ASSOCIATIVE MEMORY FOR PATTERN RECOGNITION -~ AN IMPLEMENTATION

ESCADA Jr, J. B.

Instituto de Pesquisas Espaciais
Rod. Pres. Dutra km 40

12.630 Cachoeira Paulista - SP
BRAZIL

Commission 11

‘ ABSTRACT

Artificial neural! network devices (NND) that can be used &s
pattern recognizers are discussed here.

NND can be used to store knhown patterns, inh a process Known as
"jearning® or “training", and to map input patterns to the
most closely stored pattern (known as “recognition® or
“classification®).

An implementation of NND as an associative memory in a digital
computer, which performs as a classifier for bilevel images is
here described. Implementations to allow cilassification of
multi-level (gray) images are also discussed.

1. INTRODUCTION

The neural structure of the human brain has been considered as
the basis for the associative structure of the learning
process.

A "neuron" may be described as a device with many inputs and a
thresnoid eiement which weights the many inputs to produce a
single output. The most simple meural network model i35 a
collection of "neurons® which interact among themselves, each.
neuron output driving the inputs of the other neurons. Each
connection between Two NeUrons i5 KNown as a "sinapse",

A neural network can store patterns as an associative memory,

most tike an hologram, superimposing the patiterns on the same

memory medium. When an unknown pattern feeds the inputs of the
neural network, the network tends to map the input pattern to

the most similar stored pattern.

It is possibie, as it is in associative memory, to store pairs
of patterns and identifiers (for instance, a number) and the
input pattern will then produce, in the output of the neural
network, the identifier of the most simiiar stored pattern.
This property of the neural network can be used to impilement
an image classifier. The advantage of such implementantion is
that classification of an input pattern can be achieved in
times that are not dependent of the number of the stored
patterns. However, if a neural network stores too many
patterns, its classification accuracy decreases; there are no
formal studies aboutl how much & certain neural network can

-290



“learn", but a few rules may be used to avoid exceeding the
network capability.

Use of neural nets should be performed in two steps: the first
one consists of “"teaching" the network the patterns which will
be later compared to an input pattern. This teaching (or
fraining) process can be either adaptive or not. Basically,
adaptive training means that the weights of each neuron input
are adjusted in order to obtain the best association for that
specific pattern. Non-adaptive fraining implies in a fixed
weight for each neudron input.

The second step consists of exciting the neuron network with a
pattern and let the neurons network to "reverberate" until its
outputs remain stable. wWhen this occurs, the outputs can bDe
regd to obtain the stored pattern or, as mentioned above, an
identifier of the stored pattern.

2. TYPES OF MNEURAL NETWORKS

Here, the most khown artificial neural networks are described.
Neural nets can be divided in two main c¢lasses, according to
their capabitlity of storing binary or continuous-valued

inputs [1]. Another classification can be achieved if we
consider the capability of the neural network for supervised
or unsupervised trainivnig. However, this study will oniy deal
witlh supervised training.

HOPFIELD NETWORK

The HOPFIELD network is a special case of the Cohen-Grossberg
autoassociator for pbinary input and is severely limited in the
numbers of patterns that can be stored. Also, if two stored
patterns have too many simitlar bits, a misclassification can
occur [3]. ' ~ o

To implement this network, a correlfation matrix should be
created to act as the storage medium for ail patferns. Suppose
the patterns have N bits in lenght, the correlation matrix
should be dimensioned as NxN eiements matrix. The number of
stored patterns M should not exceed INT(O.15 x N X N},
provided that two patterns do not have too many similar bits,
are not linearily dependent and the patterns 10 be iearned are
not degraded by noise.

For example, suppose we want to use this type of network to
identify the 26 printed alphabetic characters, each character
being defined as an array of 5 x 7 points. The network storage
requirement is5 a matrix of 35x35 elements and the maximum
number of patierns which can be stored i5 MzINT(O.15%x35x35) =
183, which is good enough for the latin aiphabet.

However, other authors [4, 6] have stated that the maximum
capacity of the HOPFIELD network is M = N-1. An experimental

-291



implementation of this network showed up that the last
statement is more likely to be considered in the example case,.

