPFIELD network [3.~]. Pairs CA.B) of patterns of size
N and L bits, respectively, are stored and can be later
recovered either by presenting pattern A or pattern B to the
network. Like the HOPFIELD network. it has severe limitations
on the number of patterns that can be stored: the maximum
number of pair of patterns which can be stored is M=min(N,L).

The storage requirement of a BAM is a matrix of NxL elements.
An implementation of this network showed up that when near its
maximum capacity, the BAM becomes very sensitive to noise in
the input pattern and can lead to miscfassifications.

Figure 2 gives the algorithm for BAM network implementation.
It can be observed that when the two input vectors are the
same. the BAM network performs as the HOPFIELD network.

HANNING NETWORK

This network is also used to classify binary patterns. It is
composed of two subnets, Known as upper and lower subnets. The
lower subnet contains NxM synapses, where M is the number of
patterns to be stored and N is the number of bits of each
pattern. The upper subnet consists of MxM synapses. When an
unKnown pattern feeds the inputs of the lower subnet neurons,
the HAMMING network reverberates unt i 1 the upper subnet
neurons outputs remain stable with only one output being set.
So the learning process consists of storing pairs (A,B) in the
network, but the B pattern must have only one bit set, the
others must remain off.

HAMMING network has one advantage over the two previous ones:
it does not suffer from spurious classification [1], but the
number of patterns should be known in advance.

11-292

The storage requirement for this network is a matrix of MxM
elements and a matrix of MxN elements. To store the same 26
alphabetic characters representation of the previous example,
the HAMMING network wi I I require 26x26 + 26x35 = 1586 integer
numbers.

Implementation of this network showed up that it is not so
sensitive to noise as HOPFIELD and BAM networks and needs
a bout the same number of iterations unt i 1 it converges.

Figure 3 gives the algorithm for HAMMING networK
implementation.

Of the 3 binary nets described. HAMMING network seems to be
the logical choise, in terms of storage requirements (mainly
when the number of bits of each pattern is large), re 1 iabi 1 ity
and ease of implementation in digital computers.

PERCEPTRON NETWORK

Artificial neural networks for continuous-valued input are
restricted to the PERCEPTRON network, which is better
described in (2]. It requires more sofisticatea training
algorithms for weight adjustment, although these algorithms
rapidly converge [1]. It also has tt'1e advantage of being able
to accept several representative patterns to define a "class"
and later an unKnown input pattern can be associated to one
known class instead of being associated to a Known pattern.
Its operation is very simi 1 a r· to the HAMM 1 NG network except
that inputs are not binary values ana weights must be adjusted
during training.

The PERCEPTRON network can be great IY improved if more than
one layer of neurons is used, where the outputs of layer i are
used as input to layer i+1. Several studies on this subject
demostrate that a three-layer PERCEPTRON is enough to separate
almost a! I classes of patterns, but Its storage requirements
becomes excessive [1] since the next layer should have at
least 3 times the number of neurons of the prev1ous layer for
a good performance.

3.. IMAGE ClASSIFICATION

An image classtfication task is in general based on one of the
two distinct features of an image: radiometric features, i.e,
the gray levels of the pixels of an image, or geometric
features, i.e, shapes and rug iness of the image.

RADIOMETRIC CLASSIFICATION

Classifying an image according to its radiometric
charactertstics has been studied for many years, ana several
methodologies have been implemented successfully. Use of NND
can. however, simplify the implementation of a classifier in

II

low performance computers, since no excessive arithmetic is
needed.

The PERCEPTRON network should be used for supervised
classification. The single-layer netowork performs like a
Gaussian classifier, and thus it is very restricted for
decision regions which are too complex. On the other nand, the
three-layer networK performs as a K-nearest neighboor
classifier and can dea I with arbitrary decision regions.
However, if the implementation requires the classifier to deal
with a large number of classes, the mu It i -layer network memory
requirements can oecome an inconvenience.

GEOMETRIC CLASSIFICATION

When trying to classify images based on geometric features,
the classification task encounters some difficulties:

patterns are of variable size;

-patterns are most I ikely to be disturbed by "noise" s1nce
t rt e y a r e ext r a c t e d f r om r e a I i mag e s ;

the images contain bidimensional information which is
important for pattern recognition.

The first two constraints can oe accomodated with the use of a
noise-insensitive classifier. In the first case! a fixed size
pattern can be defined and patterns which do not match its
size are fi lied with 11 blanks", these "blanks~~ acting as noise
to the classifier.

The other constraint (orientation, scaling and alignment of
the pattern inside the image may -and normally wi 11- vary
between two images) has been subject of several studies and,
up to now, there is no conclusive studies for use of a NND to
act as a classifier.

When the pattern to be classified is orientation-independent,
it is necessary to orient the patterns according to certain
rules before storage in the network or before being presented
to the network input for classification. This implies the need
of computationa I pre-processing operations for rotation and
translation of the patterns.

For certain patterns (for instance, geologica 1 structures) the
orientation and sea ling of the patterns to be classified are
significant to the classification process, so the patterns may
be presented to the network without any pre-processing except
a translation of the image. Even this can be time-consuming
s i n c e t h e i mag e s h o u 1 d be ex a c t 1 y 1 o c a t e d t o a 1 1 ow t he NN D t o
recognize the pattern.