AS can be seen, this network does not store any identifier
along with the pattern, 50 the pattern recognition process
stiould have one aditional step: instead of storing the pattern
by itseif, the product vector of the pattern and a orthonormal
reference pattern (for instance, the ones provided by the
wWailsh functions) should be stored; then, after presenting an
input pattern, a scalar product of the output pattern by a
discriminant function will vield a number which s unique for
each learned pattern and can be determined a-priori [7]. This
pre-processing of the input patterns ailso assures that the
patterns to be learned are not tinearly dependent to each
other.

Figure 1 gives the HOPFIELD network algorithm,

BAM NETWORK

Binary bidirectional Associative Memory (BAM) (8 an adaptation
of the HOPFIELD network [3,4]. Pairs (A,B) of patterns of size
N and L bits, respectively, are stored and can be later :
recovered either by presenting pattern A or pattern B to the
network. Like the HOPFIELD network, it has severe limitations
on the number of patterns that can be stored: the maximum
rnumber of pair of patterns which can be stored is M=min(N,L).

The storage requirement of a BAM is a matrix of NxL elements.
An implementation of this network showed up that when near its
maximum capacity, the BAM becomes very sensitive 1o noise in
the input pattern and can lead to misclassifications,

Figure 2 gives the algorithm for BAM network impliementation.
It can be observed that when the two input vectors are the
same, the BAM network performs as the HOPFIELD network.

HAMMING NETWORK

This network is also used to classify binary patterns. It is
composed of two subnets, Known as upper and lower subnets. The
lower subnet contains NxM synapses, where M is the number of
patterns 10 be stored and N is the number of bits of each
pattern. The upper subnef consists of MxM synapses. When an
unknown pattern feeds the inputs of the lower subnet neurons,
the HAMMING network reverberates untii the upper subnet
neurons outputs remain stable with onily one osutput being set.
S0 the jearning process consists of storing pairs (A,B) in the
network, but the B pattern must have onliy one bit set, the
others must remain off.

HAMM ING network has one advantadge over the two previous ones:
it does not suffer from spurious classification [1], but the
number of patterns should be known in advance.

-292



The storage requirement for this network i5 a matrix of MxM
elements and a matrix of MxN elements. To store the same 26
aliphabetic characters representation of the previous example,
the HAMMING network will require 26x26 + 26x35 = 1586 integer
numbers.

Impiementation of this network showed up that it is not so
sensitive 10 noise as HOPFIELD and BAM networks and needs
about the same number of iterations until it converges.

Figure 3 gives the algorithm for HAMMING network
impilementation.

Of the 3 binary nets described, HAMMING network seems to be
the logical choise, in terms of storage requirements (mainiy
when the number of bits of each pattern is large), reliabiiity
and ease of implementation in digital computers.

PERCEPTRON NETWORK

Artificial neural networks for continuous-valued input are
restricted to the PERCEPTRON network, which is better
described in [2]. It reqguires more sofisticated training
algorithms for weidht adjustment, although these algorithms
rapidly converdge [1]. It ailso has the advanhtage of being abile
10 accept several representative patterns to define a "class"
and tater an unknown input pattern can be associated to one
kKnown class instead of being associated 10 a kKnown pattern,
Its operation is very similar to the HAMMING network except
that inputs are not binary values and weights must be adjusted
guring training.

The PERCEPTRON network can be greatly improved if more than
one layer of neurons is used, where the outputs of laver / are
used as input to laver Ji+f. Several studies on this subject
demostrate that a three-~laver PERCEPTRON is enough 1o separate
aimost all classes of patterns, but its storage requirements
becomes excessive [1] since the next layer should have at
least 3 times the number of neurons of the previous layer for
a qood performance.

3. IMAGE CLASSIFICATION

An imade classification task is in general! based on one of the

two distinct features of an image: radiometric features, i.e,
the gray levels of the pixels of an image, or geometric
features, i.e, shapes and ruginess of the image.

RADIOMETRIC CLASSIFICATION

Classifying an image according to its radiometric

characteristics has been studied for many vears, and several
methodo logies have been implemented successfully. Use of NND
can, however, simplify the implementation of a classifier in

11-293



low performance computers, since no excessive arithmetic is
neaded.

The PERCEPTRON network should be used for supervised
classification. The single~laver netowork performs like a
Gaussian classifier, and thus it is very restricted for
decision regions which are too compiex. On the other hand, the
three-ltayer network performs as a kK-nearest neighboor
classifier and can deal with arbitrary decision regions,
However, if the implementation requires the classifier to deal
with a large number of classes, the muilti-laver nelwork memory
requirements can become an inconvenience.

GEOMETRIC CLASSIFICATION

When trying to classify images based on geometric features,
the classification task encounters some difficulities:

- patterns are of variable size;

- patterns are most likely to be disturbed by "noise" since
they are extracted from real images;

- the images contain bidimensional information which is
important for pattern recognition.

The first two constraints can be accomodated with the use of a
noise-insensitive classifier. In the first case, a fixed size
pattern can be defined and patterns which do not match its
size are filled with "blanks", these "blanks" acting as noise
to the classifier. ‘ ,

The other constraint (orientation, scaling and alignment of
the pattern inside the image may -and normailly will- vary
between 1wo images) has been subject of several studies and,
up to now, there is no conclusive studies for use of g NND to
act as a classiftier. ~

wWhen the pattern to be classified is orientation-independent,
it is necessary to orient the patterns according to certain
rules before storage in the network or before being presented
10 the network input for classification. This implies the need
of computational pre-processing operations for rotation and
transiation of the patterns.

For certain patterns (for instance, geological structures) the
orientation and scaling of the patterns 1o be classified are
significant to the ciassification process, 50 the patterns may
be presented to the network without any pre-processing except
& transiation of the image. Even this can be time-consuming
5ince the image should be exactiy located to allow the NND fo
recoghize the pattern.

i1-294



4. CONCLUSIONS

We have seen how artificial neural network devices can be used
as pattern recognizers. The time-independence and holographic
characteristics of NND used for patterns storage and retrieval
make NNDs suitable for implementation in smail computers.
Several types of NND were briefly discussed and the mass
storage requirements for each type were given.

Classifiers implemented with NND can be useful for recognition
of noise-disturbed binary images. Radiometric patterns
classification can also be essily achieved.

Although NND seems to present a good perspective in the field
of geometric patterns classification, the actual state of the
art of this subject makes this kind of implementation possible
only in fast computers or along with dedicated image-
processing hardware devices.

5. BIBLIOGRAPHY

[1] R. P. LIPPMANN, "An introduction to Computing with Neural
Nets", [EEE ASP Magarine, April 1987 ‘

[2] M. Minsky and 8. Papert, Percepltrons: An introduction to
Computations! Geometry, MIT Press (1969) ~

{31 B. Kosko, "Bidirectional Associative Memories", IE£EE
Transactions on Systems, Man, and Cybernetics, Fall 1987

{41 B. Kosko, "Constructiong an Associative Memory", Byte,
September 1987

[51 €. Brown, "Neura! Research Yelids Computer That Can Learn”,
Etectronic Engineering Times, February 2, 1986

[6] A. Moopenn, J. Lambe, and A. P. Thakoor, "Electronic
Imp lementation of Associative Memory Based on Neural
Network Models®, JEEE Transactions on Systems, Man, and
Cyberpetics, March7Aaprilt 1987

[7] Yoh-Han Pao, and F. L. Merat,"Distributed Associative
Memory for Patterns", /EEE Transactions on Systems, Man,
and Cybernetics, November 1975

(8] N. J. Nilsson, Learni/ng Machines - Foundations of
trainable pattern-classiftying systems, McGraw-Hi il

-295



Figure 1 Hopfield Network Algorithm

Step

Step

Step

Step

Step

Step

Let X be the Known pattern vector;

Let Y be the unknhown pattern vector;

Let t be the number of iterations;

Let Z(t) be the output pattern vector at iteration t;
Let M be the the fenght of X.

1t Caonvert binary input data te bipolar

If X1y = O then let Xi =z -1, for 1 & i § M.

2: Learn an input pattern

Let Wiy be the connection weight from node i to node Jj;
Wij =z SUM (Xi-Xjg) for 1 € i $M, 1 ¢ 4 £ Mand i = j.
3: Initialize for recognition

T 1= O

Zi(t) = ¥Yi for 1 £ i § M.