We tuJ a u 1 n d n b u
as patt The time-independence an h

ha act i NND used for patt rns storage and etri va 1
rna NNDs sui a I for mp I ementa ion n sma 1 1 omput ers
Several types of NND were br efly discuss d and he mass

ge r quiremen s for ea h typ wer given

I
f

n tion

2]

[

["1]

[7

[

ion
ind of implements

e,

own " esea L
lectronic imes,

A. Moop a . P c
Implementation of Assoc at ve Memory Neural
Netwo K Mode IS 11 I Transac ions tems, ana

erne i r i 1 1 98 7
-Han P a Mer a t ~~ D i s t r i but e d Ass o c i a i v e

Memory fo 1£££ tems,

Figure 1: Hopfield Network Algorithm

Let X be the known pattern vector;
Let y be the unknown pattern vector;
Let t be the number of iterations;
Let Z(t) be the output pattern vector at iteration t;
Let M be the the lenght of X.

Step 1: Convert binary input data to bipolar

If Xi = o then let Xi == -1, for 1 s i sM.

Step 2: Learn an input pattern

Let Wij be the connection weight from node i to node J;

W i j : = SUM (Xi · Xj) for 1 s i s M, 1 S J ~ M and i ~ j.

Step 3: Initialize for recognition

t : = 0;

Zi(t) :: Yi for 1 S i SM.

Step 1: Reverberate the network

t == t + 1;

For each i, 1 s ~ M, repeat:

z j (t) h (SUM Wij·Zi(t-1)], for 1 S j S M

where h is the threshold function. implemented as:

h(s) . - -1 if s s 0;
h(S) . - +1 otherwise.

Step 5: Iterate unt; 1 convergence

If z i (t) ~ Zi(t-1) goto step "'1, for 1 ~ s M.

Step 6: Convert output vector to binary

If z i (t) = -1 then let z i (t) . - 0, for 1 s s M.

11-296

Figure 2: BAM Network Algorithm

Let X and X' be the two known pattern vector:
Let Nand M be the the lenght of X and X', respectively;
Let Y be the unknown pattern vector, of size N or M:
Let t be the number of iterations;
Let Z(t) be the output pattern vector of size M or N
at iteration t.

Step 1: Convert binary input data to bipolar

If Xi= o then let Xi::: -1, for 1 ~ i ~ N;

If X'i = 0 then let X'i ::: -1, for 1 ~ ~ M.

Step 2: Learn the input patterns X and X'

Let Wij be the connection weight from node i to node j;

W i j : :::: SUM (Xi ·X' j) for 1 s i s N, 1 ~ j ~ M.

Step 3: Reverberate the network

t . - t 1 ;

For each i t 1 ~ s M or N i repeat:

Zi(t) . - h [SUM Wij·Yi(t-1)] ' for 1 ~ j s N or M;

For each i' 1 ~ ~ N or M '
repeat:

y i (t) . - h [SUM Wij·Zi(t-1)] ' for 1 s j s M or N.

Step "'1: Iterate un t i 1 convergence

If Zi(t) ~ Zi(t-1) goto step for 1 ~ s M or N;

If y i (t) ~ Yi(t-1) got o step 3, for 1 ~ s N or M.

Step 6: Convert output vector to binary

If z i (t) :::: -1 then let Zi(t) . - 0, for 1 ~ ~ M or N.

II

3: HAMMING Network

Let X be the known pattern vector;
Let y be the unknown pattern vector;
Let t be the number of iterations;
Let Z(t) be the out put pattern vector at iteration
Let N be the the lenght of X;
Let M be the number of patterns to be stored.

Step 1 Convert bi input C) bipolr.'ir

If X 0 then let Xi 1 ' for 1 s s N.

Step 2: Learn an nput pat ern

Let Wij be the conn cti weight rom

Wi j ::: Xi -:- r 1 M;
::: (N-1) 2;

et W' i j be th connec on weight from node

W' i j . -

W' i j
f i :: j;
if i ~ j f S M 1 j M;

n

t

Step 3. Initial ze ~or recogn tion

t . -.-

Fo each j' 1 ~ ~ M, repeat:

Zj(t) . - h (SUM (W j 'y i -)] for 1 ~ 5:

Step "'! : Reverberate the network

t . - t + 1 '

For each j' 1 ~ j ~ M , repea

Zj t) h Zj t 1) C·SUM (t-) J~

f r 1 ~ k ::; M nd k ~ j

whe e h i the thresh ld unc on lement

h(s) . - 1 I s s
h(s) . - 1 otherw s

Step 5: Iterate un i I convergenc

If Zj(t) ;;If! Zj t -1) got o s p for 1 s J ~ M.

Step 6: Convert CJU ut vector to b

If ZJ(t) :: 1 then let Zj(t) for 1 s j ~ M.

t'

ode

'1: PERCEPTRON Networ-k

Let X be the known pattern vector;
Let y be the desired out put vector;
Let t be the number of iterations;
Let Z(t) be the output pattern vector at iteration t;
Let N be the the I eng ht Of X.

Step 1: Initialize weights

t : = 0;

Wi(t) := ai, for 1 ~ ~ N;

e : = a;

where ai are random values.

Step 2: Determine actual output

Zi(t) :::: h [Wi(t)·Xi- e).

Step 3: Adjust weights

t == t + 1;

w i (t) Wi(t-1) + n·[Yi- Zi(t-1)]·Xi, for 1 ~ ~ N;

where n < 1, a gain factor.

Step "': Iterate unt i I convergence

If Wi(t) .: Wi(t-1), for 1 s i s N, goto step 3.

II

	S42BW-110052512590