4: Reverberate the network

T =t + 1
For each i, 1 € i §€ M, repeat:
Zi(t) = h [ SUM Wijg-Zi(t-1) ], for 1 ¢ 4 <M

where h is the threshold function, implemented as:

h(s)
hi(s)

-1 if &8 & O
+1 otherwise,

i

5: Jterate until! convergence
1f Zi(t) = Zi(t-1) goto step 4, for 1 € i $ M.
6: Convert ocutput vector to binary

If Zi(t) = -1 then let Zi(t) := O, for 1 £ i § M.

11-296



Figure 2: BAM Network Algorithm

Let X and X' be the two known pattern vector;
Ltet N and M be the the lenght of X and X', respectively,;
Let ¥ be the unknown pattern vector, of size N or M;
Let t be the number of iterations;
Let Z(t) be the output pattern wvector of size M or N
at iteration t.

Step 1: Convert binary input data to bipolar
If Xi = O then iet Xi =z -1, for 1 £ i £ N;
If X0 = O then let X'i = =1, for 1 £ i § M.

Step 2: Learn the input patterns X and X*
Let Wij be the connection weight from node i to node j;
Wig 1= SUM (Xi - X"j) for 1 £ i & N, 1 £ J & M.

Step 3: FReverberate the network

T =1 + 1;
For each i, 1 £ i § M or N, repeat:

Zi(t) = h [ SUM ®wij - Yi(t-1) 1, for 1 £ g ¢ N or M;
For each i, 1 € i $ N or M, repeat:

Yi(t) =z b [ SUM Wij-Zi(t-13 1, for 1 £ 4 £ M or N.

Step 4: Jterate untii convergence
{f Zi(t) = Zi(t-1) goto step 2, for 1 € i £ M or N;
IF Yi(t) = Yi(t=-1) goto step 3, for 1 € i £ N or M.
Step 6: Convert output vector to binary

1F Zi(t) = -1 then let Zi(t) := O, for 1 < i ¢ M or N.

-297



Figure 3: HAMMING Network Algorithm

Let X be the known pattern vector;

Let ¥ be the unknown pattern vector;

Let t be the number of iterations;

Let Z(t) be the output pattern vector at iteration t;
Let N be the the lenght of X;

Let M be the number of patterns to be stored.

Step 1: Convert binary input date to bipolar
If Xi = O then let Xi = «1, for 1 $& 1 $§ N.
Step 2: Learn an input pattern
Let Wiy be the connection weight from input i to node J;

WiJ 2= Xi = 2 for 1 £ 0 £ N, 1 £ 4 8 M,
8j 1= (N=1) =+ 2;

Let W' ij be the connection weight from node i to node j;

L

Wiy E
€ if 1 =

Ji
L AN J

for 1 £ i €M, 1 € J £ M;

[ 1]

where € > (M-1)"1,
Step 3: /nitialize for recognition

Tt 1z O

For each J, 1 & t § M, repeat:

ZJ(t)y = h [ SUM (Wijg - Yi - &j) ] for 1 £ 1 £ N.

Step 4: Reverberate the network

T =t + 1;

For each j, 1 £ J ¢ M, repeat:

2ty = h [ ZjC(t-1) + € -8UM Zk(t-1) 1,
for 1 € k ¢ M and k = j;

where h 18 the threshotld function, implementied as:

hi{(s)y :=z -1 if 5 £ O
h(s) = +1 otherwise,

Step 5: (terate until convergence
If ZjCt) = ZJ(t~-1) goto step 4, for 1 € J § M.
Step 6: Convert outpul vector to binary

¥ Zyg(t) = -1 then let Zj(t) := O, for 1 ¢ Jj <M,

11-298



Figure 4 PERCEPTRON Network Algorithm

Step

Step

Step

Step

Let
Let
Let
Let
Let

1:

X be
Y be
1 be
Z(t)
N be

where 4ai

the known pattern vector;

the desired output vector;

the number of iterations;

be the output pattern vector at
the tThe lengnt of X.

tnitialize weéights

ai, for 1 € { £ N

are random vaiues.

c: Determine actus! coutput

Zi(t) =

h [ Wi(t) Xi - © 1.

3: Adjust weights

t

t

Wi(t) :=

13

Wi(t-1) + N-[Yi - Zi(t-1)]-Xi,

where N < 1, a gain factor.

4

tterate until convergence

iteration t,;

for 1 ¢

IFf Wi(t) = Wi(t-1), for 1 £ i £ N, goto step 3.

1-299

<

N;



	S42BW-110052512590

